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Abstract

In this paper we present a multiscale color appearance model
which simulates luminance, pattern and color processing
of the human visual system to accurately predict the color
appearance attributes of spectral stimuli in complex sur-
roundings under a wide range of illumination and viewing
conditions.

1. Introduction

The aim of a color appearance model is to predict vari-
ous visual phenomena which simple tristimulus colorime-
try can not adequately describe. Colorimetry simply pre-
dicts whether two visual stimuli of different spectral power
distributions will match in color when viewed under iden-
tical visual conditions. This matching is defined by the
spectral responsivities of the photoreceptors in the visual
system. If the signals from the three cone types are equal
for two visual stimuli, then they match in color when seen
in the same conditions.

The amplitude of visual stimuli that we encounter in
natural scenes is vast. While the responsive range of the
visual photoreceptors is small, the visual system functions
over this vast range with reasonable ease. It is believed that
visual system adapts to the widely varying amplitudes of
visual stimulus byadaptive gain control. This mechanism
controls the relationship between the photoreceptor signals
and the amplitude of spectral stimulus, by turning down the
gain when the stimulus amplitude is high and by turning up
the gain when the stimulus amplitude is low. The gain con-
trol is independent for the different type of photoreceptors
and hence explains the visual system’s capability to adjust
to both wide ranges of illumination and varying colors of
illumination in order to approximately preserve the appear-
ance of the object colors. The non-linear behavior of these
mechanisms results in the increase in colorfulness (Hunt
effect) and increase in apparent contrast (Stevens effect)
with increasing illumination. Most of the color appear-
ance models [9, 7] available today incorporate some form
of adaptive gain control.

It is also known that the appearance of a visual stim-
ulus depends not only on the stimulus itself but also on
the other stimuli that are nearby in space. The spatial con-
figuration of the viewing field seems to play a critical im-
portance in the perceived appearance of a stimulus.In-
duction, crispening, and spreadingare three important and
easy to observe appearance phenomena that are directly re-
lated to the spatial surrounding of the stimulus. To account
for these effects many color appearance models require a
viewing field specification. In this specification the view-
ing field is divided into as many as four components [7]:
stimulus, proximal field, background and surround. The
effects of stimuli in these various components of the view-
ing field are incorporated into the computational model.
However, all of these models assume homogeneous stim-
ulus field in each of the components and hence are inade-
quate for use in complex scenes.

Physiological and psychophysical evidences indicate
that the photoreceptor response image is filtered by visual
mechanisms sensitive to patterns of different scale, and the
response characteristics of these mechanisms are bandpass
in the spatial frequency domain [14]. Most of the appear-
ance phenomena discussed in the preceding paragraph can
be explained as consequences of this multiscale process-
ing in the visual system. As in the adaptive gain control
mechanism, nonlinearities in the responses of the band-
pass mechanisms result in nonlinear variations in the ap-
pearance of a stimulus as a function of the surrounding
stimuli.

In the vision community, many researchers [5, 10] have
proposed and successfully applied multiscale visual mod-
els for predicting visibility, masking and other related phe-
nomena. However, most of these models assume achro-
matic stimuli within a limited luminance range and hence
make very little prediction of color appearance. In this pa-
per we introduce a new multiscale visual model that not
only accounts for the effects of adaptation and spatial vi-
sion, but also correctly predicts color appearance attributes
under a wide variety of conditions in complex scenes. In
the following sections we present this model.



Figure 1: Flow chart of the computational model of Color Ap-
pearance.

2. The Computational Model

Figure 1 provides a flow chart of each major step in the
computational model. The model processes an input im-
age to encode the perceived contrasts for the chromatic and
achromatic channels in their band-pass mechanisms. Cor-
relates of brightness, lightness, colorfulness, chroma, hue
and saturation are derived from the encoded visual repre-
sentation.

2.1. Input Image Preprocessing

First, the image is spatially sampled such that the band pass
signals represent appropriate spatial frequencies. Then com-
pensations are introduced for optical point-spread and scat-
tering in the eye. The image is then spectrally sampled
to represent the visual system’s initial photoreceptor re-
sponses.

2.2. Spatial Decomposition

The four images representing the photoreceptor responses
are then subjected to spatial decomposition. We chose to
use the Laplacian pyramid approach proposed by Burt and
Adelson [3]. We first calculated a seven level Gaussian
pyramid using a five tap filter. Each level of this Gaussian
pyramid represents a low-pass image limited to spatial fre-
quencies half of those of the next higher level.

