
Reasoning Tradeoffs In Implicit Invocation And Aspect

Oriented Languages

José Sánchez

CS-TR-15-02

April 2015

Keywords: Modularity, program reasoning, tradeoffs, specification, ver-

fification, formal methods, Ptolemy language.

2012 CR Categories: D.2.4 [Software Engineering] Software/Program

Verification — Formal methods, programming by contract; F.3.1 [Log-

ics and Meanings of Programs] Specifying and Verifying and Reason-

ing about Programs — Assertions, logics of programs, pre- and post-

conditions, specification techniques;

A dissertation submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Computer Science

4000 Central Florida Blvd.

University of Central Florida

Orlando, Florida 32816, USA

REASONING TRADEOFFS IN IMPLICIT INVOCATION AND ASPECT ORIENTED
LANGUAGES

by

JOSE SANCHEZ
B.S. Computer Science, University of Costa Rica, 1989

M.S. Computer Science, Costa Rica Institute of Technology, 1998

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2015

Major Professor: Gary T. Leavens

© 2015 José Sánchez

ii

ABSTRACT

To reason about a program means to state or conclude, by logical means, some properties the

program exhibits; like its correctness according to certain expected behavior. The continuous

need for more ambitious, more complex, and more dependable software systems demands for

better mechanisms to modularize them and reason about their correctness. The reasoning process

is affected by the design decisions made by the developer of the program and by the features

supported by the programming language used. Beyond Object Orientation, Implicit Invocation

and Aspect Oriented languages pose very hard reasoning challenges. Important tradeoffs must be

considered while reasoning about a program: modular vs. non-modular reasoning, case-by-case

analysis vs. abstraction, explicitness vs. implicitness; are some of them. By deciding a series of

tradeoffs one can configure a reasoning scenario. For example if one decides for modular reasoning

and explicit invocation a well known object oriented reasoning scenario can be used.

This dissertation identifies various important tradeoffs faced when reasoning about implicit invoca-

tion and aspect oriented programs, characterize scenarios derived from making choices regarding

these tradeoffs, and provides sound proof rules for verification of programs covered by all these

scenarios. Guidance for program developers and language designers is also given, so that reasoning

about these types of programs becomes more tractable.

iii

To my beloved wife Dunia,

who by her devotion, strength and faith deserves all the credits;

and to my precious and brave children, Alejandra and José Pablo.

A mi amadı́sima esposa Dunia,

quien por su abnegación, fortaleza y fe merece todos los créditos,

y a mis preciosos y valientes hijos, Alejandra y José Pablo.

iv

ACKNOWLEDGMENTS

This work was supported in part by Costa Rica’s Universidad Nacional (UNA), Ministerio de Cien-

cia y Tecnologı́a (MICIT) and Consejo Nacional para Investigaciones Cientı́ficas y Tecnológicas

(CONICIT). Also by NSF grant CCF-1017334 titled “SHF: Small: Collaborative Research: Bal-

ancing Expressiveness and Modular Reasoning for Aspect-Oriented Programming.” My gratitude

to all these organizations and to the people at them that helped me through all this process.

My very special thanks to my advisor Dr. Gary T. Leavens, for his continuous support, sympathy

and guidance. I also thank the other members of my committee: Dr. Damla Turgut, Dr. Sumit Ku-

mar Jha and Dr. Heath M. Martin. My appreciation also goes to my lab-mates for their friendship

and mutual encouragement.

I express my deep gratitude to my dear friends Marco and Blanca, and their lovely family, for

embracing me, and my family, at the toughest times, and from then on.

My affection to my family (blood and in-law). Their caring and true love is always at the basis of

our achievements. My deepest love to my mother, who could not wait for this moment, but is with

me all the time.

Finally, all my love and gratitude to my wife Dunia and my children Alejandra and José Pablo. It’s

been a challenge for all of us, but our love and the powerful hand of God keep us even stronger.

v

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xiii

CHAPTER 1: INTRODUCTION . 1

1.1 Problem Definition . 3

1.2 Scope . 5

1.3 Motivation . 6

CHAPTER 2: BACKGROUND . 8

2.1 Reasoning and Modular Reasoning . 8

2.2 Specifications and Specification Refinement . 10

2.3 Proof Rules and their Soundness . 13

2.4 Deductive Program Verification and Weakest Precondition Semantics 16

2.5 Behavioral Subtyping and Supertype Abstraction 17

2.6 Event Based Implicit Invocation Programming . 18

2.7 Aspect Oriented Programming . 19

vi

CHAPTER 3: IMPROVING AND STATICALLY VERIFYING THE PTOLEMY IMPLICIT

INVOCATION LANGUAGE . 22

3.1 The Ptolemy Language . 22

3.2 PtolemyRely: Separating Obligations of Subjects and Handlers 24

3.3 Static Verification of PtolemyRely Programs Using OpenJML 26

3.4 Methodology Oriented Approaches . 28

CHAPTER 4: REASONING TRADEOFFS . 30

4.1 Modular vs. Non-Modular Reasoning . 30

4.2 Case analysis vs. Abstraction . 34

4.3 Explicit Invocation vs Implicit Invocation . 35

4.4 Explicit Announcement vs Implicit Announcement 36

CHAPTER 5: REASONING SCENARIOS AND THEIR PROOF RULES 38

5.1 Algebra of Specifications . 38

5.2 The Reference Scenario . 43

5.3 The Object Oriented Scenario . 44

5.4 II/EA Scenarios . 46

5.4.1 II/EA Full Delivery Scenario . 46

vii

5.4.2 II/EA Single Delivery Scenarios . 48

5.4.2.1 II/EA PtolemyRely Modular Scenario 50

5.4.2.2 II/EA Ptolemy Modular Scenario 52

5.4.2.3 II/EA Behavior-Preserving Modular Scenario 55

5.4.2.4 II/EA Non-Modular Individual Refinement Scenario 57

5.5 AO Scenarios . 62

CHAPTER 6: EVALUATION . 65

6.1 Soundness of Scenarios’ Proof Rules . 65

6.1.1 Single Delivery II: PtolemyRely . 65

6.1.2 Full Delivery II . 79

6.1.3 Single Delivery II: Non-Modular Individual Refinement 88

6.2 Reasoning Cases . 96

6.2.1 II/EA Full Delivery Reasoning . 97

6.2.2 II/EA Ptolemy Reasoning . 100

6.2.3 II/EA PtolemyRely Reasoning . 105

6.2.4 Modular Behavior-Preserving Reasoning 111

6.2.5 Non-Modular Individual Refinement Reasoning 118

viii

CHAPTER 7: CONCLUSION . 124

7.1 Tradeoffs and Reasoning . 124

7.2 Scenarios . 126

7.3 Future Work . 128

LIST OF REFERENCES . 130

ix

LIST OF FIGURES

1.1 Client-provider interaction . 4

2.1 Program reasoning . 8

2.2 Modular vs Non-Modular Reasoning . 9

2.3 Hoare Logic assignment axiom and Sequence rule 13

2.4 Reasoning example . 14

2.5 Applying proof rules . 14

2.6 SOS of assignment (ASSIGNS) and sequence (SEQS) 15

2.7 Behavioural Subtyping . 18

2.8 Implicit Invocation example . 19

2.9 AspectJ Loggin example . 20

3.1 Ptolemy event example . 23

3.2 PtolemyRely event example . 25

3.3 Closure construct . 28

4.1 Supertype Abstraction . 34

x

5.1 Reference Scenario . 43

5.2 OO Scenario . 44

5.3 II/EA Full Delivery Mode . 46

5.4 Full Delivery at Runtime . 47

5.5 II/EA Single Delivery Mode . 48

5.6 II/EA Single Delivery at Runtime . 48

5.7 II/EA Single Delivery Abstraction . 49

5.8 AO Scenario . 62

5.9 AO Shadows . 63

5.10 AO at Runtime . 64

6.1 PtolemyRely’s evaluation contexts and configuration. 66

6.2 PtolemyRely’s Semantics. 67

6.3 Full Delivery Semantics. 80

6.4 Bill class . 97

6.5 Full Delivery Example . 98

6.6 Ptolemy Example . 101

6.7 PtolemyRely Example . 106

xi

6.8 Modular Behavior-Preserving Example . 111

6.9 Non-Modular Individual Refinement Example 118

xii

LIST OF TABLES

2.1 Weakest precondition semantics . 17

xiii

CHAPTER 1: INTRODUCTION

In software development, especially for large projects, there is always the need to modularize the

system as a set of components that could be later integrated into bigger components and eventu-

ally into the final system. This modular approach always poses challenges for reasoning about

the behavior of each component and the behavior of the integrated system. The reasoning process

verifies that a piece of software satisfies a desired property, and could be done by the developer,

by an automatic system or by a combination of both. The most important property to verify is the

functional correctness of a piece of code with respect to its specification. This specification is usu-

ally expressed in a behavioral interface specification language (BISL) [28], like Eiffel [43], JML

[37, 38, 13] or Spec# [9], using constructs like pre- and post-conditions, invariants and assertions.

The reasoning process itself can be modular or non-modular. In the first case, the modules are

reasoned about one at a time, using the specification of other modules when required. In the non-

modular case all the modules are reasoned about together, re-reasoning about the modules every

time they are referred to. Although modular reasoning is desirable, sometimes it implies losing

some information, so the tradeoff “modular vs. non-modular” should be considered.

Traditionally, in Object Oriented (OO) programming, integration among components is performed

by making the client component explicitly call methods from the provider component. The place

in the client code where the method is called is explicit (Explicit Announcement, EA) and the

provider’s method to be called is also explicitly known (Explicit Invocation, EI). In this case rea-

soning about the client code can be performed using the specification, instead of the implementa-

tion, of the called methods. A more complex situation arises with dynamic dispatching, where the

actual implementation that is invoked at a method call is determined dynamically, at runtime. For

example, in a hierarchy of classes various sub-classes might have their particular implementation

of a method declared in an ancestor class. A method call using a reference declared with the type

1

of the ancestor class can execute any of the various implementations. That situation shows a rea-

soning tradeoff: to do a case analysis considering the behavior of each implementation or to use

the more abstract behavior in the ancestor class (for modular reasoning).

More sophisticated and flexible integration approaches are provided by Implicit Invocation (II)

[27, 47, 62, 49], in Event Based programming, and Implicit Announcement (IA) and Implicit In-

vocation, in Aspect Oriented (AO) [35, 23] programming.

In II languages, the client component announces or broadcasts events, instead of calling specific

methods. The system implicitly invokes the target components that have been registered for those

events. This loosely coupling between components eases system evolution and reuse. Target

components can be added, changed or removed without modifying the client. Reasoning about the

client is more involved, since it has no references to the target components that will be invoked.

AO languages address the challenge of modularizing functionality that is scattered through many

components, and tangled with their main logic. In AO programming, this functionality is encap-

sulated into aspect modules, and implicitly woven (restored) at the required points. An expressive

mechanism may select (quantify) these points. The client component is not only oblivious of what

aspects might be applied but also of the places where they are invoked. That makes the reasoning

task even harder, showing that “explicitness vs. implicitness” is an important tradeoff.

In reasoning OO, II and AO programs different tradeoffs are faced: modular vs. non-modular

reasoning, case analysis vs. abstraction, explicitness vs. implicitness, etc. In this work that type

of tradeoffs are considered while formalizing proof rules for reasoning about programs written

in these languages. These formalizations are useful not only for program verification but also as

guidance for language designers and developers, when choosing the features they use and how to

reason about them.

2

1.1 Problem Definition

The problem I aim to solve in this work is to show how to do formal reasoning for specific sce-

narios in implicit invocation (II) and aspect oriented (AO) languages, and to provide guidance to

language designers and developers about programming methodology for this languages. The sce-

narios correspond to different configurations of important tradeoffs faced when reasoning about II

and OO programs.

The main parts of this problem are:

• To identify and justify different tradeoffs that are faced when reasoning about a client com-

ponent that is advised by II or AO provider components.

• To formally characterize scenarios derived from making choices regarding these tradeoffs.

• To provide sound proof rules for verification in the different scenarios.

Important tradeoffs include modular vs. non-modular reasoning, case analysis vs. abstraction, ex-

plicitness vs. implicitness. For doing modular reasoning each module should have a specification.

The module is reasoned about once and for all against that specification. When reasoning about

modules that reference others modules, the referenced modules’ specifications are used, instead

of the modules themselves. In some situations, like dynamic dispatching and implicit invocation,

different behaviors may apply at a certain point. Doing modular reasoning would require to use a

specification that abstracts the different behaviors, maybe losing important information and weak-

ening the reasoning conclusions. In this cases modularity could become a tradeoff, in favor of

stronger conclusions in a case-by-case analysis.

In the traditional Object-Oriented (EI/EA) approach the client component, at explicit places (EA),

calls explicit methods (EI) of the provider component. A modular verification approach can be

3

used. The called method is first verified against the specification given for that method, as found

in the receiver’s static type, and this specification is used later in the verification of the client

component. The basic idea of this OO case is illustrated in Figure 1.1(a). Polymorphic method

calls can be handled modularly using supertype abstraction [41], enabled by behavioral subtyping

[2, 42, 39]. Otherwise a case-by-case analysis would be required.

Figure 1.1: Client-provider interaction: (a) Object Oriented, (b) Implicit Invocation, (c) Aspect Oriented

In event based II/EA, the client (subject) component announces or broadcasts events at explicit

places (EA), using some type of announce construct. The system implicitly invokes (II) the reg-

istered methods (handlers) in the provider components. There are two reasoning challenges. First,

the client code does not know what handler, or handlers, will be executed in response to the event

announcement. There is no concrete specification to reason about the event announcement and

so the client depends on the specification of all possible handlers. Second, an invoke statement

in the body of a handler will execute the next handler or the announced code. Again there is no

concrete specification to reason about the invoke statement and so the handlers depend on each

other and on the announced code. Figure 1.1(b) shows the II approach.

Several issues arise. Should announced-code specifications determine handler’s specifications or

should it be the other way around? How does that determine the reasoning of the client code

and the handlers? How to preserve the original client reasoning when event announcements are

4

added? What criteria should a developer or a tool use to determine or infer the specifications for

the handlers? What are the pros and cons of enforcing modular reasoning? These issues should be

analysed and resolved to take advantage II/EA while being able to reason about the correctness of

the system.

Aspect oriented programming takes implicitness (obliviousness) to the extreme using II/IA. The

client component makes no explicit mention (IA) of any unforeseen functionality (e.g. cross-

cutting concerns) that may be added by any provider component, nor marks any specific place in

its code that announces any possibility of extension. Instead, pointcuts inside aspects (provider

components) select some join points (shadows) in the client code, where advice from the aspect

is added. Considering the notions of modular reasoning (sec. 2.1) and obliviousness (sec. 2.6)

adopted in this work, modular reasoning is not in general possible under complete obliviousness.

Even if the join-points picked by a pointcut are identified, the situation falls back to the previ-

ous case of II/EA, exhibiting the same issues mentioned before. The AO case is also shown in

Figure 1.1(c).

In this thesis a formal design workbench for verification of II and AO programs is defined. The

design variables, design tradeoffs and possible scenarios are identified and formally characterized,

and the achievable verification results for each case are established my means of sound proof rules.

1.2 Scope

This work aims at showing how to do formal reasoning for specific scenarios in implicit invocation

and aspect oriented languages based on Java language. The general scenario is to reason about a

client component, that has a set of advisable blocks, and a set of provider components, that embody

the advice or handling methods. The following limits in scope apply.

5

• The client and provider components will be assumed to execute in a sequential fashion.

Although interesting and important, to simplify the formal analysis concurrent execution

will not be considered.

• Only around advice will be considered, since for reasoning purposes before and after advice

can be handled as special cases of it.

• Control flow pointcuts, like clfow, will not be considered because their intrinsic non-modular

nature complicates their reasoning.

1.3 Motivation

The continuous need for more ambitious, more complex, and more dependable software systems

demands for better mechanisms to modularize them and verify their correctness. Modularity not

only makes complexity tractable but also improves maintainability and reusability. On the other

hand, formal methods, for example satisfiability-based program reasoning, help in improving the

dependability of the systems, by formally verifying their correctness.

Implicit Invocation and Aspect Oriented programming languages provide attractive features for

better modularizing systems. At the same time, these features introduce difficulties for reasoning

about the behavior of the system. This section further emphasizes the value of these features from

a software engineering perspective and the need for guidance and discipline in their use.

II allows for loose coupling between the client and provider components. That improves flex-

ibility and maintainability, as new provider components can be added just by registering them,

without any change in the client component. Despite its advantages, II is not ideal for dealing with

crosscutting concerns. A concern, like logging or authorization, that cut across a system could be

implemented using II: at any place in the client code where the crosscutting concern is required an

6

event announcement can be placed. The provider component that implements the concern will be

implicitly invoked at all these points. The problem is that the event announcement will be scattered

throughout the system and tangled with the main logic of all the modules. Aspect Orientation takes

a step further for implementing crosscuting concerns by means of its II/IA mechanism. Inside an

aspect module, an advice implements the crosscutting concern and a pointcut selects (quantifies)

the join points in the client component where the concern needs to be applied. An important issue

of this approach is that the provider component (aspect), specifically its pointcuts, have explicit

references to the client or base component. That not only increases the coupling between the com-

ponents but also causes the fragile poincut problem [54], where even small changes in the client

component may prevent the provider component from being invoked.

II and AO both provide mechanisms to modularize software systems, the first necessity mentioned

before for implementing complex and dependable systems. Nevertheless these mechanisms in-

troduce difficulties for reasoning about the behavior of the system to ensure its dependability, the

second necessity mentioned before. As will be shown in chapter 3, many proposals [58, 11, 31, 54]

have been made in the last years to correct some of the problems of AO and improve the ability

to reason about programs. Most of these proposal provide some sort of interface type that further

decouples client (base code) and provider (aspect) components. Some of them [54] also include

language features to specify and verify the obligations of both the clients and providers.

There are many trade-offs, complexities and mutual dependencies when reasoning about client and

provider components in implicit invocation and aspect oriented systems. Even if a chosen language

has some specification and verification features, it is necessary to carefully explore the design space

to find the best ways to use them for reasoning about program written in these languages. The clear

benefits of modularizing mechanisms like II and AO and the lack of strategies and discipline that

guide language designers and developers on their use constitute strong motivations for addressing

these issues, as I am doing in this work.

7

CHAPTER 2: BACKGROUND

Some concepts are required to more precisely define the research problem and the proposed ap-

proach. In this section a few of them are introduced, like program reasoning, specifications and

refinement, deductive verification and weakest precondition semantics, behavioral subtyping and

supertype abstraction, implicit invocation in event-based programming, and implicit announcement

and invocation in Aspect Oriented programming.

2.1 Reasoning and Modular Reasoning

To reason about a program means to state or conclude, by use of deduction, some properties

the program exhibits; like correctness, according to certain expected behavior, or a desired level

of performance. These properties can be asserted by empirical observation or by a more formal

logical analysis. For example, by reasoning about the code in Figure 2.1 it can be concluded that

M2 computes the minimum of x and y.

1 int M2(int x, int y){
2 if (x<y) return x;
3 // if x<y then M2(x,y)==x
4 else return y;
5 // if y<=x then M2(x,y)==y
6 }
7 // reasoning conclusion: M2(x,y)==min(x,y)

Figure 2.1: Program reasoning: M2 computes the minimum of x and y

Usually programs are constructed in a modular way: the program is divided into sub-programs

(modules) that are later combined (composed) to get the desired functionality. Modular reasoning

is the process of reasoning about a program one module at a time [48], using the established

8

properties of already reasoned about modules when required, instead of re-reasoning about them.

On the contrary, non-modular or whole program reasoning needs to consider the whole program

(all the used modules) for establishing the desired properties. The programs in Figure 2.2 illustrate

the modular and non-modular reasoning.

1 // property PM2:M2(x,y)==min(x,y)
2 /*@ ensures
3 (\result==x || \result==y)
4 && \result<=x && \result<=y;
5 @*/
6 int M2(int x, int y){
7 if (x<y) return x;
8 else return y;
9 }

10
11 // property PM3:M3(a,b,c)==min(a,b,c)
12 /*@ ensures
13 (\result==a || \result==b || \result==c)
14 && \result<=a && \result<=b && \result<=c;
15 @*/
16 int M3(int a, int b, int c){
17 int d,e;
18 d=M2(a,b); // PM2 => d==min(a,b)
19 e=M2(c,d); // PM2 => e==min(c,d)
20 //=> e==min(c,min(a,b))
21 return e; // => e=min(a,b,c)
22 }

(a) modular reasoning

1 int M2(int x, int y){
2 if (x<y) return x;
3 else return y;
4 }
5
6 int M3(int a,int b,int c){
7 int d,e;
8
9 d=M2(a,b);

10 // if (a<b) d=a
11 // else d=b;
12 // => d==min(a,b)
13
14 e=M2(c,d);
15 // if (c<d) e=c
16 // else e=d;
17 // => e==min(c,d)
18
19 // => e==min(c,min(a,b))
20
21 return e;//=>e==min(a,b,c)
22 }
23 // reasoning conclusion:
24 // M3(a,b,c)== min(a,b,c)

(b) non-modular reasoning
Figure 2.2: Modular vs Non-Modular Reasoning

In the modular case (a) the module (function) M2 is reasoned about and the property PM2 is estab-

lished, asserting that M2 computes the minimum of its two parameters. This property is used at

each call to M2 (lines 18,19) while reasoning about module M3. Noticeably only the property PM2

is required, not the body of module M2. In the non-modular case (b), at each call to M2 its body is

re-reasoned about (lines 9-12 and 14-17). That requires more work and needs the body of M2 to be

9

available. Such reasoning would be difficult for a call to an interface method in Java, for example.

Along existing ideas [48, 36, 15], in this work modular reasoning is understood as being able to

establish properties of a module just by considering its interface, specification and implementation;

and the interfaces and specifications of modules referenced by them. A module B is referenced

by another module A if B is explicitly named or lexically contains A. If it were necessary to

consider other modules not referenced or to consider the implementation of other modules, instead

of just their interfaces and specifications, then the reasoning is non-modular (or “whole-program”

reasoning).

2.2 Specifications and Specification Refinement

A functional specification declares the expected behavior of a program (block of statements, like a

method or a fragment of it). The JML specification requires P ensures Q indicates that the

expected behavior of a program is that whenever it starts execution in a state satisfying precondi-

tion P , and terminates, then the final state satisfies postcondition Q. This is the partial correctness

expressed by the Hoare [30] triple {P}S{Q}, where S is the program’s code. For example, the

program S = x := y + 1 satisfies the specification requires y > 0 ensures x > 1, written

in Hoare logic as {y > 0}S{x > 1}, but the program S = x := y does not satisfy that specifica-

tion. Specifications can be used as contracts against which to verify implementations, the actual

programs. They can also be used to reason about the execution of programs. For example, if a

program S, that is guaranteed to satisfy the previous specification, is executed from a state where

y > 0 then one can conclude that at termination x > 1.

