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ABSTRACT
Human vision takes time to adapt to large changes in scene inten-
sity, and these transient adjustments have a profound effect on
visual appearance.  This paper offers a new operator to include
these appearance changes in animations or interactive real-time
simulations, and to match a user’s visual responses to those the
user would experience in a real-world scene.
Large, abrupt changes in scene intensities can cause dramatic
compression of visual responses, followed by a gradual recovery
of normal vision. Asymmetric mechanisms govern these time-
dependent adjustments, and offer adaptation to increased light that
is much more rapid than adjustment to darkness. We derive a new
tone reproduction operator that simulates these mechanisms. The
operator accepts a stream of scene intensity frames and creates a
stream of color display images.
All operator components are derived from published quantitative
measurements from physiology, psychophysics, color science, and
photography.  Kept intentionally simple to allow fast computa-
tion, the operator is meant for use with real-time walk-through
renderings, high dynamic range video cameras, and other interac-
tive applications. We demonstrate its performance on both syn-
thetically generated and acquired “real-world” scenes with large
dynamic variations of illumination and contrast.

CR Categories: I.3.3 [Computer Graphics]: Picture/image
generation – Display algorithms; I.4.3 [Image Processing and
Computer Vision]: Enhancement – Filtering.

Keywords: Rendering, realistic image display, time course of
adaptation, background intensity, adaptation model.

1. INTRODUCTION
The human visual system can accept a huge range of scene inten-
sities (from about 10-6 to 10+8 cd/m2, or 14 log10 units), because it
continually adjusts to the available light in any viewed scene.
These adjustments for viewed intensity, known as visual adapta-

tion, occur almost entirely within the retina [4]. Surprisingly, the
eye’s iris diameter only mildly affects adaptation; its 2-8mm ad-
justment range varies retinal illumination by only about 1 log10

unit [28].

Adaptation and its changes over time have profound effects on the
visual appearance of any viewed scene.  Continual adjustment
helps keep the visual system acutely sensitive to scene content
over a wide range of illumination, but adaptation also tends to
hide or obscure any very slow changes in scene intensity or spec-
tral content.  For example, on an overcast late afternoon, an auto-
mobile driver may not notice the loss of daylight; adaptation can
hide the gradual lighting reduction until another car’s headlights
reveal the darkness.  Adaptation can also exaggerate large, rapid
changes in scene intensity.  For example, on a sunny day (~10+4

cd/m2), people entering a dim motion picture theater (~10-1 cd/m2)
may see only blackness and the movie screen.  Their vision is
restored after tens of minutes of adaptation, and they may even see
popcorn spilled under the seats (~10-3 cd/m2).  On leaving, people
see only blinding whiteness, but in a few seconds their adaptation
restores the normal appearance of a sunny day.

This paper offers a practical, accurate, and fully automatic way to
reproduce similar visual experiences caused by time-dependent
adaptation, even when scene intensity changes greatly exceed
display device abilities.  We present a new time-dependent tone
reproduction operator that can rapidly create readily displayable
color image sequences from any desired input scene, either static
or dynamic, real or synthetic.   The operator is simple, uses global
rather than local adaptation models, and may be robust enough for
real-time use with interactive renderings, with output from high
dynamic range video cameras, or for rapid evaluations of lighting
designs.
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Figure 1: Tone Reproduction Operator Overview.

Our new operator follows the tone reproduction framework pro-
posed by Tumblin and Rushmeier [19], and is built from a for-
ward and inverse instance of a pair of perceptual models, as
shown in Figure 1.  The adaptation model transforms viewed
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Figure 2: Increment Thresholds During Dark Adaptation.
Ability to sense small illumination changes develops slowly in the dark.
Test subjects were first adapted thoroughly to a uniform background
intensity. Experimenters removed the background light and then periodi-
cally measured the test subject’s thresholds in darkness.  Five curves show
results from five widely-spaced initial background intensities. Both rod
and cone thresholds fall asymptotically, but cones (dashed lines, filled
symbols) adapt to darkness more rapidly, and dominate threshold meas-
urements until slower rod thresholds (solid lines, open symbols) can fall
below them ([10], Table III).

scene intensities to retinal-response-like vectors R, and the ap-
pearance model converts R to appearance vectors Q that express
correlates of “whiteness/blackness” and “colorfulness.”  The up-
per model pair computes viewed scene appearance, and the lower
pair of inverse models computes display intensities that match the
scene appearance.  Our forward adaptation model is an abbrevi-
ated version of an authoritative, sophisticated model of static
color vision by R.W.G. Hunt and colleagues [15], augmented with
exponential filters for time-dependent adaptation mechanisms.
After reviewing related work in Sections 2 and 3, Section 4 pres-
ents detailed derivations of the entire operator, and Section 5
demonstrates its performance on time-varying scenes.