The Gaussian pyramid is then upsampled such that im-
age in each level in the upsampled pyramid is a low-pass
version of the corresponding image in the original pyra-
mid. The upsampled pyramid has six levels. Difference-
of-Gaussian pyramid is then calculated by subtracting the
upsampled pyramid from the original pyramid. This re-
sults in 6 levels of band-pass images with peak spatial fre-
quencies at 16, 8, 4, 2, 1, and 0.5 cpd. These images can be
thought of as representations of the signals in six band-pass
mechanisms in the human visual system. The lowest-level
(7th) low pass image of the original pyramid is retained for
separate processing.

2.3. Gain Control

The difference-of-Gaussian pyramid is then converted to
adapted contrast signals using a luminance gain control.
The gains are set using TVI-like functions shown in Fig-
ure 2. The functions shown have sub-Weber’s law behavior
[4] which allows perceived contrast to increase with lumi-
nance level. Each pixel in a given difference-of-Gaussian
image is multiplied by the gain derived from the corre-
sponding pixel in the upsampled pyramid.

The resulting adapted contrast pyramid images are anal-
ogous to the contrast images that Peli [12], Lubin [10] and
Brill [2] obtained. However, in our model the magnitude
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Figure 2: Gain functions for cones and rods.

of these images is a function of the luminance level spec-
ified by the gain control functions. This is necessary to
allow prediction of luminance-dependent appearance ef-
fects. These luminance gain controls are applied in the
same manner to the difference-of-Gaussian pyramid for
each of the photoreceptors. This allows prediction of chro-
matic adaptation effects.

2.4. Opponent Color Processing

In the next stage of the model the adapted contrast sig-
nals for the cones are transformed into opponent signals.
This transformation is necessary to model differences in
the spatial processing of achromatic and chromatic signals
[13]. At this stage, the rod images are retained separately
since their spatial processing attributes are different from
the cones.

2.5. Orientation Filtering, Contrast Transducers And
Thresholding

The adapted contrast signals are then processed by ori-
ented band pass filters to simulate the orientation tuning
of the visual system. These filtered signals are then passed
through contrast transducer functions. Different transducer
functions are applied to each spatial frequency mechanism
in order to model the human spatial contrast sensitivity
functions. The transducers are also different for the chro-
matic channels to represent their lower sensitivities and
low-pass, rather than band-pass nature. Finally, the rod
system is processed through a distinct set of transducers
to represent its unique spatial characteristics. At high con-
trast levels (> 5%) the transducer functions converge to a
common square-root form to properly represent perceived
contrast constancy [1] and introduce a compressive non-
linearity typically found in masking experiments and color
appearance models. The contrast transducers used in our
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Figure 3: Contrast transducer functions. (a) for Cone achromatic
mechanisms, (b) for Cone chromatic mechanisms; and (c) for
Rod achromatic mechanisms.

model are illustrated in Figure 3. The contrast transducer
functions are also designed such that contrasts that are be-
low threshold have an output level less than 1.0. In the
output of the transducer functions all values less than 1.0
are set to 0.0.

2.6. Combination Of Rod And Cone Signals

After the contrast transducers, the rod and cone signals
are combined (weighted combination). We assume that
the rods contribute only to the luminance signal and thus
combine the achromatic signal from the cones with the rod
signal.

At this stage in the model we have three channels rep-
resenting achromatic, red-green, and yellow-blue apparent
contrast for the oriented band-pass mechanisms. These
signals model threshold behavior, in that any contrast sig-
nals that could not be perceived have been eliminated by
the contrast transducer functions. They also model supra-
threshold appearance since the contrast signals grow with
luminance and the signals from chromatic channels be-
come zero at luminance levels below the cone threshold.

2.7. Treatment Of The Low Pass Image

The lowest level low-pass image from the original Gaus-
sian pyramid is also processed through a gain control mech-
anism similar to the gain control of the band-pass images
and a low-pass specific non-linear transducer.

2.8. Computation Of Correlates Of Color Appearance
Attributes

The output of the model consists of appearance signals in
an achromatic and two chromatic channels and six spa-
tial band-pass mechanisms plus a low-pass image. Im-
ages are reconstructed from these signals to create a color-
appearance map that encodes the apparent color of each
pixel in the image for its particular viewing conditions.



Figure 4: Prediction of induction effect.