Since functional specifications do not establish the locations a program can modify, certain ex-

pected deductions about the program execution can not be made. For example after executing

10

a program S, like S = x := y + 1, that satisfies the triple {y > 0}S{x > 1} one cannot

conclude that the condition y > 0 is preserved. That is due to the fact that maybe S, although

satisfying the specification, may also alter y, invalidating the new conclusion. If, on the con-

trary, the specification only allows x to be modified, then the conclusion y > 0 would be valid.

As shown by the previous example, knowing the locations a program is allowed to modify, also

called framing a program [12], is important for reasoning about it. The framed specification format

requires P modifies ε ensuresQ indicates that a conforming program, S, is partially cor-

rect, as above, and only modifies locations in ε,mods(S) ⊆ ε. To define this precisely, the function

mod(S) returns the list of locations potentially modified by S. A program modifies a location if (a)

the location exists in the program’s pre-state and (b) the location is assigned to during the program’s

execution. The Hoare-like formula {P}S{Q}[ε] expresses both partial correctness and framing,

where ε is the frame of S. For instance, the previous functional specification can be extended by a

framing specification yielding the specification requires y > 0 modifies x ensures x > 1,

that corresponds to the formula {y > 0}S{x > 1}[x]. This specification allows one to conclude

that, after execution of S, not only x > 1 holds but also y > 0 does.

A specification can be expressed as an ordered triplet (P,Q, ε), where P is the precondition pred-

icate, Q the postcondition predicate and ε is the frame. The precondition is evaluated on the state

of the system when the program starts execution, called the pre-state, and the postcondition on

the state at program termination, the post-state. However, as the postcondition may also refer to

values in the pre-state, for example to express that the value of one variable in the post-state must

be greater than its value in the pre-state, then the post-condition will depend on both states. This

situation where the predicates can range over two states is referred as two-state specifications. In a

postcondition the keyword old will be used to refer to the value of an expression in the pre-state.

For example the triplet (l ≤ r, old(l) ≤ m ∧ m ≤ old(r), {m}) specifies a program S that,

starting from a state where l ≤ r, computes in m a value that lies between the original values of l

11

and r and only modifies m.

The refinement relation, w, is used to describe both the satisfaction relation between a program

and a specifications and the refinement relation between a specification and a more-defined speci-

fication, as detailed in definition 1.

Definition 1. (Refinement)

i. specification refinement (satisfaction) by a program:

S w (P,Q, ε)⇔ {P}S{Q}[ε]

ii. specification refinement by another specification:

(P ′, Q′, ε′) w (P,Q, ε)⇔ [∀ program S, (S w (P ′, Q′, ε′))⇒ (S w (P,Q, ε))]

For example, the following program refines the given specification:

1 {m := (l + r)/2} w (l ≤ r, old(l) ≤ m ∧ m ≤ old(r), {m}),

and similarly this is an example of a specification refining another specification:

(l + 1 ≤ r − 1,old(l) < m ∧m < old(r), {m}) w

(l + 1 < r − 1,old(l) ≤ m ∧m ≤ old(r), {m}).

Specifications can be refined in various ways [44]:

• weakening the precondition: (P ⇒ P ′)⇒ ((P ′, Q, ε) w (P,Q, ε)),

• strengthening the postcondition: (Q′ ⇒ Q)⇒ ((P,Q′, ε) w (P,Q, ε)),

• restricting change: (ε′ ⊆ ε)⇒ ((P,Q, ε′) w (P,Q, ε)),

• introducing fresh local variables: fresh(x, (P,Q, ε))⇒ ((P,Q, ε ∪ {x}) w (P,Q, ε)), or

• by a combination of the above [14].

For example, if we take the program S = {if (x > 0){x := 1; y := 2} else {x := 1}}, then

1In the expression (l + r)/2, + and / represent integer arithmetic.

12

S w (x ≤ 0, x = 1, {x}) but S 6w (true, x = 1, {x}), as the framing is not guaranteed by the

latter’s precondition.

2.3 Proof Rules and their Soundness

A proof rule is an axiom or rule of inference [30] that can be used for proving properties of com-

puter programs, like its functional correctness against a given specification. A set of proof rules

form a logic for the corresponding language. A logic is sound if every judgment that is probable

using its proof rules is actually valid; where this validity is defined with respect to a formal seman-

tics of the given programming language. The soundness of a logic is fundamental. It ensures that

whenever one reasons about a program using that logic the program actually exhibits the proven

behavior.

Proof rules are usually written using the format:
A1, . . . An

C

, where the Ai’s are the premises and

C is the conclusion. For example, in Hoare logic the assignment axiom (ASSIGNR) and the

sequential composition inference rule (SEQR) are as follows:

(ASSIGNR)

{P [e/x]}x := e{P}

(SEQR)
{P}S1{R}, {R}S2{Q}
{P}S1;S2{Q}

Figure 2.3: Hoare Logic assignment axiom and Sequence rule

The assignment axiom states that for proving that a condition, P , holds after an assignment, x := e,

it is required to prove that the same condition, with the variable substituted by the expression,

P [e/x], hods before the assignment. The sequence inference rule allows one to prove that a se-

quence, (S1;S2), satisfies a specification (P,Q) by proving that S1 satisfies a specification, (P,R),

whose postcondition matches the precondition of a specification, (R,Q), satisfied by S2. For exam-

13

ple, using those two rules it can be proved that the program in Figure 2.4 satisfies its specification.

1 //@ requires x≥1;
2 //@ modifies x;
3 //@ ensures x≥3);
4 S() {
5 x=x+x;
6 x=x+1;
7 }

Figure 2.4: Reasoning example

As shown in Figure 2.5, the SEQR rule is used to split the proof into two sub-proofs and then the

ASSIGNR axiom is used to prove each one of them.

SEQ

ASSIG
{(x+ x) ≥ 2}x := x+ x{x ≥ 2}
{x ≥ 1}x := x+ x{x ≥ 2}

ASSIG
{(x+ 1) ≥ 3}x := x+ 1{x ≥ 3}
{x ≥ 2}x := x+ 1{x ≥ 3}

{x ≥ 1}x := x+ x; x := x+ 1{x ≥ 3}
Figure 2.5: Applying proof rules

As already said, the soundness of the proof rules must be proven against the formal semantics of

the programming language. Usually this semantics is expressed using the well known structural

operational semantics (SOS) [52]. A mapping, Σ, models the state of memory, mapping each

location to it’s corresponding value. A configuration, 〈E[S], Σ〉, describes the execution state,

containing at least the program to execute, S, and the current memory state, Σ. The semantics for

sentences is expressed as a evaluation relation between configurations 〈E[S], Σ〉 ↪→ 〈E[S ′], Σ ′〉,

meaning that, in state Σ, executing one step of statement S leads to state Σ ′ and the remaining

statement to execute is S ′. The SOS of a language takes the form of a set of inference rules which

define the valid transitions of a program in terms of the transitions of its components. For example,

Figure 2.6 shows some inference rules describing the semantics of assignment and sequencing in

a typical imperative programming language.

14

(ASSIGNS)
JeKΣ = v

〈E[x := e], Σ〉 ↪→ 〈E[skip], Σ[x 7→ v]〉

(SEQS)
〈E[S1], Σ〉 ↪→ 〈E[S ′1], Σ

′〉
〈E[S1;S2], Σ〉 ↪→ 〈E[S ′1;S2], Σ

′〉
Figure 2.6: SOS of assignment (ASSIGNS) and sequence (SEQS)

In demonstrating the soundness of proof rules, it is often required to demonstrate the validity

of a Hoare triple of the form {P}S{Q} with regard to the semantics of the language. The key

equivalence is:

{P}S{Q} ⇔ ∀Σ,Σ ′ • (JP KΣ ∧ 〈E[S], Σ〉 ↪→∗ 〈E[skip], Σ ′〉)⇒ JQKΣ′ (2.1)

For example, for demonstrating the validity of theASSIGNR proof axiom one can use theASSIGNS

semantic rule as follows.

Proof: [ASSIGNR proof rule]

〈by hypothesis〉

JP [e/x]KΣ ∧ 〈E[x := e], Σ〉 ↪→ 〈E[skip], Σ ′〉

=⇒ 〈by ASSIGNR semantic rule〉

(JP [e/x]KΣ) ∧ (JeKΣ = v) ∧ (Σ ′ = Σ[x 7→ v])∧

=⇒ 〈by value substitution〉

(JP [v/x]KΣ) ∧ (Σ ′ = Σ[x 7→ v])

=⇒ 〈by logic〉

(JP KΣ′)

=⇒ 〈by equivalence 2.1〉

{P [e/x]}x := e{P}

The previous example illustrates how to demonstrate the soundness of proof rules with regard to

15

the semantics of the language.

2.4 Deductive Program Verification and Weakest Precondition Semantics

Verifying a program means certifying that it conforms to its specification in all possible executions.

Deductive verification is one approach for doing program verification. Out of a program and its

specifications, a collection of mathematical assertions, called verification conditions (VC’s), are

derived. The truth of these assertions must guarantee that the program satisfies its specifications.

A theorem prover2 is typically used to decide the truth of the VC’s and so to verify whether the

program satisfies its specifications. In this dissertation I will apply deductive verification to reason

about programs based on AO-like interfaces.

For a program, S, there are, in general, many specification (P,Q, ε) that this program satisfies,

S w (P,Q, ε). For example the program {x := x + 1; } satisfies the specifications (x ≥ 1, x ≥

2, {x}), (true, x > old(x), {x}), (x > 1, x ≥ 2, {x}), etc. If one fixes the postcondition Q

there are still many preconditions P such that the program S satisfies the specification (P,Q, ε).

For postcondition Q ≡ (x ≥ 2), both preconditions P1 ≡ (x ≥ 1) and P2 ≡ (x > 1) form a

specification (P,Q, {x}) satisfied by S, however P1 is weaker than P2, as P2 ⇒ P1.

Given program S, postcondition Q and frame ε, the weakest liberal precondition of S with respect

to Q and ε, wlp(S)(Q, ε), is the weakest precondition P such that {P}S{Q}[ε] is valid (notice-

ably {wlp(S)(Q, ε)}S{Q}[ε] is valid). The semantics of a program S can then be expressed as a

weakest precondition predicate transformer3, where the “meaning” of the program S is expressed

as a function wlp(S)(·) that transforms a predicate, the postcondition, into another predicate, the

precondition. Table 2.1 shows the semantics of some commands using weakest precondition.

2A theorem prover is a computer program that determines if a set of assertions are provably true.
3Strongest postcondition is another way of predicate transformer semantics

16

Table 2.1: Weakest precondition semantics

Command S wlp(S)(Q, ε)
Assignment x := e Q[x 7→ e] ∧ x ∈ ε
Sequence S1;S2 wlp(S1)(wlp(S2)(Q, ε), ε)

Call p(e)
pre[x 7→ e] ∧ ∀y(post[x 7→ e][ε′ 7→ y]⇒ Q[ε′ 7→ y]) ∧ ε′ ⊆ ε,

if (pre, post, ε′) is the specification for method p(x : T){S}

Weakest precondition semantics can be used to construct the verification conditions of a program,

for doing deductive program verification. To verify {P}S{Q}[ε] one computes wlp(S)(Q, ε) and

construct the verification condition V C = (P ⇒ wlp(S)(Q, ε)), whose proof can be delegated

to a theorem prover. If V C holds then {wlp(S)(Q, ε)}S{Q}[ε] is valid and as a consequence

{P}S{Q}[ε] is also valid, as desired.

2.5 Behavioral Subtyping and Supertype Abstraction

In Object Oriented programming, types, for example classes, can be organized in a hierarchical

subtype relationship. From a behavioral point of view it is desirable that the subtype relationship

also conveys a certain relationship among type specifications [42]. Instances of the subtype can be

used in places where instances of the supertype are expected, generating subtype polymorphism.

For example, if a method p has a parameter x of type A (p has the form p(x : A){...}) and B is

a subtype of A then the method can be invoked passing an instance of type B, like in p(newB()).

This situation is illustrated in Figure 2.7

The type associated with an identifier at compile time is called its static type, while the (most

specific) type of the actual instance referenced by the identifier at run time is called its dynamic

type. In the example in Figure 2.7, the static type of parameter x is A, but when the method p is

called, p(newB()), x’s dynamic type is B. If the body of method p invokes method x.m(), as in

p(x : A){...; x.m(); ...}, then there are at least two methods that could be executed: A.m() or

17

B.m(). Dynamic dispatch selects that method based on the dynamic type of the callee. This poses

a reasoning challenge, should the method call x.m() be verified using the method’s specification

for the supertype, A.m(), or for the subtype, B.m().

Figure 2.7: Behavioural Subtyping

The behavioral Subtyping discipline [2, 42, 39] solves this problem by requiring that the specifica-

tion for a method in a subtype refines the specification of the corresponding method in the super-

type that it overrides. In the example, (PB
m , Q

B
m, ε

B
m) w (PA

m , Q
A
m, ε

A
m), where (PA

m , Q
A
m, ε

A
m) is the

specification of A.m() and (PB
m , Q

B
m, ε

B
m) is the specification of B.m(). Behavioral Subtyping al-

lows one to reason using Supertype Abstraction [41]. With Supertype Abstraction method calls are

reasoned about using the specification in the static type of the receiver expression, (PA
m , Q

A
m, ε

A
m) in

the example. In this way the program is kept valid no matter what are the dynamic types involved,

as long as they are behavioral subtypes of the supertype in question.

2.6 Event Based Implicit Invocation Programming

In Event Based Implicit Invocation (II) [27, 47], the client (subject) component announces or broad-

casts events at explicit places, using some type of announce construct (or feature). The system

implicitly invokes the registered methods (handlers) in provider components. Implicit invocation

improves flexibility and maintainability, for example new provider components can be added with-

18

out changing the client component. For a programming language to support implicit invocation it

must provide features to declare events, including the context information they carry, to announce

events and to bind (register) handlers to events. It also needs run-time support that implements

the actual delivery of events, by implicitly invoking the registered handler methods. Figure 2.8

illustrates these concepts using a hypothetical Java-like Implicit Invocation language.

1 public class ClientComponent {
2 event LogginEvt(Customer c);
3
4 void process(Customer c){
5 ...
6 c.notify();
7 announce LogginEvt(c);
8 ...
9 }

10 }
11 public class ProviderComponent {
12 void handler(Customer c){
13 ...
14 Logger.log(c);
15 }
16 when LogginEvt do handler;
17
18 ProviderComponent(){
19 register(this);
20 }
21 }

Figure 2.8: Implicit Invocation example

2.7 Aspect Oriented Programming

Aspect Oriented (AO) programming adds new features to modularize cross-cutting concerns. A

cross-cutting concern, like logging or authorization, is a conceptual requirement whose implemen-

tation could be scattered throughout the system and “tangled” with the main logic of its modules

19

(base code). AO aims to encapsulate these concerns into “aspects” and weave them at the required

points. Join points correspond to predefined events in the execution of a program, like method calls

or field accesses, and join point shadows are the actual points in the modules’ code where these

events occur. Pointcuts are sets of join points. Aspects in AspectJ language include method-like

blocks of code, called advice, that implement the cross-cutting concerns, and pointcut descriptors,

that declaratively select a set of join points where to apply the advice (quantification).

1 public aspect Loggin {
2 ...
3 pointcut updating(): call(* *.update*(..)); //pcd
4 before(): updating() {
5 logger.log("updating method called: "+time());
6 } }
7 public aspect Notification{
8 ...
9 pointcut notifying(): call(* *.notify()); //pcd

10 void around(): notifying() {
11 if (notificationEnabled()){
12 proceed();
13 }
14 } }
15 public class base {
16 ...
17 void process(Customer c, Account a) {
18 c.updateAccount(a); // matches "updating" pcd
19 int balance=(int)(0.1*a.balance());
20 a.updateBalance(balance); // matches "updating" pcd
21 a.print();
22 c.notify(); // matches "notifying" pcd
23 } }

Figure 2.9: AspectJ Loggin example

Advice could be executed before, after or around the join point. Around advice is executed

instead of the join point. In the body of the advice, a proceed instruction executes other advice

if applicable or the original join point otherwise.

The example in Figure 2.9 illustrates all these concepts in the AspectJ language. Aspect Loggin

20

(lines 1-6) has the updating pointcut (line 3) and a piece of advise (lines 4-6), that will be executed

at any join point matching the pattern in the pointcut. The pattern (line 3) matches calls to methods

with any return type (first *), that belong to any class (*.), whose name starts with the word

update followed by any sequence (update*) and has any parameters (...). This pattern matches

the method calls at lines 18 and 20 in the base code. Then, before the actual call to these methods,

the piece of login advice (line 5) will be executed. Aspect Notification (lines 7-14) is similar,

but it has an around piece of advice. As its pointcut matches the notify() method call in the

base code (line 22) then the advise body (lines 11-13) will be executed instead of that method call.

The proceed instruction in the advice (line 12) will go on with the actual execution of the original

notify() method call. As that proceed instruction is inside a conditional statement, only if the

condition (line 11) holds the original method call will be executed.

As proposed by Filman and Friedman [25] obliviousness is a defining characteristic of AO pro-

gramming. It “states that you can’t tell that the aspect code will execute by examining the body of

the base code” [24]. In the text of the client code there is no reference to any advice that could be

applied. If one inspects the base code (lines 15-23) there is no explicit indication of where or what

advice could be applied. That makes reasoning about AO programs a challenge.

21

CHAPTER 3: IMPROVING AND STATICALLY VERIFYING THE

PTOLEMY IMPLICIT INVOCATION LANGUAGE

Different approaches, like JPT [58], JPI [11], EJP [31] and Ptolemy Event Types [54] propose

language support for certain types of interfaces that mediate the interactions between the client

and provider components, and so enable modular type checking and/or modular reasoning about

AO-like languages. Other approaches like Co-AOP [32, 33] and XPIs [59, 60] pay more attention

to methodology and less to language features.

3.1 The Ptolemy Language

The Ptolemy approach explicitly addresses the problem of specification and verification, and has

been the starting point of some previous work [55, 56] by this author.

The language Ptolemy [54] is an extension of Java with support for the implicit invocation archi-

tectural style [27, 47], plus some aspect oriented features. It also incorporates translucid contracts

[7, 5] that provide functional specification features 1 and control effects reasoning.

In support for II, Ptolemy provides features to declare event types (Fig. 3.1-a, line 1), to explicitly

announce event occurrences (line 7) and to register (line 21) and bind (line 18) handlers with

events. Bindings associate a handler method to the set of events named in a when-do clause.

Ptolemy also provides the run-time support that implements the delivery of events, by implicitly

invoking the registered handler methods. Ptolemy event types are declared independently from the

client components, which announce them, and from the provider components that handle them. An

event type can be announced by many clients and can be handled by many providers. Event types

1Specifications in Ptolemy do not include framing, so they are of the form (P,Q) instead of (P,Q, ε) .

22

also define any context information that is expected by the handlers (line 2) and that is provided by

the client upon announcement (line 7).

Translucid contracts (Fig. 3.1-b, lines 3-10) allows one to establish the specification (requires in

line 3 and ensures in line 10) that all handlers for this event must satisfy. It also allows to provide

an abstract algorithm (assumes clause in lines 4-9) that all handlers must refine. Each handler’s

body (Fig. 3.1-b, lines 14-20) must match exactly this abstract algorithm, except for specification

statements (line 8) that are refined by refining statement (lines 17-18) providing code (line 19)

that implements the corresponding specification.

1 public event NotificationEvt{
2 Customer c;
3 }
4 public class ClientComponent {
5 void process(Customer c) {
6 ...
7 announce NotificationEvt(c){
8 c.notify()
9 };

10 }}
11 public class ProviderComponent {
12 void handler(NotificationEvt next){
13 ...
14 if (notificationEnabled){
15 next.invoke(); // proceed
16 }
17 }
18 when NotificationEvt do handler;
19
20 ProviderComponent(){
21 register(this);
22 }}

(a) basic

1 public event NotificationEvt{
2 Customer c;
3 requires true
4 assumes{
5 if (notificationEnabled){
6 next.invoke(); // proceed
7 }
8 requires true ensures c.ok();
9 }

10 ensures c.ok()
11 }
12 public class ProviderComponent {
13 void handler(NotificationEvt next){
14 if (notificationEnabled){
15 next.invoke(); // proceed
16 }
17 refining requires true
18 ensures c.ok(){
19 c.setOk();
20 };
21 }
22 ...
23 }}

(b) with translucid contract
Figure 3.1: Ptolemy event example

In AO programs the only advisable events correspond to the fixed set of join point types defined

23

by the language, like method calls or field accesses. In Ptolemy, on the contrary, the execution of

any block of client code (the announced code) can be considered as announcing an event, giving

more flexibility to the developer. From AO languages, Ptolemy takes the around advice and the

proceed (invoke in Ptolemy) concepts. Every handler in Ptolemy corresponds to an advice that

executes around the announced code. The invoke statement in the body of a handler corresponds

to the AO proceed invocation.

Verification in Ptolemy is straightforward [7, 5, 55]. Every handler H for an event, like method

handler in Fig. 3.1-b (lines 13-21), and also every piece of announced code S for that event, like

the one in Fig. 3.1-a (line 8), must satisfy the specification, (P,Q), established in the translucid

contract of the event (Fig. 3.1-b, lines 3 and 10): H w (P,Q) and S w (P,Q). In Ptolemy,

the semantics of announce and invoke statements is that they execute a handler, H , or some

announced code, S. Therefore, each of these instructions is verified as the non-deterministic choice

between these two pieces of code. Considering that both of them satisfy the specification (P,Q)

from the event, it follows that announce as well as invoke statements are verified using the

specification (P,Q)�(P,Q), that results in (P,Q). That is, [announce E(..){S}] w (P,Q) and

[next.invoke()] w (P,Q). As pointed out by the author in a previous work [55], imposing the

same specification on both the handlers and the announced code is sound but has flexibility and

completeness issues.

3.2 PtolemyRely: Separating Obligations of Subjects and Handlers

Using the same specification for both the subject (announced code) and the handlers has flexibility

and completeness issues. An issue occurs if the business rules of a system require different behav-

iors from the subject and the handlers. Which specification must be put on the event declaration?

If either of the two is selected then the program may not verify, since its counterpart would not

24

satisfy that specification. If the non-deterministic choice of both is used as the event specification,

then the program will be valid, but the business rules may not be followed, as this specification is

more general and may not guarantee the expected behaviors. Another issue occurs when the an-

nounced code has no effect (e.g., skip). As the event specification (P,Q) must be satisfied by the

announced-code, then the Hoare triple {P}skip{Q} must hold. From that it follows that P ⇒ Q

and then the handlers are limited to monotonic behaviors; i.e. ones that preserve the precondition.