2. PREVIOUS WORK
There is a wealth of published psychophysical work measuring the
performance of the human visual system as a function of steady
background intensity [6, 8, 14, and 28]. These books and papers
provide data about how thresholds increase, visual acuity im-
proves, and motion, color, and contrast sensitivity increases with
additional available light. During the last decade, computer
graphics researchers [5, 17, 19, 20, 25, 26 and others] have used
these data to construct more perceptually accurate scene-to-
display mappings. Published mapping methods compute displayed
images with improved appearance for a wide range of scene inten-
sities as they might appear under static (steady-state) viewing
conditions. These models capture many of the stationary light-
dependent aspects of viewed scene appearance.

However, we found surprisingly little published work on time-
dependent models of visual adaptation that is suitable for com-
puter graphics.  Though several authors, such as Graham & Hood
[9], Sperling & Sondhi [18], Walraven & Valeton [23] and Wil-
son [27] have published extensive models of adaptation processes,
the work primarily addressed psychophysical threshold experi-
ments rather than the appearance of arbitrary image sequences.
Accordingly, these models do not address appearance effects or
consider the problems of displaying computed results.  In the
computer graphics literature, only Ferwerda [5] offers any time-
dependent method, but his simple and clever model is not in ac-
cordance with psychophysical data on response compression, and
the method is restricted to step-like scene intensity changes.

The work presented here is novel in three ways. First, the model is
general: it accepts time sequences of arbitrary scene intensities.
Next, it captures the appearance of widely varying amounts of
adaptation, and includes both bleaching and network effects.
Finally, the model is firmly grounded in published research results
from psychophysics, physiology, and color science.

3. BACKGROUND
Almost all known adaptation mechanisms are found within the
retina, and each mechanism has its own time course.  In addition
to the mild effect of pupil diameter adjustments, the combined
effects of receptor types, photopigment bleaching and retinal con-
nection networks explain the huge span of human vision [4].

The human retina holds two types of photoreceptor cells. Cones
sense color and respond well in dim to bright light (~10-1 to ~10+8

cd/m2), and rods respond best between darkness and moderate
light (~10-6 to ~10+1 cd/m2), but are blinded by saturation above
~10+2 cd/m2[14]. Within their response ranges, receptors react
when one of its “visual pigment” molecules captures a photon.
The captured photon triggers a complex cascade of reactions
known as “bleaching” that desensitizes the molecule. Bright light
rapidly reduces a receptor’s usable photopigment concentration,
but slow retinal mechanisms restore it [4].  Photopigment con-
centration sets an upper limit on receptor sensitivity, and simple
rate equations can predict reasonably well how these concentra-
tions change with time and light [14].

Unlike film or television camera sensors, individual receptor cells
share interdependent signals. Two more neural cell layers in the
retina process these signals (see [4] Chapter 4 for a masterful
summary) and their interactions strongly affect adaptation and its
time course.  Extensive psychophysical experiments (see [12] and
[9]) have revealed rapid multiplicative and subtractive adaptation
mechanisms, and more may exist within the retina ([24], pg. 76).

3.1 Adaptation Measurements and Models
Adaptation processes greatly complicate visual response function
measurements because varying the test stimulus may cause adap-
tation that changes the response function as well.  At least two
very different approaches to this problem are common in the vi-
sion research literature. Psychophysicists often measure a test
subject’s ability to see test stimuli made so small, fast, or weak
that adaptation does not change significantly, and physiologists
measure the underlying biological mechanisms responsible for
adaptation and light sensitivity.  Both approaches offer only par-
tial explanations of how adaptation affects visual appearance.