The correlates of the appearance attributes are computed
from this color appearance map. Difference metrics in
these appearance dimensions can be used to derive image
quality metrics.

3. Predictions Of The Model

3.1. Induction, Crispening, Spreading And Stevens Ef-
fect

Figure 4 predicts the induction effect. The top images
show a gray patch on white, gray and dark background.
The bottom images show the brightness maps of those im-
ages obtained from our model. The maps indicate that the
model correctly predicts the change in brightness of the
gray patch as a function of background luminance.

Figure 5 predicts the crispening effect. Crispening is
the apparent increase in the magnitude of color difference
when background on which two stimuli are compared are
similar to the stimuli themselves[7]. The top images cor-
respond to a pair of gray patches on three different back-
ground. The bottom images illustrate the brightness map.
The images correctly predict larger brightness differences
(crispening) for the gray patches on the gray surround as
compared to the gray patches on white and dark surrounds.

The images in Figure 6 predict contrast changes at a
wide range of luminance levels spanning 9 orders of mag-
nitude from 0.001 to 100,000 cd/m2. The images are bright-
ness maps of a simple scene containing 4 patches of vary-
ing reflectances (10%, 30%, 70% and 90%) on a back-
ground of uniform reflectance (50 %). As can be seen from

Figure 5: Prediction of crispening effect.

the Figure 6, contrast increases with the increase in lumi-
nance.

Figure 7 predicts the spreading effect. Spreading is the
apparent mixture of a color stimulus with its surround. The
image on the left shows the stimuli input to the model. The
spread of color is well captured in the hue map shown on
the right.

3.2. Chromatic Adaptation

Figure 8 shows the effect of chromatic adaptation. The top
row of images shows a scene illuminated by a nearly-white
incandescent light source, a very reddish light source, and
a very blue light source as they would be rendered by a sys-
tem incapable of chromatic adaptation. The shift in color
balance of the reproduced prints is objectionable since the
human visual system largely compensates for these changes
in illumination color through its mechanisms of chromatic
adaptation. The middle row shows the rendering from a
tone mapping system [11] based on the visual process-
ing carried out in our model. As our model treats gain
control in each of the classes of cone photoreceptors in-
dependently, it is capable of predicting changes in chro-
matic adaptation similar to those that would be predicted
by a von Kries model. However, due to the nature of the
gain control functions used to obtain increases in contrast
and colorfulness with luminance, the degree of chromatic



Figure 6: Prediction of Stevens effect.

Figure 7: Prediction of spreading effect.

adaptation predicted by the model is less than 100% com-
plete. The last row of images illustrate the surround ef-
fect on the output of the model. The chromatic adapta-
tion is much less in this case because of the gray surround.
These images simulate the yellowish appearance of an illu-
minated window at dusk or a bluish CRT display viewed at
a distance. These reproductions match our perceptions of
changes in illumination color and replicate the incomplete
nature of chromatic adaptation that is widely recognized in
the color science literature. [7]

In a recent experiment [8] corresponding colors data
were collected using complex images and comparisons be-
tween prints under an illuminant D50 simulator and CRT
displays with both illuminant D50 and D65 white points.
The results were used to compare the performance of vari-
ous chromatic adaptation transforms and color appearance
models. The multiscale adaptation model described in this
paper performed as well as the best models (including
CIELAB, von Kries and modified forms of RLAB, ZLAB,
and CIECAM97s) and significantly better than other mod-
els.

3.3. High Dynamic Range Image Reproduction

Figure 9 illustrates application of the model to the tone
mapping of high-dynamic range images. The image on

Figure 8: Illustration of chromatic adaptation.

the top of Figure 9 is linear mapping of the original high-
dynamic range image into the limited dynamic range of
the output device. The original image had a luminance
level of approximately 10,000 cd/m2 in the outside areas
and 10 cd/m2 in the indoor areas. The image on the bot-
tom represents the mapping obtained by inverting the vi-
sual representation of the image derived by our model for
the viewing conditions of the output display. In Figure 9
it is clear that far more detail can be observed both inside
and outside the parking garage when the image is mapped
using the visual model.

4. Future Work

We have calibrated our model to correctly predict psy-
chophysical measurement data available in the literature.
We plan to further validate the predictions of the model
against perceptual experiments involving color images. Our
ultimate aim is to use the predictions of this model to de-
velop animage quality metricto verify the fidelity in cross-
media color reproduction and the perceived quality of im-
ages.
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