In a previous work [55], the author presented an extension of the specification and reasoning fea-

tures of Ptolemy, for dealing with the aforementioned issues. This extended language is named

PtolemyRely. In PtolemyRely, each event type declares two specifications, one that must be satis-

fied by every handler, (PH , QH), and one that must be satisfied by each piece of announced code,

(PB, QB).

1 public event NotificationEvt{
2 Customer c;
3 relies requires true ensures true // (PB, QB)
4 requires true // PH
5 assumes{
6 if (notificationEnabled){
7 next.invoke(); // proceed
8 }
9 requires true ensures c.ok();

10 }
11 ensures c.ok() // QH

12 }

Figure 3.2: PtolemyRely event example

Handlers rely on the fact that the announced code satisfies (PB, QB) and in turn they must guar-

antee to the client or base code that their execution satisfies (PH , QH). Announce and invoke

statements are reasoned about using the non-deterministic choice between these specifications:

[announce E(..){S}] w (PH , QH)�(PB, QB) and [next.invoke()] w (PH , QH)�(PB, QB). These

features make PtolemyRely more flexible than Ptolemy and allows one to verify more programs.

25

Figure 3.2 illustrates these new features. The relies clause (line 3) introduces the specification

(PB, QB) for announced code. The specification (PH , QH) surrounding the assumes clause (line

4 and 11) must be satisfied by every handler. Separate specifications allow one to verify each part

of the program and respect the business rules. This also allows announced code that has no effect

to be verified without limiting, in any way, the handlers’ specification.

3.3 Static Verification of PtolemyRely Programs Using OpenJML

In another work [56] the author presented a mechanism for doing automated, modular static veri-

fication of PtolemyRely programs. The mechanism consists of translating PtolemyRely programs

into JML (the Java Modelling Language) [37, 38, 13]. This allows one to use existing OpenJML

[16] static verification tools to verify PtolemyRely programs. The translation is such that a Ptole-

myRely program is valid if and only if its encoding is a valid JML program.

JML [37, 38, 13] is a behavioral interface specification language tailored to Java. It allows one

to specify the syntactic interface of Java modules (classes or interfaces) and its behavior from the

client point of view. JML specifications include class invariants, method pre- and post-conditions

and statement level assertions. Valid JML programs must satisfy the following conditions. The

body, S, of every method, requires P modifies ε ensures Q m(){S}, must satisfy its

specification, S w (P,Q, ε). Method calls are reasoned about modularly. At every method call

its precondition is checked to hold and its postcondition is assumed afterwards. Every explicitly-

stated assertion is verified.

OpenJML [16] is a set of tools for the JML language. It includes verifying (static checking) and

run-time checking of JML programs. OpenJML static checking tools do automated deductive

verification. They generate, using weakest precondition semantics, a proof script from the JML

26

specifications and the Java code and then use a SMT solver (like Yices [21] or Z3 [19]) for verifi-

cation.

To verify a PtolemyRely program one performs several specific steps. Each event declaration

includes a handler’s specification (PH , QH), a subject’s specification (PB, QB) and an abstract

algorithm (assumes part) A. The body, H , of every handler should satisfy the handler’s spec-

ification, H w (PH , QH), and structurally refine the abstract algorithm, H w A. Refining

statements, refining requires P ensures Q {S}, require that its body refines its speci-

fication, S w (P,Q). Announce and invoke statements must be reasoned about using the non-

deterministic choice specification, (PH , QH)�(PB, QB). At event announcements of the form

announce E(..){B}, the announced-code must be verified against the corresponding specifica-

tion in the event, B w (PB, QB).

The referred work uses a JML class to simulate a closure construct for a block of code, S, and

specification (P,Q). Figure 3.3, adapted from [56], shows the strategy. The basic idea is that a

method, execute, is constructed. Its body corresponds to the block of code S and its specification

corresponds to (P,Q). The frame
−→
F is computed from the free variables in P , S and Q.

The verification of this JML closure class certifies that the block of code satisfies the specifica-

tion. The rest of the construction simulates the execution of the original block of code, with the

added value of verifying its precondition and assuming its postcondition, according to the method

call rules of JML. Using this closure construct a PtolemyRely program, P , is translated into a

JML program, TRJP K, whose validity according to JML rules ensures the validity of the original

program according to the rules of PtolemyRely.

27

closure (P,Q, S) = {
class Clrs{
public

−→
F ; // free variables: free(S, P,Q)

/ ∗@ requires P ; assignable F ; @ ∗ /
/ ∗@ ensures Q; @ ∗ /
public void execute(){S} // closure method

}

Clrs clrs = new Clrs(); // instantiation
−−−→
clrs.F =

−−−−−−−−−→
free(S, P,Q); // set

clrs.execute(); // execute
−−−−−−−−−→
free(S, P,Q) =

−−−→
clrs.F ; // get

}

Figure 3.3: Closure construct. Here Clrs is presumed to be a fresh class name for the closure class and F is
the list of fields corresponding to the free variables in P , Q and S.

3.4 Methodology Oriented Approaches

Instead of relying mainly in language features, some approaches suggest attacking the problem of

developing AO software from the methodological point of view. I discuss some of those approaches

below.

Crosscut programming interfaces, or XPI, [59, 60] are at the core of the XPI-based design method-

ology. This methodology introduces a new design phase in which the crosscuting interfaces, me-

diating the base and aspect parts of the system, are designed before designing these parts. XPI

decouple the advised base-code from the advising aspects. As an API defines a set of methods that

will be implemented by one part and invoked by other part, an XPI defines a set of abstract join

points that will be materialized by concrete join points in the base code and that will be advised

by the corresponding aspects. In AspectJ, an XPI is defined by two auxiliary aspects: the XPI as-

pect and the contract aspect. The XPI aspect declares the signature of the pointcuts that comprise

the interface, and a “partial” implementations of them, by providing their join point patterns. A

28

“real” aspect can use the pointcuts defined in this XPI aspect and bind them to the required advice.

The contract aspect uses the pointcuts defined in the XPI aspect and advice them with code that

checks that the informal contract is enforced. This informal contract establishes the precondition

the base code has to ensure and the postcondition the advised code must guarantee. The lack of

specific language support for XPI leaves in the developer the responsibility to adhere to the design

discipline.

Cooperative aspect-oriented programming (Co-AOP) [32, 33] is a programming methodology

based on the use of interfaces between the base and aspect code. Interfaces can be of different

types. They can be just normal Java interfaces with static methods. The base code explicitly in-

voke the interface methods and the aspect matches and advices these calls. Interfaces can also

be XPI’s defining pointcuts in an auxiliary aspect. They obliviously pick join points in the base

code and can be advised by provider aspect that match the XPI pointcuts. The favourite type of

interfaces in Co-AOP are the so-called explicit join points (EJP) [31]. EJP are similar to method

declarations in an interface. They are defined inside a convenience aspect that acts as an inter-

face. EJP’s are explicitly referenced in the base code and they can advise arbitrary blocks of base

code, similar to the announce statement in Ptolemy. Nevertheless EJP does not explicitly support

specification and verification features, like Ptolemy does.

29

CHAPTER 4: REASONING TRADEOFFS

When reasoning about object oriented, implicit invocation and aspect oriented programs a series

or decisions or tradeoffs should be considered. These decisions will affect important properties of

the reasoning process itself, like its completeness and precision, its easiness and its applicability to

practical software engineering situations.

4.1 Modular vs. Non-Modular Reasoning

Modular reasoning is understood as being able to establish properties of a module just by consid-

ering its interface, specification and implementation; and the interfaces and specifications, not the

implementation, of modules referenced by them. The specification information for each module

includes the assumptions it makes (preconditions) and the guarantee (postcondition) it promises

[17]. For doing modular reasoning it is required that each module has a specification and also that

the references in the invoking module allows one to identify the specifications to use for reasoning

about the invocations.

Modular reasoning can be formalized as follows. A client module s has a specification (Ps, Qs, εs)

and a body bs. In the body bs there are references (invocations) to provider modules m1, . . . ,mn,

each of which having its corresponding specification (Pi, Qi, εi) and body bi. To modularly reason

about s demands that its body bs, when composed with the specifications (Pi, Qi, εi) satisfies s’s

own specification: bs } [(Pi, Qi, εi)i:1..n] w (Ps, Qs, εs). The composition bs } [(Pi, Qi, εi)i:1..n]

represents the program bs with every invocation of any of the modules mi replaced by the specifi-

cation statement “requires Pi modifies εi ensuresQi”, corresponding to the specification

(Pi, Qi, εi) of module mi. For modular reasoning to be sound, every module mi must be verified

30

in the same way to satisfy its own specification, (Pi, Qi, εi).

There are various circumstances under which modular reasoning cannot be applied directly. If there

are no specifications for the invoked modules then their bodies should be used instead, preventing

modular reasoning. Unless there is recursion, a non-modular approach can be used, the client

body, composed with the bodies of the invoked modules, is checked against its expected behavior:

bs } [(bi)i:1..n] w (Ps, Qs, εs). In spite of the many practical advantages of modular reasoning, this

non-modular reasoning is at least as precise as modular reasoning. That is due to the fact that the

body of the client module, bs, composed with the bodies of the invoked modules, bi, refines that

same client body, bs, composed with the specifications, (Pi, Qi, εi), for those invoked modules:

(bs } [(bi)i:1..n]) w (bs } [(Pi, Qi, εi)i:1..n]). This follows from the condition that bi w (Pi, Qi, εi)

and from standard results in refinement calculus [3, 45], regarding the monotonicity of programs

with respect to refinement of its parts, as also used in [57]. Every specification, (Ps, Qs, εs),

satisfied by the later program is also satisfied by the former one:

[(bs } [(Pi, Qi, εi)i:1..n]) w (Ps, Qs, εs)] ⇒ [(bs } [(bi)i:1..n]) w (Ps, Qs, εs)], but there could

be specifications satisfied by the former and not satisfied by the later, making the non-modular

reasoning at least as precise as the modular one.

If the invoked module cannot be uniquely identified at an invocation then the particular specifica-

tion to reason about this invocation will not be known, again preventing modular reasoning. This

happens in the case of object oriented dynamic dispatching and also in the case of implicit invo-

cation, both explained further below. In the case of aspect orientation the client module does not

invoke any advice at all, instead the pointcuts designators in the aspects select the join points where

to apply the advice. In this case no modular reasoning is possible, unless obliviousness is relaxed

in some way.

In static dispatching each invocation is dispatched to the only one corresponding method imple-

31

mentation in the static type of the target object. In this case modular reasoning can be done exactly

as described above.

In the case of object oriented dynamic dispatching, as described in Section 2.5, each method in-

vocation can be dispatched to the corresponding method implementation in any of the subtypes of

the target’s static type, including itself. The exact module to be invoked at runtime is not known,

and so the particular specification to reason about this invocation is also unknown. In this case,

modular reasoning can be recovered by supertype abstraction, using the method’s specification

in the target’s static type to reason about the invocation. Client reasoning can be done as in the

case of static dispatching, reasoning each method invocation ei.mi() using the specification given

to that method in the static type of the target object. The notation (P T
m, Q

T
m, ε

T
m) represents the

specification given to a method m in a type T ; and Ti is the static type of the target object ei.

bs } [(P Ti
mi
, QTi

mi
, εTimi

)i:1..n] w (Ps, Qs, εs). For supertype abstraction to be sound, modules must

adhere to the behavioral subtyping discipline, which requires that the specification for a method in

a subtype refines the specifications for that method in the supertypes [40]. The provider modules

not only must be checked against their corresponding specifications as before, but also to satisfy

the behavioral subtyping property.

(∀T • T ≤ Ti ⇒ (P T
mi
, QT

mi
, εTmi

) w (Pi, Qi, εi)), where (Pi, Qi, εi) is the specification for

method mi in its declaring type Ti, that is (Pi, Qi, εi) = (P Ti
mi
, QTi

mi
, εTimi

).

In Implicit Invocation languages, instead of explicit invocations of specific modules, events are

announced and the runtime system implicitly invokes the registered handlers for the event. Not

only are the dispatched methods unknown, like in dynamic dispatching, but many of them may

be executed, in contrast to dynamic dispatching where exactly one is executed. Along the lines

of supertype abstraction, modular reasoning can be recovered in implicit invocation using handler

abstraction. In this work the term handler abstraction is coined to mean that for each event, e, a

handlers’ specification, (PeH , QeH , εeH), can be defined which must be satisfied by every handler,

32

hei , for that event.

In full delivery implicit invocation [10] all the handlers for an event are invoked by the system in

some arbitrary order [26]. Examples of this scheme are traditional implicit invocation systems and

AO before and after advice. Full delivery requires that the execution of any handler leaves the

system in a state in which any other handler can be executed. Therefore, the postcondition for the

handlers must imply their precondition, QeH ⇒ PeH , and so this precondition, PeH , becomes an

invariant that must be kept by the handlers. Under this premise the client module can be modularly

reasoned about, using the corresponding event’s handlers specification to reason about each event

announcement, and considering the cases where there are no registered handlers as skip.

In single delivery implicit invocation only one handler is invoked in response to an event, and it

depends on that handler whether the next handler is invoked. The same applies to the second han-

dler and so on. Examples of single delivery are AO around advice and Ptolemy events. In AO

a proceed instruction in the body of a piece of advice (handler) invokes the next handler. Sim-

ilarly, in Ptolemy an invoke statement invokes the next handler. In this case modular reasoning

is recovered by checking each handler against the handler’s specification for the corresponding

event. Handlers are not required to satisfy an invariant, as in the case of full delivery. Instead,

in the reasoning of each handler, proceed or invoke statements need to be considered, using

the handler’s specification to substitute them: hei } [(PeH , QeH , εeH)] w (PeH , QeH , εeH). Again

special considerations must be taken when there are no more handlers to execute.

More details about the modular vs. non-modular reasoning will be analysed in Chapter 5.

33

4.2 Case analysis vs. Abstraction

There are situations, like dynamic dispatching and implicit invocation, where an invocation (method

call or event announcement) can be dispatched to different provider modules, each one with its own

specification, (Pi, Qi, εi). In this situations it is not clear what specification to use for reasoning

about the invocation. One option is to use abstraction and another one is to use case-by-case

reasoning.

The abstraction approach consists in computing a specification, (P,Q, ε), that abstracts all the

specifications for the provider modules, (P,Q, ε) w (Pi, Qi, εi)i:1..n, and using it to reason about

the invocation, (call\announce) w (P,Q, ε). This approach admits modular reasoning.

On the contrary, case analysis considers the reasoning requirements for each case separately, in-

stead of abstracting them all in a general specification. Abstraction mechanisms, like supertype

abstraction, are sound and modular but not complete, since valid programs cannot be reasoned

about using them. The example in Figure 4.1, adapted from [20], illustrates this situation.

1 class A{
2 int x; int y;
3 /*@ ensures x=\old(x)+1
4 && y=\old(y)+1; @*/
5 void inc(){x=x+1;y=y+1;}
6
7 //@ ensures x=\old(x)+2;
8 void incX2(){inc();inc();}
9 }

10 class Ax extends A{
11 /*@ ensures x=\old(x)+1;@*/
12 void inc(){x=x+1;}
13 }

Figure 4.1: Supertype Abstraction

34

The example presents a case of supertype abstraction, without specification inheritance. Despite

being valid, the program in Figure 4.1 does not follow the behavioral subtyping discipline. Class

Ax is not a behavioral subtype of class A, because the specification for method inc() in Ax does

not refine its specification in A.

The program is valid for all the methods in it satisfy their specifications, even in the presence of

dynamic dispatching. Method inc() satisfies its corresponding specifications in both classes A

and Ax. Method incX2() is valid since the requirements it imposes on method inc() (that it

at least increments variable x) are part of the commitments of this method in both classes A and

Ax, despite Ax not being a behavioral subtype of A. This relaxed discipline has been termed lazy

behavioral subtyping[20]. It can be seen as case analysis, since each class is analysed as a separate

case. The requirements some of its methods impose on others are verified against the commitments

of these other methods, plus their inherited commitments.

4.3 Explicit Invocation vs Implicit Invocation

In explicit invocation the client component explicitly calls methods from the provider component.

Explicit invocation eases debugging and reasoning. In the case of static dispatching, invocations

can be reasoned about using the specification of the invoked methods. In the case of dynamic

dispatching, the behavioral subtyping discipline can be adopted, enabling the use of supertype

abstraction for reasoning the invocations.

With implicit invocation, the client component announces events and the system implicitly invokes

the target components that have been registered for these events. Implicit invocation has many

advantages. The loosely coupling between components eases system evolution and reuse. Target

components can be added, changed or removed without modifying the client. Independent devolp-

35

ment is also facilitated. There are also disadvantages. Reasoning about the client is more involved.

There are no references to the target components that will be invoked, nor the number of them or

the order of execution is known. As pointed out in Section 4.1, modular reasoning can be recovered

using handler abstraction, while considering the both single and full delivery.

4.4 Explicit Announcement vs Implicit Announcement

In a general sense, explicit announcement means that by inspecting the client code one can de-

termine the places where an announcement is made, signalling that certain functionality would be

invoked at those places. In traditional object oriented programs the announcements correspond

to method invocations, that are explicitly made in the client code. In event-based systems the

language provides some type of announce construct that is used to explicitly announce events,

which will cause the implicit invocation of handler methods from the provider components. The

main advantage of explicit announcement is that it provides information for reasoning about the

client code. Explicitly knowing where the event announcements are made, what is left is to reason

about them, as was described in Section 4.3.

With implicit announcement, as in aspect oriented programming, the client remains oblivious [25]

or ignorant of where and what functionality (advice) may be invoked. Different events occurring

at certain join points during the execution of the client code, like method calls or field accesses,

are considered candidates that would cause the invocation of handlers (advice). Pointcuts inside

aspects select or quantify [25] the event-announcing points in the client code, where advice from

the aspect is added. Reasoning about the client code requires to identify the announcing points,

selected by the pointcuts, and then reason about this announcements. This reasoning should con-

sider the effect of the advised join point and the effect of the advice added. The main advantage

of implicit announcement is that it allows developers to add or alter the functionality of the client

36

code without changing it all. This is particularly useful for implementing cross-cutting concerns.

A cross-cutting functionality can be encapsulated in only one place, in an aspect component, and

applied in many places of a system without changing it. However this obliviousness is also a se-

vere disadvantage, particularly for reasoning the client code. There is no clue in it about where and

what functionality may be added.

One simple solution proposed [36] to reason about AO system with implicit announcement and

implicit invocation is to do it in two phases. A whole program non-modular analysis first determine

the advised points and then a modular reasoning is applied to each one of them. This second phase

falls back to reason an implicit invocation system. Further explanation is given in section 5.5.

37

CHAPTER 5: REASONING SCENARIOS AND THEIR PROOF RULES

As previously stated, the problem I aim to solve in this work is to show how to do formal reasoning

for specific scenarios in implicit invocation and aspect oriented languages (based on Java) and to

provide guidance to language designers and developers on methodological aspects of their use.

Before detailing the scenarios, some definitions and results are needed.

5.1 Algebra of Specifications

Definition 2. (One-State Predicate Valuation) The valuation of a predicate P in a state α is defined

as the predicate with every free variable substituted by its corresponding value in α: JP Kα ≡

P [# »α(x)/ #»x], where #»x = FV (P) are the free variables of P .

Definition 3. (Two-State Predicate Valuation) The valuation of a two-state predicate P in two

states α1, α2 is defined as the predicate with every old free variable substituted by its correspond-

ing value in state α1 and every free normal variable substituted by its corresponding value in state

α2: JP Kα1,α2 ≡ P [# »α1(x)/
»

old(x), # »α2(y)/
#»y], where

»

old(x) = OFV (P) are the old free variables

of P and #»y = FV (P) are the normal free variables of P .

In a Hoare formula of the form {P}S{Q}[ε] the precondition P is an one-state predicate and the

postcondition Q is a two-state predicate. The formula is valid if whenever the program S starts

execution in a state α1 such that JP Kα1 holds and terminates in a state α2 then JQKα1,α2 holds; and

the program only modifies locations in ε.

Theorem 4 (Specification Refinement). The refinement relation (w) between two specifications

can be characterized as follows, where old(P) = P [
»

old(x)/ #»x] for #»x = FV (P):

38

[(
(P ′, Q′, ε′) w (P,Q, ε)

)
⇔
(

(P ⇒ P ′) ∧ ((old(P) ∧Q′)⇒ Q) ∧ (ε′ ⊆ ε)
)]

(4.1)

Proof: [Specification Refinement]

〈by definition of refinement (1) it is required to prove that〉
(
∀ program S, (S w (P ′, Q′, ε′))⇒ (S w (P,Q, ε))

)
⇐⇒

(
(P ⇒ P ′) ∧ ((old(P) ∧Q′)⇒ Q) ∧ (ε′ ⊆ ε)

)

〈by adoption of proof of proposition 10 from [39]〉[(
(P ′, Q′, ε′) w (P,Q, ε)

)
⇔
(

(P ⇒ P ′) ∧ ((old(P) ∧Q′)⇒ Q) ∧ (ε′ ⊆ ε)
)]

For example (x ≥ 0, x ≥ old(x) + 1, {x}) w (x > 0, x > 1, {x}), as (x > 0) ⇒ (x ≥ 0) and

((old(x) > 0) ∧ (x ≥ old(x) + 1)⇒ (x > 1).