Increment threshold tests may offer the simplest measurements of
adaptation. Test subjects first stare at a wide blank screen for
enough time to adjust to its uniform “adapting intensity” Ia.
Against this background, psychophysicists then show a small test
spot of intensity Ia+∆I and quickly find the smallest detectable ∆I.
For moderate spot sizes and all Ia greater than about 10-4 cd/m2,
larger adapting backgrounds Ia cause larger increment thresholds
∆I.  Over much of this range (∆I/Ia) is nearly constant, a relation
known for over 140 years as the Weber-Fechner fraction. This
fraction suggests adaptation acts as a normalizer, scaling scene
intensities to preserve our ability to sense contrasts within it.

A sudden change to background Ia temporarily disrupts the simple
monotonic (∆I vs. Ia) function.  Figure 2 shows how log10(∆I)
changes over time when test subjects are suddenly plunged into
complete darkness after thoroughly adapting to one of five Ia in-
tensities.  Rods dominate retinal response while adapting from
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dim light (Ia=2.64 log10(td
1)) to darkness, and ∆I falls asymptoti-

cally to its dark-adapted value in just a few minutes.  The time
course of cone adaptation becomes important in the transition
from bright light (4.67 log10(td)) to darkness. First ∆I drops
quickly but pauses near the minimum cone threshold (about –1
log(td)), then as rod thresholds finally fall below cone thresholds,
∆I slowly approaches the rod dark-adapted value.

Direct cellular measurements on isolated and whole rat retinas by
Dowling (1963), Weinstein, et al., (1967) and others (see sum-
mary in [4], Chapter 7) offer further help.  Their work showed
dark adaptation in both rods and cones begins with a rapid de-
crease in threshold governed almost entirely by retinal network
interconnections, but this fall is limited to a level directly pre-
dicted by photopigment concentrations. More recently, works by
[1], [12] and [9] suggest these neural processes are complete in
about 200mS for non-bleaching changes in adaptation.

Figure 3 shows increment threshold changes for a fully dark-
adapted observer exposed to bright background light [2]. The
entire light-adaptation process is much faster than dark adapta-
tion, with a markedly different effect on thresholds.  At the onset
of the bright adapting light, ∆I jumps immediately to a very high
value, then quickly settles back towards its static value. Light
adaptation also includes both a fast neural component [1, 9] and a
slower, pigment-limited process.  Though initially puzzling, these
threshold behaviors are reasonably well explained by examining
retinal mechanisms.

Most retinal cells vary their response only within a range of inten-
sities that is very narrow if compared against the entire range of
vision. Adaptation processes dynamically adjust these narrow
response functions to conform better to the available light. Direct
cellular measurements of response functions for cone, rod, and
bipolar cells [4] and firing rates for sustained ON-center retinal
ganglia [24] closely follow:
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an S-shaped curve (see multiple examples in Figure 5) where I is
light intensity, R is neural response (0 < R < Rmax), semi-saturation
constant σ is the I value that causes the half-maximum response,
and n is a sensitivity control similar to gamma for video, film, and
CRTs.  Introduced by Naka and Rushton in 1966 to describe fish
S-potentials [14], this hyperbolic function appears repeatedly in
both psychophysical experiments with flashed test stimuli [13, 1,
23, 27] and widely diverse, direct neural measurements [4, 7, 8,
22].  Psychophysical experiments modeling adaptation and satu-
ration in rods [1] and cones [14] using Equation 1 show both Rmax

and σ depend on both I and time.

Equation 1 helps explain why threshold values differ so markedly
during dark and light adaptation in Figure 2 and Figure 3. Sup-
pose we choose values for Rmax and σ to describe the visual re-
sponse of a light-adapted observer, and make the simple assump-
tion (as did [9],[14]) that thresholds measure some small fixed
increment in response value R.   Sudden darkness will not imme-
diately change the viewer’s response function, and though most
scene intensities will fall well below σ in Equation 1, at first the
threshold value ∆I is only weakly affected (for I near zero, R ≅
(I/σ)n; to change R by some small constant amount requires a ∆I
value that is nearly unaffected by I).  Over time, adaptation will

                                                                
1Trolands (td) merge scene intensity with pupil area to estimate
retinal illuminance: td = (Intensity in cd/m2)⋅(pupil area in mm2).
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Figure 3: Increment Thresholds During Light Adaptation.
Dark-adapted observers suddenly exposed to bright background light of
0.5 log Trolands for rods (left [1]) or to 3.7 log Trolands for cones (right
[2]) initially experience very high thresholds, but these rapidly decay back
to their static values.

gradually reduce the threshold by adjusting σ and Rmax to their
dark-adapted values as shown in Figure 2. However, once fully
dark-adapted, suddenly large I values (I >>σ) cause large response
values near Rmax, and any noticeable increase in this response
requires a huge additional ∆I, a property known as “response
compression” [23].  Only when adaptation brings σ nearer to the
new, much brighter I values will the response and threshold fall to
their static values.