Lemma 5 (Meet or greatest lower bound of specifications w.r.t. refinement).

ui=1...n(Pi, Qi, εi) = (∧i=1...nPi,∨i=1...nQi,∪i=1...nεi), or in the binary case:

(Pj, Qj, εj) u (Pk, Qk, εk) = (P,Q, ε) = (Pj ∧ Pk, Qj ∨Qk, εj ∪ εk), that is

(
(Pj, Qj, εj) w (P,Q, ε)

)
∧(

(Pk, Qk, εk) w (P,Q, ε)
)
∧(

[(Pj, Qj, εj) w (P ′, Q′, ε′) ∧ (Pk, Qk, εk) w (P ′, Q′, ε′)]

⇒ (P,Q, ε) w (P ′, Q′, ε′)
)

(5.1)

(5.2)

(5.3)

Proof: [Meet of specifications]

5. 1. 〈by predicate calculus and set theory〉[(
(Pj ∧ Pk)⇒ Pj

)
∧
(

(old(Pj) ∧Qj)⇒ (Qj ∨Qk)
)
∧
(
εj ⊆ (εj ∪ εk)

)]
=⇒ 〈by theorem 4〉

39

[
(Pj, Qj, εj) w (Pj ∧ Pk, Qj ∨Qk, εj ∪ εk)

]
=⇒ 〈by definition of (P,Q, ε)〉[

(Pj, Qj, εj) w (P,Q, ε)

]
5. 2. 〈by similar to previous one〉[

(Pk, Qk, εk) w (P,Q, ε)

]
5. 3. 〈by theorem 4〉

(
(P ′ ⇒ Pj) ∧ ((old(P ′) ∧Qj)⇒ Q′) ∧ (εj ⊆ ε′)

)
∧(

(P ′ ⇒ Pk) ∧ ((old(P ′) ∧Qk)⇒ Q′) ∧ (εk ⊆ ε′)
)

=⇒ 〈by predicate calculus and set theory〉[(
P ′ ⇒ (Pj ∧ Pk)

)
∧
(

(old(P ′) ∧ (Qj ∨Qk))⇒ Q′
)
∧
(

(εj ∪ εk) ⊆ ε′
)]

=⇒ 〈by definition of (P,Q, ε)〉[(
P ′ ⇒ P

)
∧
(

(old(P ′) ∧Q)⇒ Q′
)
∧
(
ε ⊆ ε′

)]
=⇒ 〈by theorem 4〉[

(P,Q, ε) w (P ′, Q′, ε′)

]
Lemma 6 (Join or least upper bound of specifications w.r.t. refinement).

ti=1...n(Pi, Qi, εi) = (∨i=1...nPi,∧i=1...n(old(Pi)⇒ Qi),∩i=1...nεi), or in the binary case:

(Pj, Qj, εj) t (Pk, Qk, εk) = (P,Q, ε) = (Pj ∨ Pk, (old(Pj)⇒ Qj) ∧ (old(Pk)⇒ Qk), εj ∩ εk),

that is

(
(P,Q, ε) w (Pj, Qj, εj)

)
∧(

(P,Q, ε) w (Pk, Qk, εk)
)
∧(

[((P ′, Q′, ε′) w (Pj, Qj, εj)) ∧ ((P ′, Q′, ε′) w (Pk, Qk, εk))]

⇒ [(P ′, Q′, ε′) w (P,Q, ε)]
)

(6.1)

(6.2)

(6.3)

Proof: [Join of specifications]

40

6. 1. 〈by predicate calculus and set theory〉
(
Pj ⇒ (Pj ∨ Pk)

)
∧(

[old(Pj) ∧ ((old(Pj)⇒ Qj) ∧ (old(Pk)⇒ Qk))]⇒ Qj

)
∧(

(εj ∩ εk) ⊆ εj

)

=⇒ 〈by theorem 4〉[
(Pj ∨ Pk, (old(Pj)⇒ Qj) ∧ (old(Pk)⇒ Qk), εj ∩ εk) w (Pj, Qj, εj)

]
=⇒ 〈by definition of (P,Q, ε)〉[

(P,Q, ε) w (Pj, Qj, εj)

]
6. 2. 〈by similar to previous one.〉[

(P,Q, ε) w (Pk, Qk, εk)

]
6. 3. according to theorem 4 it is required to prove that

(
(Pj ⇒ P ′) ∧ ((old(Pj) ∧Q′)⇒ Qj) ∧ (ε′ ⊆ εj)

)
∧(

(Pk ⇒ P ′) ∧ ((old(Pk) ∧Q′)⇒ Qk) ∧ (ε′ ⊆ εk)
)

=⇒
(

(Pj ∨ Pk)⇒ P ′
)
∧(

ε′ ⊆ (εj ∩ εk)
)
∧(

(old(Pj ∨ Pk) ∧Q′)⇒ ((old(Pj)⇒ Qj) ∧ (old(Pk)⇒ Qk))
)

〈by hypothesis〉
(

(Pj ⇒ P ′) ∧ ((old(Pj) ∧Q′)⇒ Qj) ∧ (ε′ ⊆ εj)
)
∧(

(Pk ⇒ P ′) ∧ ((old(Pk) ∧Q′)⇒ Qk) ∧ (ε′ ⊆ εk)
)

=⇒ 〈by predicate calculus and set theory〉[(
(Pj ∨ Pk)⇒ P ′

)
∧
(

(εj ∪ εk) ⊆ ε′
)]

=⇒ 〈by Q′ and ((old(Pj) ∧Q′)⇒ Qj)〉

41

[
old(Pj)⇒ Qj

]
=⇒ 〈by Q′ and ((old(Pk) ∧Q′)⇒ Qk)〉[

old(Pk)⇒ Qk

]
Definition 7. (Non-Deterministic Choice) The non-deterministic choice (�) between two specifi-

cations is defined as: (P,Q, ε)�(P ′, Q′, ε′) ≡ (P ∧ P ′, Q∨Q′, ε∪ ε′) = (P,Q, ε)u (P ′, Q′, ε′).

Lemma 8 (choice absorption w.r.t. refinement).[(
(P ′, Q′, ε′) w (P,Q, ε)

)
⇐⇒

(
((P ′, Q′, ε′)�(P,Q, ε)) w (P,Q, ε)

)]
(8.1)

Proof: [choice absorption w.r.t. refinement]

〈by starting from the left hand side〉[
(P ′, Q′, ε′) w (P,Q, ε)

]
⇐⇒ 〈by theorem 4〉[

(P ⇒ P ′) ∧ ((old(P) ∧Q′)⇒ Q) ∧ (ε′ ⊆ ε)

]
⇐⇒ 〈by predicate calculus and set theory〉[

((P ⇒ P ′) ∧ true) ∧ (((old(P) ∧Q′)⇒ Q) ∧ true) ∧ ((ε′ ∪ ε) ⊆ ε)

]
⇐⇒ 〈by predicate calculus〉[

((P ⇒ P ′) ∧ (P ⇒ P)) ∧ (((old(P) ∧Q′)⇒ Q) ∧ ((old(P) ∧Q)⇒ Q)) ∧ ((ε ∪ ε′) ⊆ ε)

]
⇐⇒ 〈by predicate calculus〉[

(P ⇒ (P ′ ∧ P)) ∧ ((old(P) ∧ (Q′ ∨Q))⇒ Q) ∧ ((ε′ ∪ ε) ⊆ ε)

]
⇐⇒ 〈by theorem 4〉[

(P ′ ∧ P, Q′ ∨Q, ε′ ∪ ε) w (P,Q, ε)

]
⇐⇒ 〈by definition of choice �〉[

((P ′, Q′, ε′)�(P,Q, ε)) w (P,Q, ε)

]

42

Lemma 9 (Meet and Join choice).

[(
ui=1...n (Pi, Qi, εi) � ti=1...n (Pi, Qi, εi)

)
w
(
ui=1...n (Pi, Qi, εi)

)]
(9.1)

Proof: [Meet and Join choice]

〈by definition of Join and Meet〉[(
ti=1...n (Pi, Qi, εi)

)
w
(
ui=1...n (Pi, Qi, εi)

)]
〈by lemma 8〉[(
ti=1...n (Pi, Qi, εi) � ui=1...n (Pi, Qi, εi)

)
w

(
ui=1...n (Pi, Qi, εi)

)]

5.2 The Reference Scenario

The Reference Scenario is a very general setting in which the different scenarios are configured. A

client module s() has a specification (Ps, Qs, εs) and a body bs. In the body bs there are blocks of

code {Bi} at which provider modules could be invoked.

//@ requires Ps;
//@ modifies εs;
//@ ensures Qs;
s(){
...
{B1}
...
{Bj}
...
{Bn}
...

}

Figure 5.1: Reference Scenario

43

Each block should be reasoned about to satisfy a corresponding specification.

{Bi} w (Pi, Qi, εi) (5.1)

The body of the client, considering the reasoning of the blocks, should satisfy its specification.

bs } [(Pi, Qi, εi)i:1..n] w (Ps, Qs, εs) (5.2)

The composition bs} [(Pi, Qi, εi)i:1..n] represents the program bs with each block {Bi} substituted

by its corresponding specification (Pi, Qi, εi).

5.3 The Object Oriented Scenario

As illustrated in Figure 5.2, in the Object Oriented scenario the blocks {Bi} of the general scenario

(Fig. 5.1) correspond to method invocations, ei.mi(). This is a case of explicit announcement and

explicit invocation. The method-calls explicitly announce that some functionality will be invoked

and the name used in the call explicitly indicates what method will be invoked.

//@ requires Ps;
//@ modifies εs;
//@ ensures Qs;
s(){
...
e1.m1(. . .);
...
ej.mj(. . .);
...
en.mn(. . .);
...

}

Figure 5.2: OO Scenario

44

The blocks can be reasoned about using the specification of the corresponding invoked methods.

Modularity can be achieved using supertype abstraction supported by behavioral subtyping. As is

standard [40, 51, 34], for reasoning a method invocation, e.m(), the proof rule in (5.3) uses the

specification, (P T
m, Q

T
m, ε

T
m), for the invoked method, m, in the static type, T , of the target object,

e. This specification is given by the function specOf(). The function declOf() correspondingly

gives the method declaration. Both functions return the most specific information for a method,

m, in the type hierarchy from the root type (object) down to a given type, T .

(OO-INVOKER)

Γ(e) = T, specOf(T,m) = (P T
m, Q

T
m, ε

T
m),

declOf(T,m) = Tm m(T1var1, . . . , Tnvarn)

{P T
m[e/this, ei/vari]} e.m(e1, . . . , en) {QT

m[e/this, ei/vari]}[εTm[e/this, ei/vari]]

(5.3)

For this rule to be sound the program being reasoned about must adhere to behavioral subtyping

principle [50], which requires that the specification for a method in a subtype refines the specifica-

tions for that method in the supertypes [40].

Given a type T and a method m in T , behavioral subtyping requires that

∀S · S ≤ T ⇒ (P S
m, Q

S
m, ε

S
m) w (P T

m, Q
T
m, ε

T
m) (5.4)

As mentioned in Section 4.2, this discipline is sound but incomplete, as there exist correct programs

that cannot be verified using it.

45

5.4 II/EA Scenarios

In the II/EA scenarios the blocks {Bi} of the general scenario (Fig. 5.1) correspond to event an-

nouncements. An announce construct explicitly announces (EA) an event and the runtime system

delivers the event to the provider components, by implicitly invoking (II) the handlers registered

for that event. At event announcement, context information can be passed to the handlers. There

are two modes of delivery, full and single, that must be considered.

5.4.1 II/EA Full Delivery Scenario

In full delivery mode, the announced event is broadcast to all the corresponding handlers, which

are invoked in some arbitrary order. The client announces events as illustrated in Figure 5.3.

//@ requires Ps;
//@ modifies εs;
//@ ensures Qs;
s(){
...
announce e1(. . .);
...
announce ej(. . .);
...
announce en(. . .);
...
}

Figure 5.3: II/EA Full Delivery Mode

For a given announcement of an event, e, the runtime system invokes all the register handlers,

hi, for that event, as illustrated in Figure 5.4. As pointed out in Section 4.1, for doing modular

reasoning in implicit invocation languages handler abstraction can be used. For each event, e, a

46

handlers’ specification, (PeH , QeH , εeH), is defined that must be satisfied by its handlers, hi=1...m.

∀i=1...m · hi w (PeH , QeH , εeH) (5.5)

Figure 5.4: Full Delivery at Runtime

In full delivery, the execution of any handler should leave the system in a state in which other

handlers can be executed. Therefore, the precondition, PeH , becomes an invariant that must be kept

by the handlers. That means that the postcondition can be chosen the same as the precondition:

QeH ≡ PeH (5.6)

To reason about the announcement of an event there are two cases that must be considered, when

there are registered handlers and when there are not. When there are registered handlers the an-

nouncement can be reasoned about using the handlers’ specification, (PeH , PeH , εeH). When there

are no registered handlers, the announcement behaves like skip, and can be reasoned about by

(PeH , PeH , {}). The non-deterministic choice between them can be easily computed, and proof

rule 5.7 builds on it.

(II-FD-ANNOUNCER)

(event e {t1 var1, ..., tn varn contractH}) ∈ CT,

contractH = invariant PeH modifies εeH

CT,Γ ` {PeH [ei/vari]} announce e(e1, . . . , en) {PeH [ei/vari]}[εeH [ei/vari]]

(5.7)

47

5.4.2 II/EA Single Delivery Scenarios

The idea in this scenario is that certain blocks of code of a program are considered to trigger events.

The execution of any of these blocks is postponed. Instead a handler for the corresponding event is

invoked and the triggering block is “passed” to it. It depends on the handler to proceed to execute

the original block or not. If there are no registered handlers for the event only the block is executed.

In II/EA single delivery mode an announce construct announces an event and, along with context

information, passes the announced block of code, as shown in Figure 5.5(b).

//@ requires Ps;
//@ modifies εs;
//@ ensures Qs;
s(){
...
{B1}
...
{Bj}
...
{Bn}
...

}

(a) original program

//@ requires Ps;
//@ modifies εs;
//@ ensures Qs;
s(){
...
announce e1(. . .){B1};
...
announce ej(. . .){Bj};
...
announce en(. . .){Bn};
...

}

(b) with events
Figure 5.5: II/EA Single Delivery Mode

In the body of a handler, invoke statements invoke the next handler if any or the announced code

otherwise. This is illustrated in Figure 5.6.

Figure 5.6: II/EA Single Delivery at Runtime

48

The reasoning of an announce statement should consider the specification for any handler, in

case there are registered handlers, and the specification of the particular announced block of code,

in case there are no registered handlers. This particular block of code is known because it is part of

the announce statement that is being reasoned about. The reasoning of an invoke statement in

the body of a handler should consider the specification for any next handler and for any announced

block of code. In this case neither the next handler nor the block of code is known, as the invoke

statement could be in the execution chain for any announcement for the corresponding event. For

doing modular reasoning in II/EA single delivery scenarios it is required an specification that

abstracts all the handlers for an event (handler abstraction) and a specification that abstracts all the

triggering blocks of code for that event (trigger abstraction). Those are the handler’s specification

(PeH , QeH , εeH) and the base-code specification (PeB , QeB , εeB), as depicted in Figure 5.7.

Figure 5.7: II/EA Single Delivery Abstraction

The behavior of each triggering block of code Bi in the original program is characterized by a

corresponding specification (PBi
, QBi

, εBi
). Trigger abstraction requires to choose a base-code

49

specification (PeB , QeB , εeB) that generalizes all the block’s specifications:

∀i=1...n •
(
Bi w (PBi

, QBi
, εBi

)[eik/vark]

)
∧
(

(PBi
, QBi

, εBi
) w (PeB , QeB , εeB)

)
(5.8)

The specification (PeB , QeB , εeB) can be computed as the most specific one that generalizes all of

(PBi
, QBi

, εBi
), that is the greatest lower bound or meet of the lattice formed by them under the

refinement (w) relation, whose value was established by lemma 5.

(PeB , QeB , εeB) = ui=1...n(PBi
, QBi

, εBi
) = (∧i=1...nPi,∨i=1...nQi,∪i=1...nεi) (5.9)

Handler abstraction requires that the body (hi) of each handler refines the handlers specification.

For reasoning about invoke statements inside the body of a handler the non-deterministic choice

between the handlers specification and the announced-code specification is used. So it is actually

the body of the handler proceed-composed with that non-deterministic choice which should refine

the handlers specification.

∀i=1...m · [hi } ((PeH , QeH , εeH)�(PeB , QeB , εeB))] w (PeH , QeH , εeH) (5.10)

There are various ways to establish the handlers’ specification leading to different scenarios.

5.4.2.1 II/EA PtolemyRely Modular Scenario

In PtolemyRely language[55], which is an extension of Ptolemy [54, 7], the handler’s specification

is independent of the base-code specification. Event declarations includes both, handlers specifi-

cation, (PeH , QeH , εeH), and announced-code specification, (PeB , QeB , εeB).

50

Assuming trigger abstraction (5.8) and handler abstraction (5.10), reasoning rules can be for-

mulated. Announce statements are reasoned about as the non-deterministic choice between the

handlers specification and the current announced-code specification.

(II/EA-PTOLEMYRELY-ANNOUNCER)

(event e {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT,

contractB = requires PeB modifies εeB ensures QeB ,

contractH = requires PeH modifies εeH assumes AeH ensures QeH ,

CT,Γ ` {PBj
} Bj {QBj

}[εBj
]

CT,Γ `

{PeH [ei/vari] ∧ PBj
}

announce e(e1, . . . , en) {Bj}

{QeH [ei/vari] ∨QBj
}[

εeB [ei/vari] ∪ εBj

]

(5.11)

For reasoning about invoke statements, the non-deterministic choice between the handlers spec-

ification and the base-code specification is used.

(II/EA-PTOLEMYRELY-INVOKER)

(thunk e) = Γ(next),

(event e {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT,

contractB = requires PeB modifies εeB ensures QeB ,

contractH = requires PeH modifies εeH assumes AeH ensures QeH

CT,Γ `

{(PeH ∧ PeB)[next.vari/vari]}

next.invoke

{(QeH ∨QeB)[next.vari/vari]}[
(εeH ∪ εeB)[next.vari/vari]

]

(5.12)

51

The PtolemyRely approach allows modular reasoning. The specifications in the event declaration

are used to modularly verify handlers and announced-code respectively. It is also flexible, allowing

to have separate specifications for handlers and subjects (base code) [55]. However, the base-code

reasoning is weakened since the reasoning of announce statements is weaker than the reasoning

of the corresponding original code, as clearly (PeH∧PBj
, QeH∨QBj

, εeH∪εBj
) w (PBj

, QBj
, εBj

).

5.4.2.2 II/EA Ptolemy Modular Scenario

In Ptolemy language approach the handlers’ specification is taken to be the same as the base-code

specification:

(PeH , QeH , εeH) = (PeB , QeB , εeB) (5.13)

As pointed out before (5.11), announce statements can be reasoned about as the non-deterministic

choice between the handlers’ specification and the current announced-code specification. Also, be-

cause of trigger abstraction (5.8), Bj w (PeB , QeB , εeB)[ei/vari], then from 5.11 it follows that:

(announce e(. . .){Bj})

w 〈by Rule 5.11〉

(PeH , QeH , εeH)[ei/vari]�(PeB , QeB , εeB)[ei/vari]

= 〈by (PeH , QeH , εeH) = (PeB , QeB , εeB)〉

(PeB , QeB , εeB)[ei/vari]�(PeB , QeB , εeB)[ei/vari]

= 〈by definition of “�” and predicate calculus〉

(PeB , QeB , εeB)[ei/vari]

52

yielding the announce proof rule.

(II/EA-PTOLEMY-ANNOUNCER)

(event e {t1 var1, ..., tn varn contractH}) ∈ CT,

contractH = requires PeB modifies εeB assumes AeB ensures QeB

CT,Γ ` {PeB [ei/vari]}announce e(e1, . . . , en) {Bj}{QeB [ei/vari]}[εeB [ei/vari]]

(5.14)

Invoke statements are reasoned about as the non-deterministic choice between the handlers spec-

ification and the base-code specification, that in this case can be computed as:

(next.invoke)

w 〈by Rule 5.12〉

(PeH , QeH , εeH)�(PeB , QeB , εeB)

= 〈by (PeH , QeH , εeH) = (PeB , QeB , εeB), definition of “�” and predicate calculus〉

(PeB , QeB , εeB)

resulting in the invoke proof rule.

(II/EA-PTOLEMY-INVOKER)

(thunk e) = Γ(next), (event e {t1 var1, ..., tn varn contractH}) ∈ CT,

contractH = requires PeB modifies εeB assumes AeB ensures QeB

CT,Γ `

{PeB [next.vari/vari]}

next.invoke

{QeB [next.vari/vari]}[
εeB [next.vari/vari]

]

(5.15)

53

The handlers are reasoned about using handler abstraction (5.10) and using this scenario assump-

tion (5.13). This is calculated as:

[hi } ((PeH , QeH , εeH)�(PeB , QeB , εeB))] w (PeH , QeH , εeH)

⇔ 〈by 5.13〉

[hi } ((PeB , QeB , εeB)�(PeB , QeB , εeB))] w (PeB , QeB , εeB)

⇔ 〈by definition of “�” and predicate calculus〉

[hi } (PeB , QeB , εeB)] w (PeB , QeB , εeB)

producing the reasoning obligation (5.16) for the handlers.

∀i=1...m · [hi } (PeB , QeB , εeB)] w (PeB , QeB , εeB) (5.16)

In summary, the II/EA Ptolemy scenario unifies handler abstraction and trigger abstraction im-

posing the same specification on handlers and base-code. It allows modular reasoning by using

the specification in the event declaration to modularly verify handlers and announced-code. The

base-code reasoning is weakened as the reasoning of announce statements, (PeB , QeB , εeB), is

weaker than the reasoning of the corresponding original code, (PBj
, QBj

, εBj
), according to the

trigger abstraction adoption, (PBj
, QBj

, εBj
) w (PeB , QeB , εeB). That also makes this reasoning

approach incomplete, as there exist valid programs that cannot be verified.

54

5.4.2.3 II/EA Behavior-Preserving Modular Scenario

As illustrated before (Figure 5.5), in single-delivery events the idea is that certain blocks of code

of a program are converted into event announcements, passing the block of code to the handlers

of the event for its eventual execution. The present scenario is configured with the objective that

the behavior of the original program be preserved after event announcement has been added to

it. For every block Bj that has been reasoned about against its specification, (PBj
, QBj

, εBj
), the

corresponding announce statement should satisfy that specification. From that, the following

computation can be made.

∀j · (announce e(. . .){Bj}) w (PBj
, QBj

, εBj
)[ei/vari]

⇔ 〈by Bj w (PBj
, QBj

, εBj
)[ei/vari] and rule 5.11〉

∀j · [(PeH , QeH , εeH)[ei/vari]�(PBj
, QBj

, εBj
)[ei/vari]] w (PBj

, QBj
, εBj

)[ei/vari]

⇔ 〈by equivalence under substitution〉

∀j · [(PeH , QeH , εeH)�(PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

)

⇔ 〈by Lemma 8〉

∀j · (PeH , QeH , εeH) w (PBj
, QBj

, εBj
)

That is, the specification for the handlers must refine the specification for every announced-block.

∀j · (PeH , QeH , εeH) w (PBj
, QBj

, εBj
) (5.17)

Then, it can be computed as their least upper bound or join, using lemma 6.

(PeH , QeH , εeH) = ti=1...n(PBi
, QBi

, εBi
) = (∨i=1...nPBi

,∧i=1...n(old(PBi
)⇒ QBi

),∩i=1...nεBi
)

(5.18)

55

By trigger abstraction (5.8) (PBj
, QBj

, εBj
) w (PeB , QeB , εeB), then from 5.17 it follows that

(PeH , QeH , εeH) w (PeB , QeB , εeB) (5.19)

Assuming trigger abstraction (5.8), handler abstraction (5.10) and 5.17, the reasoning rules can

be formulated. The announce rule is as follows 5.20. By construction it guarantees behavior

preservation.

(II/EA-BEHAVIORPRESERVING-ANNOUNCER)

(event e {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT,

{PBj
}Bj{QBj

}[εBj
]

CT,Γ ` {PBj
}announce e(e1, . . . , en) {Bj}{QBj

}[εBj
]

(5.20)

From 5.19, lemma 8 implies that [(PeH , QeH , εeH)�(PeB , QeB , εeB)] w (PeB , QeB , εeB). Using this

and the general invoke rule (5.12), it follows that

(next.invoke) w ((PeH , QeH , εeH)�(PeB , QeB , εeB)) w (PeB , QeB , εeB),

as expressed by the following invoke rule (5.21).

(II/EA-BEHAVIORPRESERVING-INVOKER)

(thunk e) = Γ(next),

(event e {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT,

contractB = requires PeB modifies εeB ensures QeB ,

contractH = requires PeH modifies εeH assumes AeH ensures QeH

CT,Γ `

{PeB [next.vari/vari]}

next.invoke

{QeB [next.vari/vari]}[
εeB [next.vari/vari]

]

(5.21)

56

According to 5.10 handlers are reasoned about as [hi } ((PeH , QeH , εeH)�(PeB , QeB , εeB))] w

(PeH , QeH , εeH). In this case that corresponds to [hi } (PeB , QeB , εeB)] w (PeH , QeH , εeH).

This approach is also modular. It eases verification of subjects (original code). It is demanding for

the handlers, as their behavior must refine the behavior of all the blocks of announced code.

5.4.2.4 II/EA Non-Modular Individual Refinement Scenario

Non-modular reasoning requires a case by case analysis, instead of using abstraction. It is more

precise but requires whole-program analysis, and so it is more time consuming. In the case of

II/EA Single Delivery, for reasoning about an event announcement it is required to consider, case

by case, each one of the handlers for the event. One extra consideration that must be taken into

account is that each handler depends on other handlers and on the announced code, because of

invoke statements in its body.

This scenario explores a compromise in which, at each event announcement of the form

announce e(. . .) {Bj}, with Bj w (PBj
, QBj

, εBj
)[ei/vari], every handler hi is reasoned about in

isolation from other handlers, only considering the behavior of the announced code. The handler

is reasoned about against the announced-code specification, so it preserves that behavior.

[bi[vart/nexti.vart] } (PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

), (5.22)

where hi ≡
(
mi(te nexti){bi}

)

The following lemma extends this individual refinement property to a chain of handlers.

57

Lemma 10 (Handler chain refinement).

(
∀i=1..m : hi ≡

(
mi(te nexti){bi}

)
•

[bi[vart/nexti.vart] } (PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

)
)

⇒
(

[b1[vart/next1.vart] } · · ·} bk[vart/nextk.vart] } (PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

)
)

for any permutation (b1, b2, . . . , bk) of k out of m handlers

(10.1)

(10.2)

Proof: (By induction on the number of the handlers: k)

Case 1. [k = 1]

b1[vart/next1.vart] } (PBj
, QBj

, εBj
)

w 〈by hypothesis, with [h1] a permutation of 1 out of the m handlers〉

(PBj
, QBj

, εBj
)

Case 2. [assume for k and prove for k + 1. Let (h1, h2, . . . , hk, hk+1) be a permutation of k + 1

out of m handlers.]

b1[vart/next1.vart] } b2[vart/next2.vart] } · · ·} bk+1[vart/nextk+1.vart] } (PBj
, QBj

, εBj
)

= 〈by definition of composition }〉

b1[vart/next1.vart] } [b2[vart/next2.vart] } · · ·} bk+1[vart/nextk+1.vart] } (PBj
, QBj

, εBj
)]

w 〈by the induction hypothesis over (h2 . . . hk+1) and monotonicity of refinement (w) [3, 45]〉

b1[vart/next1.vart] } (PBj
, QBj

, εBj
)

w 〈by hypothesis 10.1 〉

(PBj
, QBj

, εBj
)

58

Lemma 11 (Handler refinement in base code).

(
∀i=1..m : hi ≡

(
mi(te nexti){bi}

)
•

[bi[vart/nexti.vart] } (PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

)
)

⇒
(

[b1[et/next1.vart] } · · ·} bk[et/nextk.vart] }Bj] w (PBj
, QBj

, εBj
)[et/vart]

)
for any permutation (b1, b2, . . . , bk) of k out of m handlers

(11.1)

(11.2)

Proof: (Handler refinement in base code)

b1[et/next1.vart] } · · ·} bk[et/nextk.vart] }Bj

w 〈by Bj w (PBj
, QBj

, εBj
)[et/vart]]〉

b1[et/next1.vart] } · · ·} bk[et/nextk.vart] } (PBj
, QBj

, εBj
)[et/vart]

= 〈by application of mutually cancelling substitutions [vart/et] and [et/vart]〉(
b1[vart/next1.vart] } · · ·} bk[vart/nextk.vart] } (PBj

, QBj
, εBj

)
)

[et/vart]

w 〈by lemma 10〉

(PBj
, QBj

, εBj
)[et/vart]

According to the semantics of announce, the following holds:

(announce e(e1, .., en) {Bj}) ≡

Bj, there are no handlers

[b1[et/next1.vart] } · · ·} bk[et/nextk.vart] }Bj], there are handlers

It can be shown that (announce e(e1, .., en) {Bj}) w (PBj
, QBj

, εBj
)[et/vart]. In the first case it

follows from Bj w (PBj
, QBj

, εBj
)[et/vart]. In the second case it follows from lemma 11.

59

This is expressed in the following reasoning rule for announce statement, where the function

handlersOf() returns the set of handlers for an event.

(II/EA-INDIVIDUALREFINEMENT-ANNOUNCER)

(event e {t1 var1, ..., tn varn}) ∈ CT,

CT,Γ ` {PBj [et/vart]} Bj {QBj [et/vart]}[εBj [et/vart]],

∀hi ∈ handlersOf(e) : hi ≡
(
mi(te nexti){bi}

)
•

CT,Γ ` [bi[vart/nexti.vart] } (PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

)

CT,Γ ` {PBj [et/vart]} announce e(e1, . . . , en) {Bj} {QBj [et/vart]}[εBj [et/vart]]

(5.23)

An invoke statement is always executed as part of the body of a handler, in the execution chain

for an announcement of the form announce e(e1, .., en) {Bj} for an event e. The semantics of

invoke, is such that the following holds:

(next.invoke)[et/next.vart] ≡

Bj, there are no more handlers.

[b1[et/next1.vart] } · · ·} bk′[et/nextk′ .vart] }Bj], pending handlers.

(h1, . . . , hk′) is a permutation of k′ < k of the k handlers for e.

From that, it follows that (next.invoke)[vart/next.vart] w (PBj
, QBj

, εBj
). In the first case,

(next.invoke)[et/next.vart] ≡ Bj

=⇒ 〈by Bj w (PBj
, QBj

, εBj
)[et/vart]]〉

(next.invoke)[et/next.vart] w (PBj
, QBj

, εBj
)[et/vart]]

=⇒ 〈by applying substitution [vart/et] in both sides〉(
(next.invoke)[et/next.vart]

)
[vart/et]

w
(

(PBj
, QBj

, εBj
)[et/vart])

)
[vart/et]

=⇒ 〈by composing multiple substitutions〉

(next.invoke)[vart/next.vart] w (PBj
, QBj

, εBj
)

60

In the second case,

(next.invoke)[et/next.vart] ≡ [b1[et/next1.vart] } · · ·} bk′[et/nextk′ .vart] }Bj]

=⇒ 〈by lemma 11〉

(next.invoke)[et/next.vart] w (PBj
, QBj

, εBj
)[et/vart]

=⇒ 〈by applying substitution [vart/et] in both sides〉(
(next.invoke)[et/next.vart]

)
[vart/et]

w
(

(PBj
, QBj

, εBj
)[et/vart]

)
[vart/et]

=⇒ 〈by composing multiple substitutions〉

(next.invoke)[vart/next.vart] w (PBj
, QBj

, εBj
)

This is expressed in the following reasoning rule for invoke statement.

(II/EA-INDIVIDUALREFINEMENT-INVOKER)

Γ(next) = e, (event e {t1 var1, ..., tn varn}) ∈ CT,

announcedBlock(next) = Bj,

announcedExpressions(next) = (e1, .., en),

{PBj [et/vart]} Bj {QBj [et/vart]}[εBj [et/vart]],

∀hi ∈ handlersOf(e) : hi ≡
(
mi(te nexti){bi}

)
•

CT,Γ ` [bi[vart/nexti.vart] } (PBj
, QBj

, εBj
)] w (PBj

, QBj
, εBj

)

CT,Γ ` {PBj
} next.invoke[vart/next.vart] {QBj

}[εBj
]

(5.24)

The functions announcedBlock(next) and announcedExpressions(next) returns the informa-

tion in the closure for the most recent announcement of for event e: the announced code and the

announced expressions respectively.

61

This scenario is not modular because at each announcement all the handlers for the corresponding

event must be reasoned about. However it keeps the original behavior and only requires that each

handler be reasoned about in isolation, without considering all the possible orders of execution.

5.5 AO Scenarios

In AO scenarios the blocks {Bi} in the reference scenario (Fig. 5.1) correspond to shadows of join

points, that is, actual pieces of code considered to trigger the join point events [29]. In Figure 5.8

the highlighted lines on the left (lines 7,9 and 11) represent shadows of pointcuts defined on the

right (lines 16 and 22).

1 class C{ ...
2 //@ requires Ps;
3 //@ modifies εs;
4 //@ ensures Qs;
5 s(){
6 ...
7 {B1}
8 ...
9 {Bj}

10 ...
11 {Bn}
12 ...
13 } ...
14 }

15 aspect A{
16 pointcut pca() : ...; //pc expression
17 around pca(){ // advice
18 ...
19 proceed();
20 ...
21 }
22 pointcut pcb() : ...; //pc expression
23 around pcb(){ // advice
24 ...
25 proceed();
26 ...
27 }
28 }

Figure 5.8: AO Scenario

Figure 5.9 presents a concrete AO example. A shadow could be an assignment statement (lines 7

and 9), matching a field-set join point (line 44), a method invocation statement (line 8), correspond-

ing to a method-call join point (line 29) or even a complete method body (line 18), corresponding

to a method-execution join point (line 36).

62

1 class BaseCode {
2 int a;
3 PrintStream out=
4 System.out;
5
6 public void run(){
7 a=1;
8 methodA(a);
9 a=2;

10 methodB(a);
11 }
12
13 void methodA(int f){
14 out.println("Method A");
15 }
16
17 void methodB(int f){
18 out.println("Method B");
19 }
20
21 static void main(
22 String[] args){
23 new BaseCode().run();
24 }
25 }

26 aspect AnAspect {
27 PrintStream out=System.out;
28 pointcut callPointcut(int p):
29 call(void *.methodA(int))&&args(p);
30 void around(int p):callPointcut(p){
31 out.println("Start Call: "+p);
32 proceed(p);
33 out.println("End Call");
34 }
35 pointcut execPointcut(int p):
36 execution(void *.methodB(int))
37 &&args(p);
38 void around(int p):execPointcut(p){
39 out.println("Start Exec.");
40 proceed(p);
41 out.println("End Exec.");
42 }
43 pointcut setPointcut(int p):
44 set(int BaseCode.a)&&args(p);
45 void around(int p):setPointcut(p){
46 out.println("Start Set: "+p);
47 proceed(p);
48 out.println("End Set");
49 }
50 }

Figure 5.9: AO Shadows

In around advice, pieces of code from aspects (lines 30-34, 38-42 and 45-49) are executed instead

of the blocks of base code shadowed by the corresponding pointcuts. In the body of a piece

of advice, a proceed instruction (lines 32, 40 and 47) executes the original shadowed block, or

other pieces of advice shadowing the same block. Once the shadows of the ponintcuts have been

identified, the pieces of advice are woven into the corresponding places. At runtime, the chain

of pieces of advice matching a shadowed block of code is executed, according to the proceed

instructions in their bodies. This is illustrated in Figure 5.10.

63

Figure 5.10: AO at Runtime

This AO scenario is similar to the previous II scenarios. The main difference is that here the

events are considered to be triggered not explicitly by announce statements but implicitly by

the execution of the shadows picked by pointcuts. An analogy can be made between AO and

II scenarios [62]. The pointcut declaration in AO corresponds to the event declaration in II. The

shadows in AO corresponds to the blocks of announced code in II. The pieces of advice correspond

to the handlers in II. Proceed instructions in AO correspond to invoke instructions in II.

Due to the similarities between AO and II, reasoning about AO scenarios can be tackled by us-

ing II strategies, following a two-phase approach. First, for each join point in the base code all

matching pointcuts are identified, and all the pieces of advice for those pointcuts are considered

the handlers for the join point event. Then the reasoning strategies used for the previous single

delivery II/EA scenarios can be used. For doing modular reasoning, specification features like the

ones in PtolemyRely can be applied. A pointcut definition, e, can be annotated with the specifi-

cation, (PeB , QeB , εeB), that matching join point shadows must satisfy and with the specification,

(PeH , QeH , εeH), that every implementing piece of advice should refine. The specifications for the

shadowed blocks of code depend on the type of join points. For method-call and method-execution

join points the specification of the corresponding method can be used, (Pm, Qm, εm). For field-set

join points (x = e) the usual assignment specification (P [e/x], P, {x}) can be used; and so on.

64

CHAPTER 6: EVALUATION

The evaluation of the results from this work, as a solution to the proposed research problem, is

performed by various means.

The theorems about the soundness of the proof rules that apply in each scenario constitute a first

evaluation mechanism. Also case studies involving the reasoning scenarios are presented in or-

der to assess the usefulness of the corresponding proof rules. These case studies correspond to

small programs that are manually reasoned about using the proof rules that apply in each case.

The programs were selected considering their appropriateness to show the pros and cons of each

configuration of tradeoffs.

6.1 Soundness of Scenarios’ Proof Rules

In this section the soundness of the essential proof rules for the different scenarios is demonstrated.

The soundness for standard object oriented rules is assumed and can be found in various sources

[1, 18, 50, 39].

6.1.1 Single Delivery II: PtolemyRely

A small-step operational semantics for PtolemyRely [55] is presented. Using this semantics the

soundness of the corresponding proof rules is then demonstrated. This semantics is based on

the original semantics of Ptolemy [53] and some adaptations of it [6, 4]. The execution state is

represented by a configuration 〈C[c], S,Π, A〉, containing the program (C[c]) and a command (c)

to execute, a store representing the current memory state (S), a store typing (Π) and the list of

65

active handlers (A). The semantics is expressed as a evaluation relation between configurations,

meaning that executing one step of statement causes a transition from one configuration to another.

We distinguish between methods, m, and procedures, p. Methods return a value and are side-effect

free, and then can be used in side-effect free expressions. Procedures do not return a value and can

have side effects, and then can be used as commands but not in expressions.

Evaluation contexts for expressions (E) and commands (C) :
E ::= − | E.m(e . . .) | v.m(v . . .E e . . .) | E.f | cast t (E)
C ::= − | E.f = e | v.f = E | x = E | E.p(e . . .) | v.p(v . . .E e . . .)

| if(E) {c} else {c} | while(E) {c} | t var = E; c | C; c
| announce ev(v . . .E e . . .){c} | invoke(E)
| register(E) | unregister(E)

Evaluation relation: ↪→: 〈C[c], S,Π, A〉 ↪→ 〈C[c′], S ′,Π′, A′〉

Domains:
Σ ::= 〈C[c], S,Π, A〉 “Configurations”
S ::= {lock 7→ svk}k ∈ K “Stores”
v ::= null | loc “Values”
sv ::= or | ec “Storable Values”
or ::= [C.F] “Object Records”
F ::= {fk 7→ vk}k ∈ K “Field Maps”
ρ ::= {vark 7→ vk}k ∈ K “Environments”
ec ::= eClosure(H, c, ρ) “Event Closures”
H ::= H + h | • “Handler Record List”
h ::= 〈loc,m〉 “Handler Record”
A ::= {evk 7→ Ok}k ∈ K “Active Objects Map”
O ::= loc+O | • “Active Objects List”

where K is finite.

Figure 6.1: PtolemyRely’s evaluation contexts and configuration.

A value v is either a location loc or null. The store maps locations to storable values sv, which

are either objects records or or event closures ec. An object record has a class name C and a map

F from fields to values. An event closure eClosure(H, c, ρ) contains an ordered list of handlers

H , a command c, that corresponds to a block of announced-code, and an environment ρ. A handler

record h contains a location loc, which points to an observer object, and a method name m.

66

The dynamic semantic rules of PtolemyRely are shown in Figure 6.2. The class table CT is the set

of all class and event type declarations in the program.

(PTOLEMYRELY-ANNOUNCES)
(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT,

H = handlersOf(ev, A), ρ = {vari 7→ vi}ni=1, loc /∈ dom(S),
S ′ = S] (loc 7→ eClosure(H, c, ρ)),
Π ′ = Π] {loc : var thunk ev},

A′ = A

CT ` 〈C[announce ev(v1, ..., vn){c}], S,Π,A〉 ↪→ 〈C[invoke loc], S ′, Π ′, A′〉

(PTOLEMYRELY-INVOKEDONES)
eClosure(•, c, ρ) = S(loc)

CT ` 〈C[invoke loc], S,Π,A〉 ↪→ 〈C[c], S,Π,A〉

(PTOLEMYRELY-INVOKES)
(thunk ev) = Π(loc),

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT,
eClosure(H, c, ρ) = S(loc), H = 〈loch,mh〉+H ′,

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh), loc
′ /∈ dom(S),

S ′ = S] (loc′ 7→ eClosure(H ′, c, ρ)),
Π ′ = Π] {loc′ : var thunk ev},

A′ = A

CT ` 〈C[invoke loc], S,Π,A〉 ↪→ 〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′/
varh1

, loch/
this

]
]
, S ′, Π ′, A′〉

Figure 6.2: PtolemyRely’s Semantics.

The (PTOLEMYRELY-ANNOUNCES) rule creates a closure that includes the list of handlers for the

event, the command that represents the block of announced code and an environment mapping the

context variables to its actual values. Then it stores that closure in a fresh location loc and starts

running this closure by invoking that location. The (PTOLEMYRELY-INVOKEDONES) rule applies

when there are no more handlers in the closure, and so it executes the command corresponding to

the originally announced block of code. The (PTOLEMYRELY-INVOKES) rule executes the body

ch of the first handler in the closure. First, it puts the rest of the closure (remaining handlers and

same environment and announced-code command) into a fresh location loc′, and substitutes in that

67

body ch any reference varh1 to the original closure by a reference to the new closure loc′. In this

way any invoke statement in the changed body c′h will execute the next handler, which will be

the first one in the new closure. Every reference to a context field varh1 .vari is substituted by

the corresponding field in the environment ρ(vari). It also substitutes any reference to this by a

reference to the observer object loch containing the handler method.

Before demonstrating the soundness of the proof rules 5.11 and 5.12 for PtolemyRely, some defini-

tions, axioms and theorems are presented. In the PotlemyRely proof system programs are regarded

as acting upon variables, and so a typing context Γ is used. Furthermore, in the semantics of Ptole-

myRely the programs are regarded as manipulating locations on a store, instead of variables, and

so a store typing Π is used.

Definition 12. (Valid States)

A state (S,Π, A), where S is a store, Π a typing environment and A a list of handlers, is valid,

denoted as valid(S,Π, A), iff:(
(dom(S) = dom(Π)) ∧ (∀ loc ∈ dom(S) • Π(loc) = typeof(S(loc)))

)
∧
(
∀ loc ∈ dom(S), ev ∈ CT •

((
(Π(loc) = (thunk ev)) ∧ (S(loc) = eClosure(H, c, ρ))

)
⇒
(
∀ 〈loch,mh〉 ∈ H • loch ∈ A

)))
Definition 13. (Changed Locations)

The set of changed locations from store S to store S ′ is:

∆(S, S ′) = {l ∈ dom(S) • S(l) 6= S ′(l)}

Definition 14. (Semantic Refinement)

A statement, c, refines specification, (P,Q, ε), denoted as c ẘ (P,Q, ε), iff

 ∀ S,Π, A : valid(S,Π, A) •

〈C[c], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉 =⇒
(
(JP KS ⇒ JQKS,S′) ∧ (∆(S, S ′) ⊆ JεKS)

)

68

Reasoning about handlers is more involved. The body of a handler method mh, that belongs

to a handler object located at a given location loch, may have invoke statements on it. Every

one of them will invoke the same closure eClosure(H, c, ρ) stored at certain location loc of

the store S. As the execution of the body of the handler proceeds it will reach each one of the

invocations at a different configuration 〈C[invoke loc], Sk, Πk, Ak〉. If the execution of each

one of these invocations satisfies a given specification (P,Q, ε), then, for reasoning purposes,

this specification can substitute the actual invocations in the handler, that is called their proceed-

composition 〈loch,mh〉 } (P,Q, ε). The handler method, with this substitution, can be reasoned

about using its expected specification (P ′, Q′, ε′). This is formalized in the following definition.

Definition 15. (Semantic Refinement Of Proceed-Composition)

A handler 〈loch,mh〉 proceed-composed with a specification (P,Q, ε) refines another specification

(P ′, Q′, ε′), denoted as 〈loch,mh〉} (P,Q, ε) ẘ (P ′, Q′, ε′), iff ∀ S,Π, A : valid(S,Π, A) •

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

[Ch.Fh] = S(loch)
)
∧
(

(th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(t1 var1, ..., tn varn) = varsOf(ev, CT)
)
∧(

(thunk ev) = Π(loc),eClosure(H, c, ρ) = S(loc)
)
∧

∀Sk,Πk, Ak,Ck s.t. Sk(loc) = S(loc),Πk(loc) = Π(loc), Ak = A •((
〈Ck[invoke loc], Sk, Πk, Ak〉 ↪→∗ 〈Ck[skip], S

′
k, Π

′
k, A

′
k〉
)

=⇒
(

(JP[ρ(vari)/vari]ni=1
KSk
⇒ JQ[ρ(vari)/vari]ni=1

KSk,S
′
k
)

∧ (∆(Sk, S
′
k) ⊆ Jε[ρ(vari)/vari]ni=1

KSk
)
))

=⇒

(
〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′/
varh1

, loch/
this

]
]
, S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
=⇒

(
(JP ′[ρ(vari)/vari]ni=1

KS ⇒ JQ′[ρ(vari)/vari]ni=1
KS,S′) ∧ (∆(S, S ′) ⊆ Jε′[ρ(vari)/vari]ni=1

KS)
)

69

The function varsOf(ev, CT) is defined as follows:

(t1 var1, ..., tn varn) = varsOf(ev, CT) ≡

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT
(6.1)

We assume trigger abstraction (5.8), where every piece of announced code e satisfies the base code

specification, (PeB , QeB , εeB), given in the event declaration, ev. That is:

Axiom 16 (Announced code satisfies specification).