Beginning in 1980, R. W. G. Hunt and colleagues have assembled
and continually refined an intricate mathematical model of human
color vision for use in printing, photography, and video [15]. His
model is a masterful synthesis of published data from psycho-
physics, physiology and color science, and is suitable for critical
evaluations of many forms of color image reproduction. Briefly,
Hunt’s model uses Equation 1 to estimate rod and cone responses
to a viewed image, along with careful modeling of color response,
to include numerous important subtleties. We will use parts of
Hunt’s model in Section 4.1.

3.2 Display Interpretation
Light-adapted response alone does not entirely explain the visual
appearance of displayed images: humans easily accept and under-
stand reduced-contrast image renditions printed in newspapers or
seen on poorly adjusted CRTs under high ambient light levels.
We prefer higher contrasts, as confirmed by both formal studies
and advertisements for film, CRTs and printers, but do not require
them.  For example, bright office light has limited CRT display
contrasts to only 18:1 at the computer used to write this text.
Nevertheless, the displayed text and figures appear as dark, rich
black against a clean, paper-white background.

Extensive studies of visual appearance and preference in photo-
graphic prints and transparencies by Jones, Nelson, Condit, Bar-
telson, Breneman and others (summary in [16]) offer some useful
insights.  Each surmised that viewers estimate scene intensities by
comparing display intensities against mental estimates of refer-
ence white and possibly reference black.  These values describe
the display intensities needed to represent scene objects with very
high and very low diffuse reflectances viewed under prevalent
scene lighting.  Hunt uses both reference white and reference
black in his model, and we closely follow his work.

4. DERIVING THE OPERATOR
This section provides a complete description of all parts of our
time-dependent tone reproduction operator.  The operator makes a
displayable sequence of RGB images from an input sequence of
scene values expressed in cd/m2 or similar units, even if the input
values are not displayable.  The operator creates one display im-
age for each frame of input data, and keeps only a handful of



Figure 4: Detailed Tone Reproduction Block Diagram. The
adaptation and appearance models of Equations 2-8 are diagrammed and
assembled here according to the scheme shown in Figure 1.  Thick lines
carry pixel-by-pixel image data; thin lines convey scalars or vectors that
apply to all pixels in an image but may vary over time.  Dotted line divi-
sions denote major sections shown in Figure 1.

time-dependent state variables from frame to frame; multiple
frame buffers are not required.  By following the outline given in
Figure 1, we construct the complete operator as diagrammed in
Figure 4.  The next two subsections describe the operator’s adap-
tation and appearance models.

4.1 Adaptation Model
The adaptation model acts as an idealized, film-like eye with uni-
form resolution and no localized differences in adaptation.  At any
instant, the same function governs response to light at all points in
the scene.  For each scene pixel, our model computes retina-like
response signals Rrod and Rcone for rod and cone luminance and
response vector Rcolor for color information.

Our adaptation model is a judicious simplification of Hunt’s static
model of color vision [15] that adds new, time-dependent adapta-
tion components.  These four components separately mimic the
fast neural adaptation attributed to retinal interconnections (net-
work) and the much slower process of photopigment bleaching
and regeneration in both rods and cones.

4.1.1 Static Response
As shown in Figure 4, we begin by converting scene RGB values
or radiances into luminance values for rods and cones (CIE stan-
dard Y’, Y), labeled Lrod and Lcone respectively. We use only color-
ratio components (red/Lcone, green/Lcone, blue/Lcone) for color.

As in Hunt’s model (see [15], pg. 712, 721), we compute both rod
and cone luminance responses using Equation 2, with the maxi-
mum response Rmax  given by a photopigment bleaching term B:
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Figure 5: Model of Rod & Cone Response.  These plots of Rrod and
Rcone vs. luminances Lrod and Lcone were drawn with fixed adaptation lu-
minance amounts Acone = Arod = 2.10-5, 2.10-4, … , 2.10+6, 2.10+7cd/m2.
Crosses and circles mark response to adaptation luminance and “reference
white” respectively.  Note that rods adapted above about 10 cd/m2 are
saturated, with little or no response, as are cone above 10+5 cd/m2.
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As before, R is the response to luminance L, and both B and σ are
determined by adaptation to overall scene luminance.  Our model
is primarily concerned with variable responses to luminance, and
discards the sophisticated color calculations performed by Hunt’s
model.  Instead, we only approximate the amount of color com-
pression caused by Equation 2 at Lcone and apply it to the color
ratio vector C to make color response vector Rcolor:
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Hunt slightly modified the direct cellular measurements of Vale-
ton and Van Norren [22] to restore pupil area effects removed
from their data.  He decreased n slightly to n = 0.73 and broad-
ened the response range by about one log10 unit. Following Hunt’s
suggestion to define “reference white” as five times the adaptation
luminance, the half-saturation parameters σ for rods and cones
become:
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Note Brod shrinks rapidly towards zero for Arod>>1 cd/m2 to mimic
rod saturation.  The resulting static response model produces the
curves for rods and cones shown in Figure 5.  Our dynamic model
will vary only the horizontal position (σ) and amplitude (B) of
these curves.

Unlike Hunt’s static values, we use separately computed, time-
varying adaptation amounts (Arod, Acone) to compute σ, and
bleaching and regeneration kinetics of pigments to compute B
values for rods and cones.  We rename Hunt’s static (Arod, Acone)
values as (Grod,Gcone), the ‘goal’ adaptation values eventually
reached if the current scene is held fixed.  In the next section, the
goal amounts computed for each frame drive calculations of time-
varying adaptation effects.

4.1.2 Dynamic Response
Hunt’s model assumes scene viewers have achieved a static,
steady state of adaptation where Arod = Grod and Acone = Gcone.
Typically, adaptation is measured by the amount of light required
for a viewer to reach the same state while staring at a uniform
blank background.  Our new time-dependent or dynamic model
will eventually reach this same state given enough time, but to
model transient effects we use four separate time-dependent
terms. ‘A’ terms describe fast, symmetric neural effects and are
used to compute the σ values of Equations 4 and 5.  ‘B’ terms
model slower asymmetric effects from pigment bleaching, regen-
eration and saturation effects, and set response amplitudes as Rmax

did in Equation 1.

To compute ‘A’ and ‘B’ values, we first find the steady-state or
goal adaptation values Grod and Gcone for the current input frame
of scene data. Several methods are plausible, and the best choice
may depend on the application. In accordance with Hunt’s ‘refer-
ence white’ values, we chose G values as one-fifth of the paper-
white reflectance patch in the Macbeth chart for the image se-
quence on this paper’s title page, but, in the movie sequence ex-
cerpted in Figure 7, we used the 1-degree foveal weighting
method found in Ward-Larson et al.[26], and directed the foveal
center to the roadway surface as a driver might.  Users may also
wish to aim this foveal weighting interactively as was done by
Tumblin et al. [21]. Either method is a valid choice for the block
labeled “Adaptation Goal Finder” in Figure 4.

Exponential decay functions are often used to model temporal
processing of the visual system  (see [18, 7, 1, 23, 12, 9]).   Fol-
lowing this tradition, we chose to model the four adaptation sig-
nals Arod, Acone, Brod, and Bcone with two forms of exponential
smoothing filters applied to the adaptation goal signals Grod or
Gcone computed for every frame.  The outputs of these filters are
smoothed, delayed versions of their inputs, and Figure 6 illus-
trates our discrete implementation for both types.

We compute the fast, neurally-driven adaptation values Arod and
Acone from goal values Grod and Gcone respectively using simple
fixed exponential filters where J and K functions are a fixed scale
factor F: J(x)=K(x)=Fx.  The response of these filters to a unit-

height step-like input  as in Figure 6 is given by ( )0/1 tte−− , where

t is time and t0 is the “time constant.”   To find the constant F, just

apply the discrete time-step size T to get ( )0/1 tTeF −−= .  We

chose t0 values by curve-fitting to the dark-adaptation time course
data from [3] after discounting regeneration effects on measured
thresholds, yielding t0,rod= 150mS and t0,cone= 80mS. These data
were measured on stimuli that caused significant bleaching, and
our independent estimates agree reasonably well with non-
bleaching measurements published by [1], [12] and [9].  We do
not distinguish between multiplicative and subtractive adaptation
in our model because the former is usually complete within one or
two frame times.
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Figure 6: Discrete Exponential Smoothing Filter.