∀ S,Π, A : valid(S,Π, A) •

(
(thunk ev) = Π(loc)

)
∧(

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT
)
∧(

contractB = requires PeB modifies εeB ensures QeB

)
∧(

contractH = requires PeH modifies εeH assumes AeH ensures QeH

)
∧(

eClosure(H, c, ρ) = S(loc)
)

=⇒

[
c ẘ (PeB , QeB , εeB)[ρ(vari)/vari]ni=1

]

We also assume handler abstraction (5.10), where every handler body proceed-composed with the

non-deterministic choice of the handlers and announced-code specifications, satisfies the handlers

specification: [eh} ((PeH , QeH , εeH)�(PeB , QeB , εeB))] w (PeH , QeH , εeH). That is, if the body eh

of a handler method mh is executed upon a handler object(at loch) and every invoke statement

on it, when executed upon an event closure (at loc), satisfies the non-deterministic choice between

the handlers and base code specifications for the corresponding event then that handler body eh

satisfies the handlers specification for the event.

70

Axiom 17 (Handlers satisfy specification).

∀ S,Π, A : valid(S,Π, A) •

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT
)
∧(

contractB = requires PeB modifies εeB ensures QeB

)
∧(

contractH = requires PeH modifies εeH assumes AeH ensures QeH

)

=⇒
[
[〈loch,mh〉} ((PeH , QeH , εeH)�(PeB , QeB , εeB))] ẘ (PeH , QeH , εeH)

]

We use axioms 16 and 17 to prove the following theorem.

Theorem 18 (Invoke Reasoning). For all valid states (S,Π, A) the following holds: given an

event, ev, and an closure for it, stored at a location loc, eClosure(H, c, ρ) = S(loc), such that

the expression c satisfies the specification (Pc, Qc, εc) (besides satisfying the event’s base-code

specification), then an invoke statement of the form invoke loc refines the non-deterministic

choice of the handlers and base-code specifications for ev and also refines the non-deterministic

choice of the handlers specification for ev and the given specification (Pc, Qc, εc). That is:

(
(thunk ev) = Π(loc)

)
∧(

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT
)
∧(

contractB = requires PeB modifies εeB ensures QeB

)
∧(

contractH = requires PeH modifies εeH assumes AeH ensures QeH

)
∧(

eClosure(H, c, ρ) = S(loc)
)
∧(

c ẘ (Pc, Qc, εc)
)

(18.1)

(18.2)

(18.3)

(18.4)

(18.5)

(18.6)

71

=⇒

(
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

⇒

(
J(PeH ∧ PeB)[ρ(vari)/vari]ni=1

KS ⇒ J(QeH ∨QeB)[ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεeB [ρ(vari)/vari]ni=1

KS)
)
∧(

J(PeH [ρ(vari)/vari]ni=1
∧ Pc)KS ⇒ J(QeH [ρ(vari)/vari]ni=1

∨Qc)KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεcKS)

)

(18.7)

Proof: [by induction over the length of the list of handlers |H|]

Case 1. [|H| = 0 i.e. H = •]

〈by 18.7〉[
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

〈by hypothesis 18.1, 18.5 and case hypothesis〉
(
eClosure(•, c, ρ) = S(loc)

)
∧(

〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by (PTOLEMYRELY-INVOKEDONES) semantic rule and transitivity of ↪→ 〉
(
〈C[invoke loc], S,Π,A〉 ↪→ 〈C[c], S,Π,A〉

)
∧(

〈C[c], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by axiom 16: c ẘ (PeB, QeB, εeB), hypothesis 18.6: c ẘ (Pc, Qc, εc) and definition 14 〉

72

(
JPeB [ρ(vari)/vari]ni=1

KS ⇒ JQeB [ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ JεeB [ρ(vari)/vari]ni=1
KS
)
∧(

JPcKS ⇒ JQcKS,S′

)
∧(

∆(S, S ′) ⊆ JεcKS
)

=⇒ 〈by predicate calculus and set theory〉

(
J(PeH ∧ PeB)[ρ(vari)/vari]ni=1

KS ⇒ J(QeH ∨QeB)[ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεeB [ρ(vari)/vari]ni=1

KS
)
∧(

J(PeH [ρ(vari)/vari]ni=1
∧ Pc)KS ⇒ J(QeH [ρ(vari)/vari]ni=1

∨Qc)KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεcKS

)

Case 2. [induction: H = 〈loch,mh〉+H ′′, assume for H ′′ and prove for H]

〈by 18.7〉[
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

〈by case hypothesis and 18.1, 18.5 and eClosure well-formedness 〉
(
H = 〈loch,mh〉+H ′′

)
∧(

〈loch,mh〉 ∈ handlersOf(ev, A)
)
∧(

〈E[invoke loc], S,Π,A〉 ↪→∗ 〈E[skip], S ′, Π ′, A′〉
)

=⇒ 〈by 18.1, 18.2, 18.5, (PTOLEMYRELY-INVOKES) semantic rule and transitivity of ↪→ 〉

73

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

loc′′ /∈ dom(S)
)
∧(

Π ′′ = Π] {loc′′ : var thunk ev}
)
∧(

S ′′ = S] (loc′′ 7→ eClosure(H ′′, c, ρ))
)
∧(

A′′ = A
)
∧(

〈C[invoke loc], S,Π,A〉 ↪→ 〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉

)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

=⇒ 〈by construction of loc′′, S ′′, Π′′ and H ′′〉

(
〈loch,mh〉 ∈ handlersOf(ev)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(thunk ev) = Π ′′(loc′′)
)
∧
(
eClosure(H ′′, c, ρ) = S ′′(loc′′)

)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

=⇒ 〈by the inductive hypothesis applied to every [invoke loc′′] in ch〉

(
〈loch,mh〉 ∈ handlersOf(ev)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(thunk ev) = Π ′′(loc′′)
)
∧
(
eClosure(H ′′, c, ρ) = S ′′(loc′′)

)
∧

∀ Sk,Πk, Ak,Ck s.t. Sk(loc
′′) = S ′′(loc′′),Πk(loc

′′) = Π′′(loc′′), Ak = A′′ •((
〈Ck[invoke loc′′], Sk, Πk, Ak〉 ↪→∗ 〈Ck[skip], S

′
k, Π

′
k, A

′
k〉
)

⇒
(

(J(PeH ∧ PeB)[ρ(vari)/vari]ni=1
KSk
⇒ J(QeH ∨QeB)[ρ(vari)/vari]ni=1

KSk,S
′
k
) ∧

(∆(Sk, S
′
k) ⊆ JεeH [ρ(vari)/vari]ni=1

KSk
∪ JεeB [ρ(vari)/vari]ni=1

KSk
)
))

∧

(
〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

74

=⇒ 〈by 18.2, 18.3, 18.4, axiom 17 and definition 15〉
(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JQeH [ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)

=⇒ 〈by construction of S ′′〉

(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JQeH [ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)
∧(

JPeH [ρ(vari)/vari]ni=1
KS ⇔ JPeH [ρ(vari)/vari]ni=1

KS′′

)
∧(

JQeH [ρ(vari)/vari]ni=1
KS,S′ ⇔ JQeH [ρ(vari)/vari]ni=1

KS′′,S′

)
∧(

dom(S) ⊆ dom(S ′′)
)
∧(

JεeH [ρ(vari)/vari]ni=1
KS = JεeH [ρ(vari)/vari]ni=1

KS′′

)

=⇒ 〈by predicate calculus, definition of ∆ and set theory〉
(
JPeH [ρ(vari)/vari]ni=1

KS ⇒ JQeH [ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS
)

=⇒ 〈by predicate calculus and set theory〉

(
J(PeH ∧ PeB)[ρ(vari)/vari]ni=1

KS ⇒ J(QeH ∨QeB)[ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεeB [ρ(vari)/vari]ni=1

KS
)
∧(

J(PeH [ρ(vari)/vari]ni=1
∧ Pe)KS ⇒ J(QeH [ρ(vari)/vari]ni=1

∨Qe)KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεeKS

)

Using theorem 18 it is easy to demonstrate the soundness of the proof rules for PtolemyRely. For

the (PTOLEMYRELY-INVOKES) rule, according to 5.12 we need to prove the following:

75

Corollary 19 (PtolemyRely Invoke Rule Soundness).

∀ S,Π, A : valid(S,Π, A) •

(
(thunk ev) = Π(loc)

)
∧(

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT
)
∧(

contractB = requires PeB modifies εeB ensures QeB

)
∧(

contractH = requires PeH modifies εeH assumes AeH ensures QeH

)
∧(

eClosure(H, c, ρ) = S(loc)
)

(19.1)

(19.2)

(19.3)

(19.4)

(19.5)

=⇒

(
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
=⇒

(
(J(PeH ∧ PeB)[ρ(vari)/vari]ni=1

KS ⇒ J(QeH ∨QeB)[ρ(vari)/vari]ni=1
KS,S′) ∧

(∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεeB [ρ(vari)/vari]ni=1

KS)
)

(19.6)

Proof: [PtolemyRely Invoke Rule Soundness]

The proof follows immediately from Theorem 18 using (Pc, Qc, εc) = (PeB, QeB, εeB),

which is satisfied by c, according to axiom 16

For the (PTOLEMYRELY-ANNOUNCES) rule, according to 5.11 we need to prove the following:

Corollary 20 (PtolemyRely Announce Rule Soundness).

∀ S,Π, A : valid(S,Π, A) •

76

(
(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT

)
∧(

contractB = requires PeB modifies εeB ensures QeB

)
∧(

contractH = requires PeH modifies εeH assumes AeH ensures QeH

)
∧(

Je1KS = v1, . . . , JenKS = vn

)
∧(

c ẘ (Pc, Qc, εc)
)

(20.1)

(20.2)

(20.3)

(20.4)

(20.5)

=⇒

(
〈C[announce ev(e1, ..., en){c}], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
=⇒

(
(J(PeH [vi/vari]ni=1

∧ Pc)KS ⇒ J(QeH [vi/vari]ni=1
∨Qc)KS,S′) ∧

(∆(S, S ′) ⊆ JεeH [vi/vari]ni=1
KS ∪ JεcKS)

)

(20.6)

(20.7)

Proof: [PtolemyRely Announce Rule Soundness]

〈by 20.6〉[
〈C[announce ev(e1, ..., en){c}], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

=⇒ 〈by evaluation order imposed by evaluation contexts and 20.4 〉
(
〈C[announce ev(e1, ..., en){c}], S,Π,A〉 ↪→∗

〈C[announce ev(v1, ..., vn){c}], S,Π,A〉
)
∧(

〈C[announce ev(v1, ..., vn){c}], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A〉
)

=⇒ 〈by (PTOLEMYRELY-ANNOUNCES) rule 〉

77

(
H = handlersOf(ev, A)

)
∧
(
ρ = {vari 7→ vi}ni=1

)
∧(

loc′′ /∈ dom(S)
)
∧(

S ′′ = S] (loc′′ 7→ eClosure(H, c, ρ))
)
∧(

Π ′′ = Π] {loc′′ : var thunk ev}
)
∧(

A′′ = A
)
∧(

〈C[invoke loc′′], S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by 20.1, 20.2, 20.3, 20.5 〉

(
(thunk ev) = Π ′′(loc′′)

)
∧(

(event ev {t1 var1, ..., tn varn relies contractB contractH}) ∈ CT
)
∧(

contractB = requires PeB modifies εeB ensures QeB

)
∧(

contractH = requires PeH modifies εeH assumes AeH ensures QeH

)
∧(

eClosure(H, c, ρ) = S ′′(loc′′)
)
∧(

c ẘ (Pc, Qc, εc)
)
∧(

〈C[invoke loc′′], S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by theorem 18〉

(
J(PeH ∧ PeB)[ρ(vari)/vari]ni=1

KS′′ ⇒ J(QeH ∨QeB)[ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′ ∪ JεeB [ρ(vari)/vari]ni=1

KS′′

)
∧(

J(PeH [ρ(vari)/vari]ni=1
∧ Pc)KS′′ ⇒ J(QeH [ρ(vari)/vari]ni=1

∨Qc)KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′ ∪ JεcKS′′

)

=⇒ 〈by predicate calculus〉
(
J(PeH [ρ(vari)/vari]ni=1

∧ Pc)KS′′ ⇒ J(QeH [ρ(vari)/vari]ni=1
∨Qc)KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′ ∪ JεcKS′′

)

78

=⇒ 〈by construction of S ′′〉

(
J(PeH [ρ(vari)/vari]ni=1

∧ Pc)KS′′ ⇒ J(QeH [ρ(vari)/vari]ni=1
∨Qc)KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′ ∪ JεcKS′′

)
∧(

JPeH [ρ(vari)/vari]ni=1
KS ⇔ JPeH [ρ(vari)/vari]ni=1

KS′′

)
∧(

JQeH [ρ(vari)/vari]ni=1
KS,S′ ⇔ JQeH [ρ(vari)/vari]ni=1

KS′′,S′

)
∧(

JPcKS ⇔ JPcKS′′

)
∧

JQcKS,S′ ⇔ JQcKS′′,S′

)
∧(

dom(S) ⊆ dom(S ′′)
)
∧(

JεeH [ρ(vari)/vari]ni=1
KS = JεeH [ρ(vari)/vari]ni=1

KS′′

)
∧(

JεcKS = JεcKS′′

)

=⇒ 〈by predicate calculus, definition of ∆ and set theory〉
(
J(PeH [ρ(vari)/vari]ni=1

∧ Pc)KS ⇒ J(QeH [ρ(vari)/vari]ni=1
∨Qc)KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS ∪ JεcKS

)

=⇒ 〈by ρ(vari) = vi〉
(
J(PeH [vi/vari]ni=1

∧ Pc)KS ⇒ J(QeH [vi/vari]ni=1
∨Qc)KS,S′

)
∧(

∆(S, S ′) ⊆ JεeH [vi/vari]ni=1
KS ∪ JεcKS

)

6.1.2 Full Delivery II

In full-delivery the semantics of an event announcement is that every registered handler for the an-

nounced event, if any, is executed sequentially. It is similar to a while loop whose body executes

79

a different handler in every iteration. The dynamic semantics rules are shown in Figure 6.3.

(FULLDELIVERY-ANNOUNCES)
(event ev {t1 var1, ..., tn varn contractH}) ∈ CT,

H = handlersOf(ev, A), ρ = {vari 7→ vi}ni=1, loc /∈ dom(S),
S ′ = S] (loc 7→ eClosure(H, ρ)),
Π ′ = Π] {loc : var thunk ev},

A′ = A

CT ` 〈C[announce ev(v1, ..., vn){c}], S,Π,A〉 ↪→ 〈C[invoke loc], S ′, Π ′, A′〉

(FULLDELIVERY-INVOKEDONES)
eClosure(•, ρ) = S(loc)

CT ` 〈C[invoke loc], S,Π,A〉 ↪→ 〈C[skip], S,Π,A〉

(FULLDELIVERY-INVOKES)
(thunk ev) = Π(loc), (event ev {t1 var1, ..., tn varn contractH}) ∈ CT,

eClosure(H, ρ) = S(loc), H = 〈loch,mh〉+H ′,
[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh), loc

′ /∈ dom(S),
S ′ = S] (loc′ 7→ eClosure(H ′, ρ)),
Π ′ = Π] {loc′ : var thunk ev},

A′ = A

CT ` 〈C[invoke loc], S,Π,A〉 ↪→ 〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loch/
this

]
]
; invoke loc′], S ′, Π ′, A′〉

(FULLDELIVERY-SKIP)S

CT ` 〈C[skip; c], S,Π,A〉 ↪→ 〈C[c], S,Π,A〉

Figure 6.3: Full Delivery Semantics.

As all registered handlers are mandatorily executed, no surface statement for next-handler invo-

cation (invoke or proceed) is required. There is no announced-code to proceed to, so event

closures do not consider it, and only includes the list of handler methods and an environment rep-

resenting the context variables: ec ::= eClosure(H, ρ). The (FULLDELIVERY-ANNOUNCES)

rule creates a closure that includes the list of handlers for the event and an environment map-

ping the context variables to its actual values. Then it stores that closure in a fresh location loc

and starts running this closure by invoking that location. The (FULLDELIVERY-INVOKEDONES)

80

rule applies when there are no more handlers in the closure; it just skips. The (FULLDELIVERY-

INVOKES) rule evaluates the invocation (invoke) of a location into the execution of the body

ch of the first handler in the closure at that location, followed by another invoke statement to

execute the rest of the handlers. Once the first handler is taken, the rest of the closure (remaining

handlers and same environment) is stored into a fresh location loc′. Every reference to a context

field varh1 .vari is substituted by the corresponding field in the environment ρ(vari). It also sub-

stitutes any reference to this by a reference to the observer object loch containing the handler

method.

We assume handler abstraction (5.5, 5.6): handlers satisfy their invariant: ch w (PeH , PeH , εeH).

Axiom 21 (Handlers satisfy invariant).

∀ S,Π, A : valid(S,Π, A) •

(
〈loch,mh〉 ∈ handlersOf(ev)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(event ev {t1 var1, ..., tn varn contractH}) ∈ CT
)
∧(

contractH = invariant PeH modifies εeH
)
∧(

(thunk ev) = Π(loc)
)
∧
(
eClosure(H, ρ) = S(loc)

)

=⇒

(
〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loch/
this

]
]
, S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
⇒
(

(JPeH [ρ(vari)/vari]ni=1
KS ⇒ JPeH [ρ(vari)/vari]ni=1

KS′)

∧(∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS)
)

Each handler should keep the event invariant and respect the event frame. As handlers are executed

in sequence then the frame (εeH) must be immune [8] from itself under the invariant (PeH). That

allows the sequential composition of two or more handlers to also respect the frame condition.

81

Axiom 22 (Frame immunity).

(

(event ev {t1 var1, ..., tn varn contractH}) ∈ CT
)
∧(

contractH = invariant PeH modifies εeH
)

=⇒
[
∀S •

(
JPeHKS ⇒ (footprint(JεeHKS) ∩ JεeHKS = ∅)

)]

Using these axioms we can prove the following invoke reasoning theorem.

Theorem 23 (Invoke Reasoning). For all valid states (S,Π, A) the following holds: given an event,

ev, and an closure for it, stored at a location loc, eClosure(H, ρ) = S(loc), then an invoke

statement of the form invoke loc refines the event handlers invariant (PeH , PeH , εeH). That is:

(
(thunk ev) = Π(loc)

)
∧(

(event ev {t1 var1, ..., tn varn contractH}) ∈ CT
)
∧(

contractH = invariant PeH modifies εeH
)
∧(

eClosure(H, ρ) = S(loc)
)

(23.1)

(23.2)

(23.3)

(23.4)

=⇒

(
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
⇒
(

(JPeH [ρ(vari)/vari]ni=1
KS ⇒ JPeH [ρ(vari)/vari]ni=1

KS′) ∧

(∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS)
)

(23.5)

Proof: [by induction over the length of the list of handlers |H|]

82

Case 1. [|H| = 0 i.e. H = •]

〈by 23.5〉[
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

=⇒ 〈by hypothesis 23.4 and case hypothesis〉
(
eClosure(•, ρ) = S(loc)

)
∧(

〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by (FULLDELIVERY-INVOKEDONES) semantic rule and transitivity of ↪→〉
(
S ′ = S

)
∧
(
Π ′ = Π

)
∧
(
A′ = A

)
∧(

〈C[invoke loc], S,Π,A〉 ↪→ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by S ′ = S and so ∆(S, S ′) = ∅ 〉
(
JPeH [ρ(vari)/vari]ni=1

KS ⇒ JPeH [ρ(vari)/vari]ni=1
KS′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS
)

Case 2. [induction: H = 〈loch,mh〉+H ′′, assume for H ′′ and prove for H]

〈by 23.5〉[
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

=⇒ 〈by case hypothesis, 23.1, 23.4 and eClosure well-formedness 〉
(
H = 〈loch,mh〉+H ′′

)
∧(

〈loch,mh〉 ∈ handlersOf(ev, A)
)
∧(

〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

83

=⇒ 〈by 23.1, 23.2, 23.4, (FULLDELIVERY-INVOKES) semantic rule and transitivity of ↪→〉

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

loc′′ /∈ dom(S)
)
∧(

S ′′ = S] (loc′′ 7→ eClosure(H ′′, ρ))
)
∧(

Π ′′ = Π] {loc′′ : var thunk ev}
)
∧(

A′′ = A
)
∧(

〈C[invoke loc], S,Π,A〉 ↪→ 〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loch/
this

];invoke loc′′
]
, S ′′, Π ′′, A′′〉

)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loch/
this

];invoke loc′′
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

=⇒ 〈by construction of loc′′, S ′′, Π′′ and H ′′〉

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(thunk ev) = Π ′′(loc′′)
)
∧(

eClosure(H ′′, ρ) = S ′′(loc′′)
)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loch/
this

];invoke loc′′
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

=⇒ 〈by sequence semantics rule〉

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

(thunk ev) = Π ′′(loc′′)
)
∧(

eClosure(H ′′, ρ) = S ′′(loc′′)
)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′′′, Π ′′′, A′′′〉

)
∧(

〈C[invoke loc′′], S ′′′, Π ′′′, A′′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

84

=⇒ 〈by handler’s invariant axiom (21)〉

(
(thunk ev) = Π ′′(loc′′)

)
∧(

eClosure(H ′′, ρ) = S ′′(loc′′)
)
∧(

JPeH [ρ(vari)/vari]ni=1
KS′′ ⇒ JPeH [ρ(vari)/vari]ni=1

KS′′′

)
∧(

∆(S ′′, S ′′′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)
∧(

〈C[invoke loc′′], S ′′′, Π ′′′, A′′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by induction hypothesis over invoke loc′′ 〉

(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JPeH [ρ(vari)/vari]ni=1
KS′′′

)
∧(

∆(S ′′, S ′′′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′)

)
∧(

JPeH [ρ(vari)/vari]ni=1
KS′′′ ⇒ JPeH [ρ(vari)/vari]ni=1

KS′

)
∧(

∆(S ′′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′′

)

=⇒ 〈by Immunity axiom (22) and set theory (A ∪ A = A)〉
(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JPeH [ρ(vari)/vari]ni=1
KS′′′

)
∧(

JPeH [ρ(vari)/vari]vKS′′′ ⇒ JPeH [ρ(vari)/vari]ni=1
KS′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)

=⇒ 〈by construction of S ′′ 〉

(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JPeH [ρ(vari)/vari]ni=1
KS′′′

)
∧(

JPeH [ρ(vari)/vari]ni=1
KS′′′ ⇒ JPeH [ρ(vari)/vari]ni=1

KS′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)
∧(

JPeH [ρ(vari)/vari]ni=1
KS ⇔ JPeH [ρ(vari)/vari]ni=1

KS′′

)
∧(

dom(S) ⊆ dom(S ′′)
)
∧(

J(εeH [ρ(vari)/vari]ni=1
KS = JεeH [ρ(vari)/vari]ni=1

KS′′

)

85

=⇒ 〈by predicate calculus and definition of ∆ 〉
(
JPeH [ρ(vari)/vari]ni=1

KS ⇒ PeH [ρ(vari)/vari]ni=1
KS′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS
)

The statement and demonstration of the soundness of the full-delivery (ANNOUNCE) proof rule

5.7 follows.