We compute time-dependent bleaching factors Brod, Bcone by ex-
tending Hunt’s static expressions in Equation 6 to include pig-
ment kinetics (see [14], page 5-55, eqns. 10-17). The exponential
filter of Figure 6 supplies the kinetics by its J and K functions.
The J() functions describe the pigment depletion rate that depends
on both the current amounts of light (G) and on the pigment con-
centration (B).  The K() functions describe the competing process
of pigment regeneration, which depends only on the pigment con-
centration (B).  For rods, let in = Grod (current value) and out =
Brod, (previous result), then find Brod for the next time-step using:

( ) ( ) .
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Similarly for cones, let in = Gcone (current value) and out = Bcone

(previous result) then find Bcone for next timestep using:
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A published consensus on regeneration time constants is τcone=110
seconds for cones and τrod=400 seconds for rods [14]. Be sure to
use cd/m2 units in Equations 4-7 to agree with all constants.

4.2 Visual Appearance Model
Our visual appearance model is simple but extremely important to
the behavior of the overall tone reproduction operator.  As seen in
Figure 5, even after adaptation, the response to a bright scene can
be much stronger or weaker than any response achievable by a
dim CRT display or a photographic print.  Our appearance model
assumes humans can assign equivalent appearance to dim displays
and very bright or very dark scenes by a simple linear mapping of
visual responses. The model determines “reference white” and
“reference black” responses from among the current visual re-
sponses, and judges the appearance of any visual response against
these reference standards.  As shown Figure 4, our appearance
model computes luminance appearance values QLum by subtracting
reference black response REFblk from  Rlum, where Rlum = Rrod +
Rcone.  We follow Hunt’s suggestion and determine reference
white as five times the current adaptation level and reference



black as 1/32 the intensity of reference white.  For our time-
dependent adaptation model, we find the response to reference
white and black as:

coneAconeLrodArodL conerodwht RRREF
⋅=⋅=

+=
55

             (8)

                   
coneAconeLrodArodL

conerodblk RRREF
⋅=⋅=

+=
32

5

32
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(vertical line means “evaluated when”).  We also compute the
width and midrange of visual response as Qspan = (REFwht-REFblk)
and Qmid =0.5(REFwht + REFblk).  Color appearance values Qcolor

are set by Rcolor values of the scene.

4.3 The Tone Reproduction Operator
We can now assemble a new, time-dependent, tone reproduction
operator by devising an inverse appearance and adaptation model
to convert scene appearance values Qcolor, QLum, Qmid and Qspan

backwards into display intensity or RGB values as shown in
Figure 4.  We will explain these last models in reverse for clarity.

The inverse adaptation model finds display RGB values for a
given set of visual response values Rlum and Rcolor.  For simplicity,
we assume the display device gamma is 1.0, forcing proportional-
ity between RGB and display intensity values.  Compared to the
input range of the human visual system, the output range of most
displays is quite small and usually cannot cause large changes in
the visual adaptation values we compute for the display observer.
(Some exceptions exist; brilliant video projectors viewed in an
otherwise dark room can change viewer adaptation dramatically).
For simplicity, we assume display observers have fixed, steady-
state adaptation amounts.  For the results shown in this paper, we
assume a typical CRT display in ordinary office lighting, and set

Arod = Acone = Ldisplay = 25 cd/m2 ,

REFwht = 125 cd/m2,  REFblk = 4 cd/m2,

σrod = 722 cd/m2,  σcone = 646 cd/m2,

Bcone = 1,  Brod = 0.0016.

We compute display luminance using these constants and the
inverse of Equation 2.  For simplicity, we do not compute Equa-
tion 3 for color, but instead compute a constant display Sd value
from a forward-difference estimate of the slope of Equation 2
measured between the display REFwht and display REFblk.  For our
typical CRT with a maximum contrast of 32:1, we set Sd = 0.1383.
We raise color appearance value Qcolor to the power 1/Sd to con-
vert it to display color ratio Cd.

The inverse appearance model is only slightly more complicated.
The model attempts to do the least harm to visual appearance in
translation to the display.  We assume display observers will ac-
cept minimal amounts of response offset and compression, but
will object to any temporal discontinuities or response exaggera-
tions. We also assume the display minimum and maximum values
will evoke REFblk and REFwht  responses in the viewer, and our
inverse observer model attempts to map scene appearance values
Q to a display observer’s response values with as little distortion
as possible using the following rules:

1. IF the display can directly reproduce scene visual responses,
do so. Exactly cancel the offset to RLum that was applied by
the forward appearance model. ELSE

2. IF scene Qspan>display Qspan, compress and offset scene QLum

to match scene REFwht and REFblk to display REFwht and
REFblk. ELSE

3. IF scene Qmid>display Qmid, offset scene QL downwards only
enough to ensure scene REFwht ≤ display REFwht. ELSE

4. Offset scene QLum upwards only enough to ensure display
REFblk ≤ scene REFblk.

5. RESULTS
We have constructed two examples to demonstrate the perform-
ance of our time-dependent tone reproduction operator on both
real-world and synthetically-generated scene intensity data.  The
strip of images across the top of the title page of this paper shows
display images computed by our operator from two photographs
of the same scene under widely different illumination conditions.
The first frame in the sequence (t=0) shows predicted scene ap-
pearance for an observer statically adapted to the moonlight illu-
mination from the side of the scene, where Arod = Acone = 0.01
cd/m2. Immediately after this frame, the scene was suddenly lit by
brilliant overhead illumination equivalent to mid-day sun: adapta-
tion goal values are Grod = Gcone = 1000cd/m2.  In the next frame
(T=30mS) the lighting has changed, but the scene viewer’s adap-
tation state has not; a combination of clipping and response com-
pression produces a displayed image that is almost entirely white.
In subsequent frames, rapid retinal network adaptation increases
rod and cone σ values to reduce response compression and restore
the colorful appearance of daylight illumination.

In the second example, we simulate driving through a long high-
way tunnel on a sunny day, and Figure 7 shows frames from a
videotape that accompanies this submission. As the daylight-
adapted driver enters the tunnel, scene lighting falls quickly from
about 5,000 cd/m2 to 5 cd/m2, and the driver is temporarily
blinded while driving at highway speeds due to response com-
pression.  The driver’s vision is again disrupted, though only very
briefly, on leaving the tunnel.

Graphs below each video frame show the time-varying scene-to-
display mapping applied by the tone reproduction operator.  The
effects of the exponential filters used to drive σrod and σcone are
evident in slower adjustments on entering than on leaving the
tunnel, and are demonstrated by the shift in the scene-to-display
graph in response to large changes in scene lighting.

6. CONCLUSION AND FUTURE WORK
We have presented a simple time-dependent tone reproduction
operator to reproduce the appearance of scenes that evoke changes
to visual adaptation. Though the operator uses a broad range of
published data, its global model of adaptation does not require
extensive processing and is suitable for use in real-time applica-
tions. The operator is entirely automatic. We have demonstrated
its effectiveness on both real-world and synthetic sources, and in
both still and moving image sequences.

Though the results are simple to compute and have a pleasing and
plausible appearance, tremendous opportunities for further im-
provements remain.  An obvious refinement would include more
of R. W. G. Hunt’s model of static color vision and provide dy-
namic color adaptation. The operator could be improved by add-
ing other secondary effects of adaptation, such as after-images,
noise processes, and even loss of acuity under low-light condi-
tions as already addressed by Ferwerda [5] and Ward [26]. More
substantially, local adaptation effects are a vitally important part
of visual appearance, and multiple instances of the tone reproduc-
tion function developed here might be applied to localized com-
ponents of the scene if the proper scene decomposition could be



found.   Finally, a time-varying inverse adaptation model might
further increase the accuracy of the displayed images.
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Figure 7: Tunnel Lighting Predictions  Selected frames from a video sequence (available on Proceedings videotape) that combines our operator with global illumination
solutions are used here to predict the appearance and safety of highway tunnel lighting.  Roadway intensity varies between 5 and 5,000 cd/m2. Tunnel designers ordinarily pro-
vide strong lighting just inside tunnel entrances to allow daytime drivers sufficient time at highway speeds to adapt to dim interior lighting [11], but excluding the lights here
causes a dangerous momentary loss of vision while driving.  Graphs below each frame show the time-varying, scene-to-display mapping curves computed  by our tone repro-
duction operator; note the time-varying position and shape of the curves, and the pronounced but temporary response compression at the ends of the tunnel.