Corollary 24 (Full-Delivery Announce Rule Soundness).

∀ S,Π, A : valid(S,Π, A) •

(
(event ev {t1 var1, ..., tn varn contractH}) ∈ CT

)
∧(

contractH = invariant PeH modifies εeH
)
∧(

Je1KS = v1

)
∧ . . . ∧

(
JenKS = vn

)

(24.1)

(24.2)

(24.3)

=⇒

(
〈C[announce ev(e1, ..., en)], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
=⇒

(
(JPeH [vi/vari]ni=1

KS ⇒ JPeH [vi/vari]ni=1
KS′)

(∆(S, S ′) ⊆ JεeH [vi/vari]ni=1
KS)
)

(24.4)

Proof: [Full-Delivery Announce Rule Soundness]

〈by 24.4 〉[
〈C[announce ev(e1, ..., en)], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

=⇒ 〈by evaluation order imposed by evaluation contexts and 24.3 〉

86

(
〈C[announce ev(e1, ..., en)], S,Π,A〉 ↪→∗ 〈C[announce ev(v1, ..., vn)], S,Π,A〉

)
∧(

〈C[announce ev(v1, ..., vn)], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by (FULLDELIVERY-ANNOUNCES) rule and transitivity of ↪→〉

(
H = handlersOf(ev, A)

)
∧
(
ρ = {vari 7→ vi}ni=1

)
∧(

loc′′ /∈ dom(S)
)
∧(

S ′′ = S] (loc′′ 7→ eClosure(H, ρ))
)
∧(

Π ′′ = Π] {loc′′ : var thunk ev}
)
∧(

A′′ = A
)
∧(

〈C[announce ev(v1, ..., vn)], S,Π,A〉 ↪→ 〈C[invoke loc′′], S ′′, Π ′′, A′′〉
)
∧(

〈C[invoke loc′′], S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)
∧

=⇒ 〈by theorem 23〉
(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JPeH [ρ(vari)/vari]ni=1
KS′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)

=⇒ 〈by construction of S ′′〉

(
JPeH [ρ(vari)/vari]ni=1

KS′′ ⇒ JPeH [ρ(vari)/vari]ni=1
KS′

)
∧(

∆(S ′′, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS′′

)
∧(

JPeH [ρ(vari)/vari]ni=1
KS ⇔ JPeH [ρ(vari)/vari]ni=1

KS′′

)
∧(

dom(S) ⊆ dom(S ′′)
)
∧(

J(εeH [ρ(vari)/vari]ni=1
KS = JεeH [ρ(vari)/vari]ni=1

KS′′

)

=⇒ 〈by predicate calculus and definition of ∆〉

87

(
JPeH [ρ(vari)/vari]ni=1

KS ⇒ JPeH [ρ(vari)/vari]ni=1
KS′

)
∧(

∆(S, S ′) ⊆ JεeH [ρ(vari)/vari]ni=1
KS
)

=⇒ 〈by ρ(vari) = vi〉
(
JPeH [vi/vari]ni=1

KS ⇒ JPeH [vi/vari]ni=1
KS′

)
∧(

∆(S, S ′) ⊆ JεeH [vi/vari]ni=1
KS
)

6.1.3 Single Delivery II: Non-Modular Individual Refinement

The semantics for this case is the same as that for PtolemyRely (Figure 6.2). The difference lies in

the specification and verification features. In the non-modular scenario the event declaration does

not include specifications for the handlers and for the announced-code. Each event announcement

is reasoned about in a case-by-case non-modular fashion, as described in section 5.4.2.4.

The following theorem formalizes how to reason about invoke statements. In this context the

function varsOf (ev, CT) is defined as follows:

(t1 var1, ..., tn varn) ≡ varsOf(ev, CT)⇔ (event ev {t1 var1, ..., tn varn }) ∈ CT (6.2)

Theorem 25 (Individual Refinement Invoke Reasoning). For all valid states (S,Π, A), given an

event, ev, and a closure for it, stored at a location loc, eClosure(H, c, ρ) = S(loc), the following

holds: if the expression c satisfies a specification (Pc, Qc, εc) and if every handler for that event,

proceed-composed with this specification, also refines it, then a statement of the form invoke loc

88

also refines this specification. That is:

(
(thunk ev) = Π(loc)

)
∧(

(event ev {t1 var1, ..., tn varn }) ∈ CT
)
∧(

eClosure(H, c, ρ) = S(loc)
)
∧(

c ẘ (Pc, Qc, εc)[ρ(vari)/vari]ni=1

)
∧(

∀〈loch,mh〉 ∈ handlersOf(ev, A) • [〈loch,mh〉} (Pc, Qc, εc)] ẘ (Pc, Qc, εc)
)

(25.1)

(25.2)

(25.3)

(25.4)

(25.5)

=⇒

(
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
⇒
(

(JPc[ρ(vari)/vari]ni=1
KS ⇒ JQc[ρ(vari)/vari]ni=1

KS,S′) ∧

(∆(S, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS)
)

(25.6)

Proof: [by induction over the length of the list of handlers |H|]

Case 1. [|H| = 0 i.e. H = •]

〈by 25.6〉[
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

〈by hypothesis 25.1, 25.3 and case hypothesis〉
(
eClosure(•, c, ρ) = S(loc)

)
∧(

〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by (PTOLEMYRELY-INVOKEDONES) semantic rule and transitivity of ↪→ 〉

89

(
〈C[invoke loc], S,Π,A〉 ↪→ 〈C[c], S,Π,A〉

)
∧(

〈C[c], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by 25.4: c ẘ (Pc, Qc, εc)[ρ(vari)/vari]ni=1
and definition 14 〉

(
JPc[ρ(vari)/vari]ni=1

KS ⇒ JQc[ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS
)

Case 2. [induction: H = 〈loch,mh〉+H ′′, assume for H ′′ and prove for H]

〈by 25.6〉[
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

=⇒ 〈by case hypothesis and 25.1, 25.3 and eClosure well-formedness 〉
(
H = 〈loch,mh〉+H ′′

)
∧(

〈loch,mh〉 ∈ handlersOf(ev, A)
)
∧(

〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by 25.1, 25.2, 25.3, (PTOLEMYRELY-INVOKES) semantic rule and transitivity of ↪→ 〉

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

loc′′ /∈ dom(S)
)
∧(

S ′′ = S] (loc′′ 7→ eClosure(H ′′, c, ρ))
)
∧(

Π ′′ = Π] {loc′′ : var thunk ev}
)
∧(

A′′ = A
)
∧(

〈C[invoke loc], S,Π,A〉 ↪→ 〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉

)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

90

=⇒ 〈by construction of loc′′, S ′′, Π′′ and H ′′〉

(
〈loch,mh〉 ∈ handlersOf(ev, A)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(thunk ev) = Π ′′(loc′′)
)
∧(

eClosure(H ′′, c, ρ) = S ′′(loc′′)
)
∧(

〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

=⇒ 〈by the inductive hypothesis applied to every [invoke loc′′] in ch〉

(
〈loch,mh〉 ∈ handlersOf(ev)

)
∧(

[Ch.Fh] = S(loch), (th mh(th1 varh1){ch}) = methodBody(Ch,mh)
)
∧(

(thunk ev) = Π ′′(loc′′)
)
∧(

eClosure(H ′′, c, ρ) = S ′′(loc′′)
)
∧

∀Sk,Πk, Ak,Ck s.t. Sk(loc
′′) = S ′′(loc′′),Πk(loc

′′) = Π′′(loc′′), Ak = A′′ •((
〈Ck[invoke loc′′], Sk, Πk, Ak〉 ↪→∗ 〈Ck[skip], S

′
k, Π

′
k, A

′
k〉
)

⇒
(

(JPc[ρ(vari)/vari]ni=1
KSk
⇒ JQc[ρ(vari)/vari]ni=1

KSk,S
′
k
) ∧

(∆(Sk, S
′
k) ⊆ Jεc[ρ(vari)/vari]ni=1

KSk
)
))

(
〈C
[
ch[(

ρ(vari)/
varh1 .vari

)ni=1,
loc′′/
varh1

, loch/
this

]
]
, S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)

=⇒ 〈by 25.5 and definition 15〉
(
JPc[ρ(vari)/vari]ni=1

KS′′ ⇒ JQc[ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS′′

)

=⇒ 〈by construction of S ′′〉

91

(
JPc[ρ(vari)/vari]ni=1

KS′′ ⇒ JQc[ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS′′

)
∧(

JPc[ρ(vari)/vari]ni=1
KS ⇔ JPc[ρ(vari)/vari]ni=1

KS′′

)
∧(

JQc[ρ(vari)/vari]ni=1
KS,S′ ⇔ JQc[ρ(vari)/vari]ni=1

KS′′,S′

)
∧(

dom(S) ⊆ dom(S ′′)
)
∧(

Jεc[ρ(vari)/vari]ni=1
KS = Jεc[ρ(vari)/vari]ni=1

KS′′

)

=⇒ 〈by predicate calculus, definition of ∆ and set theory〉
(
JPc[ρ(vari)/vari]ni=1

KS ⇒ JQc[ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS
)

Using theorem 25 it is easy to demonstrate the soundness of the proof rules for the Non-Modular

Individual Refinement scenario. For the (INVOKE) rule, according to 5.24 we need to prove the

following:

Corollary 26 (Individual Refinement Invoke Rule Soundness).

∀ S,Π, A : valid(S,Π, A) •

(
(thunk ev) = Π(loc)

)
∧(

(event ev {t1 var1, ..., tn varn}) ∈ CT
)
∧(

eClosure(H, c, ρ) = S(loc)
)
∧(

c ẘ (Pc, Qc, εc)[ρ(vari)/vari]ni=1

)
∧(

∀〈loch,mh〉 ∈ handlersOf(ev, A) • [〈loch,mh〉} (Pc, Qc, εc)] ẘ (Pc, Qc, εc)
)

(26.1)

(26.2)

(26.3)

(26.4)

(26.5)

92

=⇒

(
〈C[invoke loc], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
=⇒

(
(JPc[ρ(vari)/vari]ni=1

KS ⇒ JQc[ρ(vari)/vari]ni=1
KS,S′) ∧

(∆(S, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS)
)

(26.6)

Proof: [Individual Refinement Invoke Rule Soundness]

The proof follows immediately from Theorem 18.

For the (ANNOUNCE) rule, according to 5.23 we need to prove the following:

Corollary 27 (Individual Refinement Announce Rule Soundness).

∀ S,Π, A : valid(S,Π, A) •

(
(event ev {t1 var1, ..., tn varn}) ∈ CT

)
∧(

Je1KS = v1

)
∧ . . . ∧

(
JenKS = vn

)
∧(

c ẘ (Pc, Qc, εc)[vi/vari]ni=1

)
∧(

∀〈loch,mh〉 ∈ handlersOf(ev, A) • [〈loch,mh〉} (Pc, Qc, εc)] ẘ (Pc, Qc, εc)
)

(27.1)

(27.2)

(27.3)

(27.4)

=⇒

(
〈C[announce ev(e1, ..., en){c}], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

)
=⇒

(
(JPc[vi/vari]ni=1

KS ⇒ JQc[vi/vari]ni=1
KS,S′)

∧ (∆(S, S ′) ⊆ Jεc[vi/vari]ni=1
KS)
)

(27.5)

93

Proof: [Individual Refinement Announce Rule Soundness]

〈by 27.5 〉[
〈C[announce ev(e1, ..., en){c}], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉

]

=⇒ 〈by evaluation order imposed by evaluation contexts and 27.2 〉
(
〈C[announce ev(e1, ..., en){c}], S,Π,A〉 ↪→∗

〈C[announce ev(v1, ..., vn){c}], S,Π,A〉
)
∧(

〈C[announce ev(v1, ..., vn){c}], S,Π,A〉 ↪→∗ 〈C[skip], S ′, Π ′, A〉
)

=⇒ 〈by (PTOLEMYRELY-ANNOUNCES) rule 〉

(
H = handlersOf(ev, A)

)
∧
(
ρ = {vari 7→ vi}ni=1

)
∧(

loc′′ /∈ dom(S)
)
∧(

S ′′ = S] (loc′′ 7→ eClosure(H, c, ρ))
)
∧(

Π ′′ = Π] {loc′′ : var thunk ev}
)
∧(

A′′ = A
)
∧(

〈C[invoke loc′′], S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

=⇒ 〈by 27.1, 27.3, 27.4 and ρ(vari) = vi〉

(
(thunk ev) = Π(loc′′)

)
∧

(event ev {t1 var1, ..., tn varn}) ∈ CT
)
∧(

eClosure(H, c, ρ) = S ′′(loc′′)
)
∧(

c ẘ (Pc, Qc, εc)[ρ(vari)/vari]ni=1

)
∧(

∀〈loch,mh〉 ∈ handlersOf(ev, A) • [〈loch,mh〉} (Pc, Qc, εc)] ẘ (Pc, Qc, εc)
)
∧(

〈C[invoke loc′′], S ′′, Π ′′, A′′〉 ↪→∗ 〈C[skip], S ′, Π ′, A′〉
)

94

=⇒ 〈by theorem 25〉
(
JPc[ρ(vari)/vari]ni=1

KS′′ ⇒ JQc[ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS′′

)

=⇒ 〈by construction of S ′′〉

(
JPc[ρ(vari)/vari]ni=1

KS′′ ⇒ JQc[ρ(vari)/vari]ni=1
KS′′,S′

)
∧(

∆(S ′′, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS′′

)
(
JPc[ρ(vari)/vari]ni=1

KS ⇔ JPc[ρ(vari)/vari]ni=1
KS′′

)
∧(

JQc[ρ(vari)/vari]ni=1
KS,S′ ⇔ JQc[ρ(vari)/vari]ni=1

KS′′,S′

)
∧(

dom(S) ⊆ dom(S ′′)
)
∧(

Jεc[ρ(vari)/vari]ni=1
KS = Jεc[ρ(vari)/vari]ni=1

KS′′

)

=⇒ 〈by predicate calculus and definition of ∆〉
(
JPc[ρ(vari)/vari]ni=1

KS ⇒ JQc[ρ(vari)/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ Jεc[ρ(vari)/vari]ni=1
KS
)

=⇒ 〈by ρ(vari) = vi〉
(
JPc[vi/vari]ni=1

KS ⇒ JQc[vi/vari]ni=1
KS,S′

)
∧(

∆(S, S ′) ⊆ Jεc[vi/vari]ni=1
KS
)

95

6.2 Reasoning Cases

In this section case studies involving different reasoning scenarios are presented. Programs are

manually reasoned about using the proof rules that apply in each case.

Through this section the Billing system example will be used to illustrate the reasoning in each

scenario. In this system, each bill includes the amount (a) to be paid and the extra charges (c)

like taxes. When the base code totals a bill, adding the charges to the principal amount, the corre-

sponding event is announced. This gives registered handlers the chance to do some adjustments,

like adding some extra charges. Specifications are written in a JML[37, 38] like notation.

We use one-state preconditions and two-state postconditions. The state corresponds to the program

variables (x) and the heap (σ), that maps reference-field pairs to their values. Unprimed expres-

sions (x, e.f) correspond to the current state. In postconditions, left-primed expressions (′x, ′e.f)

correspond to their value in the pre-state (equivalent to \old(·) in JML). The map σ correspond to

the current state of the heap (e.f ≡ σ(e, f)) and the map ′σ to the pre-state (′e.f ≡ ′σ(e, f)). As

commands only alter the post-state, always the primed version of the precondition can be assumed

in the post-state. This is expressed by the (PROPAGATION) rule below. The assignment axiom

guarantees that any assertion that holds in the post-state of an assignment command also holds in

the pre-state, substituting every occurrence of the target by the assigned expression, while keeping

the rest of the state unchanged. This is shown in the (ASSIGN) and (UPDATE) rules.

(PROPAGATION)

{P} S {Q}[ε]

{P} S { ′P ∧Q}[ε]

(ASSIGNMENT)

{P

[
e/x,
−→y /
−→′y,

−−→
ei.fi/

−−−→′ei.fi

]
} x = e {P}[ε]

(UPDATE)

{P

[
e/x.f,
−→y /
−→′y,

−−→
ei.fi/

−−−→′ei.fi

]
} x.f = e {P}[ε]

96

1 public class Bill {
2 public int amount;
3 public int charges;
4
5 //@ modifies this.amount,this.charges;
6 //@ ensures this.amount==amount && this.charges==charges;
7 public Bill(int amount, int charges) {
8 this.amount = amount;
9 this.charges = charges;

10 }
11
12 //@ modifies \nothing;
13 //@ ensures \result==amount;
14 public int a() { return amount; }
15
16 //@ ensures this.amount==amount;
17 //@ modifies this.amount;
18 public void setA(int amount) { this.amount = amount; }
19
20 //@ modifies \nothing;
21 //@ ensures \result==charges;
22 public int c() { return charges; }
23
24 //@ modifies this.charges;
25 //@ ensures this.charges==charges;
26 public void setC(int charges) { this.charges = charges; }
27 }

Figure 6.4: Bill class

6.2.1 II/EA Full Delivery Reasoning

In Full Delivery systems all the registered handlers for an event are invoked sequentially upon the

occurrence of the event. This approach is used in C# delegates [22, 46], Java JavaBeans [61] and

others languages. The Billing example is presented in a Full-Delivery variant of Ptolemy language.

The event declaration (lines 15-19) includes the context variable, bill, the event invariant and the

modifies clause.

97

1 public class Base {
2 public void main(){
3 Bill bill=new Bill(100,8);
4 registerHandlers();
5 total(bill);
6 }
7 /*@ requires bill.c>=0; @*/ // c ≥ 0
8 /*@ modifies bill.a, bill.c; @*/ // [a, c]
9 /*@ ensures bill.a()>=\old(bill.a()); @*/ // a ≥ ′a

10 public void total(Bill bill){
11 announce TotalingEvent(bill);
12 bill.setA(bill.a()+bill.c()); // a = a+ c
13 }
14 }
15 public void event TotalingEvent { // (PeH , PeH , εeH) ≡ (c ≥ 0, c ≥ 0, [c])
16 Bill bill;
17 invariant bill.c>=0; // PeH : c ≥ 0
18 modifies bill.c; // [c]
19 }
20 public class PaymentHandler { // Payment Processing Fee Handler
21 public void handleTotaling(TotalingEvent next){
22 next.bill().setC(next.bill().c()+1); // c = c+ 1
23 }
24 when TotalingEvent do handleTotaling;
25 public PaymentHandler(){ register(this); }
26 }
27 public class ShippingHandler { // Shipping Fee Handler
28 public void handleTotaling(TotalingEvent next){
29 next.bill().setC(next.bill().c()+0); //c = c+ 0 NO FEE NOW
30 }
31 when TotalingEvent do handleTotaling;
32 public ShippingHandler(){ register(this); }
33 }

Figure 6.5: Full Delivery Example

To reason about the system requires to check that the handlers (lines 21-23 and 28-30) satisfy the

event invariant and frame, and that the Base.total() method satisfies its specification.

i. The body of handler method PaymentHandler.handleTotaling() (line 22) should sat-

isfy the event specification. Being

98

S ≡ next.bill().setC(next.bill().c()+1); // c = c+ 1

it is required to prove that S w (c ≥ 0, c ≥ 0, [c]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c])

≡ 〈by P ≡ c ≥ 0〉

(c+ 1 ≥ 0, c ≥ 0, [c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c ≥ 0, [c])

ii. The body of handler method ShippingHandler.handleTotaling() (line 29) should

satisfy the event specification. Being

S ≡ next.bill().setC(next.bill().c()+0); //c = c+ 0 NO FEE NOW

it is required to prove that S w (c ≥ 0, c ≥ 0, [c]). That can be done as in (i.) .

iii. The body of method Base.total() (lines 11-12) should satisfy its specification. Being

S ≡ announce TotalingEvent(bill);
bill.setA(bill.a()+bill.c()); // a = a+ c

it is required to construct a proof for: S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c]).

S

w 〈by (ANNOUNCE) and (ASSIGNMENT) rules〉

(c ≥ 0, c ≥ 0, [c]); (P[a+c/a, a/ ′a, c/ ′c], P, [a])

≡ 〈by P ≡ (a ≥ a0)〉

(c ≥ 0, c ≥ 0, [c]); (a+ c ≥ a0, a ≥ a0, [a])

w 〈by (CONSEQUENCE) rule〉

99

(a ≥ a0 ∧ c ≥ 0, c ≥ 0, [c]); (a+ c ≥ a0, a ≥ a0, [a])

w 〈by frame〉

(a ≥ a0 ∧ c ≥ 0, a ≥ a0 ∧ c ≥ 0, [c]); (a+ c ≥ a0, a ≥ a0, [a])

w 〈by (CONSEQUENCE) rule〉

(a ≥ a0 ∧ c ≥ 0, a+ c ≥ a0, [c]); (a+ c ≥ a0, a ≥ a0, [a])

w 〈by (SEQUENCE) rule〉

(a ≥ a0 ∧ c ≥ 0, a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c])

As already mentioned in this approach the reasoning is constrained by the weakness or strength of

the invariant the handlers satisfy.

6.2.2 II/EA Ptolemy Reasoning

Ptolemy follows the Single-Delivery approach. The runtime systems executes the first handler

in the execution chain. It depends on whether this body contains invoke statements that the next

handler will be executed or not. The announced code stands at the end of the execution chain.

If there are handlers it depends on them if it will be executed. If there are no handlers it will be

executed right away.

The event declaration includes the context variables (line 17), the specification that both the

handlers and the announced-code must satisfy (lines 18,27,19) and the abstract algorithm (lines

20-26) the handlers should refine. To reason about the system requires to check that the handlers

(lines 30-37, 42-49) and the announced code (line 12) satisfy the event specification and that the

Base.total() method (lines 10-15) satisfies its specification (lines 7-9).

100

1 public class Base {
2 public void main(){
3 Bill bill=new Bill(100,8);
4 registerHandlers();
5 total(bill);
6 }
7 /*@ requires bill.c>=0; @*/ // c ≥ 0
8 /*@ modifies bill.a, bill.c; @*/ // [a, c]
9 /*@ ensures bill.a()>=\old(bill.a())+\old(bill.c()); @*/ // a ≥ ′a+ ′c

10 public void total(Bill bill){
11 announce TotalingEvent(bill) {
12 bill.setA(bill.a()+bill.c()); // a = a+ c
13 }
14 }
15 }
16 public void event TotalingEvent { // (PeH , QeH , εeH) ≡ (c ≥ 0, a ≥ ′a+ ′c, [a, c])
17 Bill bill;
18 requires (bill.c()>=0); // PeH : c ≥ 0
19 modifies bill.a, bill.c; // [a, c]
20 assumes{
21 // spec. statement: (c ≥ 0, c ≥ ′c, [c])
22 requires (next.bill().c()>=0)
23 modifies next.bill().c
24 ensures (next.bill().c()>=old(next.bill().c()));
25 next.invoke(); // control flow: proceed with next handler
26 }
27 ensures (bill.a()>=old(bill.a())+old(bill.c())); //QeH : a ≥ ′a+ ′c
28 }
29 public class PaymentHandler { // Payment Processing Fee Handler
30 public void handleTotaling(TotalingEvent next){
31 refining requires (next.bill().c()>=0) // (c ≥ 0, c ≥ ′c, [c])
32 modifies next.bill().c
33 ensures (next.bill().c()>=old(next.bill().c())){
34 next.bill().setC(next.bill().c()+1); // c = c+ 1
35 }
36 next.invoke();
37 }
38 when TotalingEvent do handleTotaling;
39 public PaymentHandler(){ register(this); }
40 }

Figure 6.6: Ptolemy Example

101

41 public class ShippingHandler { // Shipping Fee Handler
42 public void handleTotaling(TotalingEvent next)throws Throwable{
43 refining requires (next.bill().c()>=0) // (c ≥ 0, c ≥ ′c, [c])
44 modifies next.bill().c
45 ensures (next.bill().c()>=old(next.bill().c())){
46 next.bill().setC(next.bill().c()+0); // c = c+ 0 NO FEE NOW
47 }
48 next.invoke();
49 }
50 when TotalingEvent do handleTotaling;
51 public ShippingHandler(){ register(this); }
52 }

Figure 6.6: Ptolemy Example

For reasoning the handlers it is also required to reason about the refining statements in them.

i. The refining statement (lines 34-34) in PaymentHandler.handleTotaling() must

satisfy its specification. Being

S ≡ next.bill().setC(next.bill().c()+1); // c = c+ 1

it is required to prove that S w (c ≥ 0, c ≥ ′c, [c]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c])

≡ 〈by P ≡ c ≥ ′c〉

(c+ 1 ≥ c, c ≥ ′c, [c]);

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c ≥ ′c, [c]);

ii. The body of handler method PaymentHandler.handleTotaling() (lines 31-36) must

satisfy the event specification. Being

102

S ≡ refining requires (next.bill().c()>=0) // (c ≥ 0, c ≥ ′c, [c])
modifies next.bill().c
ensures (next.bill().c()>=old(next.bill().c())){

next.bill().setC(next.bill().c()+1); // c = c+ 1
}
next.invoke();

it is required to prove that S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0 + c0, [a, c]), as follows.

S

w 〈by results from (i.) and (INVOKE) rule〉

(c ≥ 0, c ≥ ′c, [c]); (c ≥ 0, a ≥ ′a+ ′c, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c ≥ ′c, [c]); (c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ ′a+ ′c, [a, c])

w 〈by (PROPAGATION) rule〉

(c ≥ 0, c ≥ ′c, [c]);

(c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ ′a+ ′c ∧ ′c ≥ 0 ∧ ′a+ ′c ≥ a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c ≥ ′c, [c]); (c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ a0 + c0, [a, c])

w 〈by (FRAME) rule〉

(c ≥ 0, c ≥ ′c ∧ a = ′a, [c]); (c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, c ≥ ′c ∧ a = ′a, [c]);

(c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ a0 + c0, [a, c])

w 〈by (PROPAGATION) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, c ≥ ′c ∧ a = ′a ∧ ′c ≥ 0 ∧ ′a+ ′c ≥ a0 + c0, [c]);

(c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

103

(c ≥ 0 ∧ a+ c ≥ a0 + c0, c ≥ 0 ∧ a+ c ≥ a0 + c0, [c]);

(c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ a0 + c0, [a, c])

w 〈by (SEQUENCE) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, a ≥ a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a = a0 ∧ c = c0, a ≥ a0 + c0, [a, c])

iii. The refining statement (lines 46-46) in ShippingHandler.handleTotaling() must

satisfy its specification. Being

S ≡ next.bill().setC(next.bill().c()+0); // c = c+ 0 NO FEE NOW

it is required to prove that S w (c ≥ 0, c ≥ ′c, [c]). That can be done as in (i).

iv. The body of handler method ShippingHandler.handleTotaling() (lines 43-38) must

satisfy the event specification. Being

S ≡ refining requires (next.bill().c()>=0) // (c ≥ 0, c ≥ ′c, [c])
modifies next.bill().c
ensures (next.bill().c()>=old(next.bill().c())){

next.bill().setC(next.bill().c()+0); // c = c+ 0 NO FEE NOW
}
next.invoke();

it is required to prove that S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0 + c0, [a, c]). The proof is

similar to that in (ii).

v. The announced code (line 12) must satisfy the event specification. Beign

S ≡ bill.setA(bill.a()+bill.c()); // a = a+ c

It is required to construct a proof for: S w (c ≥ 0, a ≥ ′a+ ′c, [a, c]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

104

(P[a+c/a, a/ ′a, c/ ′c], P, [a])

≡ 〈by P ≡ a ≥ ′a+ ′c〉

(a+ c ≥ a+ c, a ≥ ′a+ ′c, [a])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a+ ′c, [a, c])

vi. The body of method Base.total() (lines 11-13) must satisfy its specification. Being

S ≡ announce TotalingEvent(bill) {
bill.setA(bill.a()+bill.c()); // a = a+ c

}

It is required to construct a proof for: S w (c ≥ 0, a ≥ ′a+ ′c, [a, c]), as follows.

S

w 〈by (ANNOUNCE) rule and the results from (v.)〉

(c ≥ 0, a ≥ ′a+ ′c, [a, c])

As pointed out by the author [55], Ptolemy’s proof system is incomplete as it is incapable of

modularly proving certain properties of valid programs.

6.2.3 II/EA PtolemyRely Reasoning

For more flexibility and completeness, PtolemyRely[55] extends Ptolemy [54, 7] by separating

the handler’s specification from the base-code specification (relies clause). Using this feature

the handlers in the Billing example can be verified to strictly increase the final amount of a bill

(increasing property) (lines 35,45) whilst the announced code just computes that amount (line 12).

105

1 public class Base {
2 public void main(){
3 Bill bill=new Bill(100,8);
4 registerHandlers();
5 total(bill);
6 }
7 /*@ requires bill.c>=0; @*/ // c ≥ 0
8 /*@ modifies bill.a, bill.c; @*/ // [a, c]
9 /*@ ensures bill.a()>=\old(bill.a())+\old(bill.c()); @*/ // a ≥ ′a+ ′c

10 public void total(Bill bill){
11 announce TotalingEvent(bill) {
12 bill.setA(bill.a()+bill.c()); // a = a+ c
13 }
14 }
15 }
16 public void event TotalingEvent { // (PeH , QeH , εeH) ≡ (c ≥ 0, a > ′a+ ′c, [a, c])
17 // (PeB, QeB, εeB) ≡ (c ≥ 0, a = ′a+ ′c, [a])
18 Bill bill;
19 relies requires bill.c()>=0 // PeB : c ≥ 0
20 modifies bill.a // εeB : [a]
21 ensures bill.a()==old(bill.a())+old(bill.c()) // QeB : a = ′a+ ′c
22 requires (bill.c()>=0); // PeH : c ≥ 0
23 modifies bill.a, bill.c; // εeH : [a, c]
24 assumes{
25 requires next.bill().c()>=0 // (c ≥ 0, c > ′c, [c])
26 modifies next.bill().c
27 ensures next.bill().c()>old(next.bill().c());
28 next.invoke(); // control flow: proceed with next handler
29 }
30 ensures (bill.a()>old(bill.a())+old(bill.c())); //QeH : a > ′a+ ′c
31 }
32 public class PaymentHandler { // Payment Processing Fee Handler
33 public void handleTotaling(TotalingEvent next){
34 refining requires next.bill().c()>=0 // (c ≥ 0, c > ′c, [c])
35 modifies next.bill().c
36 ensures next.bill().c()>old(next.bill().c())
37 { next.bill().setC(next.bill().c()+1); } // c = c+ 1
38 next.invoke();
39 }
40 when TotalingEvent do handleTotaling;
41 public PaymentHandler(){ register(this); }
42 }

Figure 6.7: PtolemyRely Example

106

43 public class ShippingHandler { // Shipping Fee Handler
44 public void handleTotaling(TotalingEvent next){
45 refining requires next.bill().c()>=0 //(c ≥ 0, c > ′c, [c])
46 modifies next.bill().c
47 ensures next.bill().c()>old(next.bill().c())
48 { next.bill().setC(next.bill().c()+5); } // c = c+ 5
49 next.invoke();
50 }
51 when TotalingEvent do handleTotaling;
52 public ShippingHandler(){ register(this); }
53 }

Figure 6.7: PtolemyRely Example

To reason about the system requires to check that the handlers (lines 33-39 and 44-50) satisfy the

handlers specification, that the announced code (line 12) satisfy the relies specification and that the

Base.total() method (lines 10-14) satisfies its specification (lines 7-9).

In the body of a handler, refining statements are reasoned about using their own specifications

and invoke statements are reasoned about using the non-deterministic choice between the han-

dlers specification and the relies specification.

i. The refining statement (lines 37-37) in PaymentHandler.handleTotaling() must

satisfy its specification. Being

S ≡ { next.bill().setC(next.bill().c()+1); } // c = c+ 1

it is required to prove that S w (c ≥ 0, c > ′c, [c]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c])

≡ 〈by P ≡ c > ′c〉

(c+ 1 > c, c > ′c, [c]);

107

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c > ′c, [c]);

ii. The body of handler method PaymentHandler.handleTotaling() (lines 34-38) must

satisfy the event specification. Being

S ≡ refining requires next.bill().c()>=0 // (c ≥ 0, c > ′c, [c])
modifies next.bill().c
ensures next.bill().c()>old(next.bill().c())
{ next.bill().setC(next.bill().c()+1); } // c = c+ 1

next.invoke();

it is required to prove that S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a > a0 + c0, [a, c]), as follows.

S

w

〈
by results from (i.) and (INVOKE) rule and ((c ≥ 0, a > ′a + ′c, [a, c])�(c ≥

0, a = ′a+ ′c, [a])) ≡ (c ≥ 0, a ≥ ′a+ ′c, [a, c])

〉
(c ≥ 0, c > ′c, [c]); (c ≥ 0, a ≥ ′a+ ′c, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c > ′c, [c]); (c ≥ 0 ∧ a+ c > a0 + c0, a ≥ ′a+ ′c, [a, c])

w 〈by (PROPAGATION) rule〉

(c ≥ 0, c > ′c, [c]);

(c ≥ 0 ∧ a+ c > a0 + c0, a ≥ ′a+ ′c ∧ ′c ≥ 0 ∧ ′a+ ′c > a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, c > ′c, [c]); (c ≥ 0 ∧ a+ c > a0 + c0, a > a0 + c0, [a, c])

w 〈by (FRAME) rule〉

(c ≥ 0, c > ′c ∧ a = ′a, [c]); (c ≥ 0 ∧ a+ c > a0 + c0, a > a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, c >
′c ∧ a = ′a, [c]);

(c ≥ 0 ∧ a+ c > a0 + c0, a > a0 + c0, [a, c])

108

w 〈by (PROPAGATION) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, c >
′c ∧ a = ′a ∧ ′c ≥ 0 ∧ ′a+ ′c ≥ a0 + c0, [c]);

(c ≥ 0 ∧ a+ c > a0 + c0, a > a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, c ≥ 0 ∧ a+ c > a0 + c0, [c]);

(c ≥ 0 ∧ a+ c > a0 + c0, a > a0 + c0, [a, c])

w 〈by (SEQUENCE) rule〉

(c ≥ 0 ∧ a+ c ≥ a0 + c0, a > a0 + c0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a = a0 ∧ c = c0, a > a0 + c0, [a, c])

iii. The refining statement (lines 48-48) in ShippingHandler.handleTotaling() must

satisfy its specification. Being

S ≡ { next.bill().setC(next.bill().c()+5); } // c = c+ 5

it is required to prove that S w (c ≥ 0, c > ′c, [c]). That can be done as in (i).

iv. The body of handler method ShippingHandler.handleTotaling() (lines 45-49) must

satisfy the event specification. Being

S ≡ refining requires next.bill().c()>=0 //(c ≥ 0, c > ′c, [c])
modifies next.bill().c
ensures next.bill().c()>old(next.bill().c())
{ next.bill().setC(next.bill().c()+5); } // c = c+ 5

next.invoke();

it is required to prove that S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a > a0 + c0, [a, c]). The proof is

similar to that in (ii).

v. The announced code (line 12) must satisfy the event relies specification. Being

S ≡ bill.setA(bill.a()+bill.c()); // a = a+ c

109

It is required to construct a proof for: S w (c ≥ 0, a = ′a+ ′c, [a]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

(P[a+c/a, a/ ′a, c/ ′c], P, [a])

≡ 〈by P ≡ a = ′a+ ′c〉

(a+ c = a+ c, a = ′a+ ′c, [a])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a = ′a+ ′c, [a])

vi. The body of method Base.total() (lines 11-13) must satisfy its specification. Being

S ≡ announce TotalingEvent(bill) {
bill.setA(bill.a()+bill.c()); // a = a+ c
}

It is required to construct a proof for: S w (c ≥ 0, a ≥ ′a+ ′c, [a, c]), as follows.

S

w 〈by (ANNOUNCE) rule and considering the results from (v.)〉

(c ≥ 0, a > ′a+ ′c, [a, c])�(c ≥ 0, a = ′a+ ′c, [a])

≡ 〈by definition of �, predicate calculus and set theory〉

(c ≥ 0, a ≥ ′a+ ′c, [a, c])

By separating the specifications for the handlers and the announced-code, PtolemyRely proof sys-

tem is capable of enforcing the increasing property and still verify the Billing system.

110

6.2.4 Modular Behavior-Preserving Reasoning

As detailed in section 5.4.2.3, if the specification for the handlers refines the least upper bound of

the specifications for all blocks of announced-code then every announce statement will refine

the original announced code. Example in Figure 6.8 illustrates that.

1 public class Base {
2 public void main(){
3 Bill bill=new Bill(100,8);
4 registerHandlers();
5 total(bill);
6 }
7 /*@ requires bill.c>=0; @*/ // c ≥ 0
8 /*@ modifies bill.a, bill.c; @*/ // [a, c]
9 /*@ ensures bill.a()>=\old(bill.a())+\old(bill.c()); @*/ // a ≥ ′a

10 public void total(Bill bill){
11 announce TotalingEvent(bill) {
12 bill.setA(bill.a()+bill.c()); // a = a+ c : (c ≥ 0, a ≥ ′a, [c, a])
13 }
14 announce TotalingEvent(bill) {
15 bill.setA(bill.a()+1); // a = a+ 1 : (tt, a ≥ ′a, [c, a])
16 }
17 }
18 }
19 public void event TotalingEvent { // (PeH , QeH , εeH) ≡ (tt, a ≥ ′a, [c, a])
20 Bill bill;
21 relies requires next.bill().c()>=0 // PeB : c ≥ 0
22 modifies bill.a, bill.c // εeB : [c, a]
23 ensures bill.a()>=old(bill.a())) // QeB : a ≥ ′a
24 requires true; // PeH : tt
25 modifies bill.c, bill.a; // εeH : [c, a]
26 assumes{
27 requires true //(tt, c ≥ 0, [c])
28 modifies next.bill().c
29 ensures next.bill().c()>=0;
30 next.invoke(); // control flow: proceed with next handler
31 }
32 ensures (bill.a()>old(bill.a())+old(bill.c())); //QeH : a ≥ ′a
33 }

Figure 6.8: Modular Behavior-Preserving Example

111

34 public class PaymentHandler { // Payment Processing Fee Handler
35 public void handleTotaling(TotalingEvent next){
36 refining requires true //(tt, c ≥ 0, [c])
37 modifies next.bill().c
38 ensures next.bill().c()>=0
39 { if(next.bill().c()<0) next.bill().setC(0); // c < 0⇒ c = 0
40 next.bill().setC(next.bill().c()+1); } // c = c+ 1
41 next.invoke();
42 }
43 when TotalingEvent do handleTotaling;
44 public PaymentHandler(){ register(this); }
45 }
46 public class ShippingHandler { // Shipping Fee Handler
47 public void handleTotaling(TotalingEvent next)throws Throwable{
48 refining requires true //(tt, c ≥ 0, [c])
49 modifies next.bill().c
50 ensures next.bill().c()>=0
51 { if(next.bill().c()<0) next.bill().setC(0); // c < 0⇒ c = 0
52 next.bill().setC(next.bill().c()+5); } // c = c+ 5
53 next.invoke();
54 }
55 when TotalingEvent do handleTotaling;
56 public ShippingHandler(){ register(this); }
57 }

Figure 6.8: Modular Behavior-Preserving Example

The Base.total()method (lines 10-19) has two event announcements of event TotalingEvennt.

One can compute a handlers specification that refines each block of announced code:

(c ≥ 0, a ≥ ′a, [a, c]) t (tt, a ≥ ′a, [a, c])

≡ 〈by Definition of t〉

(c ≥ 0 ∨ tt, (′c ≥ 0⇒ a ≥ ′a) ∧ (tt⇒ a ≥ ′a), [a, c])

≡ 〈by predicate calculus〉

(tt, (c ≥ 0⇒ a ≥ ′a) ∧ (a ≥ ′a), [a, c])

≡ 〈by predicate calculus〉

(tt, a ≥ ′a, [a])

112

=⇒ 〈by convention〉

(PeH , QeH , εeH) ≡ (tt, a ≥ ′a, [a])

And a base-code specification that is refined by each such behavior:

(c ≥ 0, a ≥ ′a, [a, c]) u (tt, a ≥ ′a, [a, c])

≡ 〈by Definition of u〉

(c ≥ 0 ∧ tt, a ≥ ′a ∨ a ≥ ′a, [a, c])

≡ 〈by predicate calculus〉

(c ≥ 0, a ≥ ′a, [a, c])

=⇒ 〈by convention〉

(PeB , QeB , εeB) ≡ (c ≥ 0, a ≥ ′a, [a, c])

To reason about the system requires to check that the handlers (lines 35-42 and 47-54) satisfy the

handlers specification, that the announced code (line 12 and 15) satisfy the relies specification

and that the Base.total() method (lines 10-17) satisfies its specification (lines 7-9). In the

body of a handler, refining statements are reasoned about using their own specifications and

invoke statements are reasoned about using the non-deterministic choice between the handlers

specification and the relies specification.

i. The refining statement (lines 39-40) in PaymentHandler.handleTotaling() must

satisfy its specification. Being

S ≡ { if(next.bill().c()<0) next.bill().setC(0); // c < 0⇒ c = 0
next.bill().setC(next.bill().c()+1); } // c = c+ 1

113

it is required to prove that S w (tt, c ≥ 0, [c]), as follows.

S

w

〈
by (CONDITIONAL) and (ASSIGNMENT) rules and {c < 0 ∧ tt} c = 0 {c ≥ 0}

and {¬(c < 0) ∧ tt} skip {c ≥ 0}

〉
(tt, c ≥ 0, [c]); (P [c+ 1/c, a/ ′a, c/ ′c], P, [c])

≡ 〈by P ≡ c ≥ 0〉

(tt, c ≥ 0, [c]); (c+ 1 ≥ 0, c ≥ 0, [c])

w 〈by (CONSEQUENCE) rule〉

(tt, c+ 1 ≥ 0, [c]); (c+ 1 ≥ 0, c ≥ 0, [c])

w 〈by (SEQUENCE) rule〉

(tt, c ≥ 0, [c])

ii. The body of handler method PaymentHandler.handleTotaling() (lines 36-41) must

satisfy the event handlers specification. Being

S ≡ refining requires true //(tt, c ≥ 0, [c])
modifies next.bill().c
ensures next.bill().c()>=0
{ if(next.bill().c()<0) next.bill().setC(0); // c < 0⇒ c = 0

next.bill().setC(next.bill().c()+1); } // c = c+ 1
next.invoke();

it is required to prove that S w (a = a0 ∧ c = c0, a ≥ a0, [c, a]), as follows.

S

w

〈
by results from (i.) and (INVOKE) rule that is reasoned about as

(PeB, QeB, εeB) ≡ (c ≥ 0, a ≥ ′a, [c, a])

〉
(tt, c ≥ 0, [c]); (c ≥ 0, a ≥ ′a, [c, a])

w 〈by (CONSEQUENCE) rule〉

(tt, c ≥ 0, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ ′a, [c, a])

w 〈by (PROPAGATION) rule〉

114

(tt, c ≥ 0, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ ′a ∧ ′c ≥ 0 ∧ ′a ≥ a0, [c, a])

w 〈by (CONSEQUENCE) rule〉

(tt, c ≥ 0, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [c, a])

w 〈by (FRAME) rule〉

(tt, c ≥ 0 ∧ a = ′a, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [c, a])

w 〈by (CONSEQUENCE) rule〉

(a ≥ a0, c ≥ 0 ∧ a = ′a, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [c, a])

w 〈by (PROPAGATION) rule〉

(a ≥ a0, c ≥ 0 ∧ a = ′a ∧ ′a ≥ a0, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [c, a])

w 〈by (CONSEQUENCE) rule〉

(a ≥ a0, c ≥ 0 ∧ a ≥ a0, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [c, a])

w 〈by (SEQUENCE) rule〉

(a ≥ a0, a ≥ a0, [c, a])

w 〈by (CONSEQUENCE) rule〉

(a = a0 ∧ c = c0, a ≥ a0, [c, a])

iii. The refining statement (lines 51-52) in ShippingHandler.handleTotaling() must

satisfy its specification. Being

S ≡ { if(next.bill().c()<0) next.bill().setC(0); // c < 0⇒ c = 0
next.bill().setC(next.bill().c()+5); } // c = c+ 5

it is required to prove that S w (tt, c ≥ 0, [c]). That can be done as in (i).

iv. The body of handler method ShippingHandler.handleTotaling() (lines 48-53) must

satisfy the event specification. Being

115

S ≡ refining requires true //(tt, c ≥ 0, [c])
modifies next.bill().c
ensures next.bill().c()>=0
{ if(next.bill().c()<0) next.bill().setC(0); // c < 0⇒ c = 0

next.bill().setC(next.bill().c()+5); } // c = c+ 5
next.invoke();

it is required to prove that S w (a = a0 ∧ c = c0, a ≥ a0, [c, a]). The proof is similar to (ii).

v. The announced code (line 12) must satisfy the event relies specification. Being

S ≡ bill.setA(bill.a()+bill.c()); // a = a+ c : (c ≥ 0, a ≥ ′a, [c, a])

It is required to construct a proof for: S w (c ≥ 0, a ≥ ′a, [a, c]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

(P[a+c/a, a/ ′a, c/ ′c], P, [a])

≡ 〈by P ≡ a ≥ ′a〉

(a+ c ≥ a, a ≥ ′a, [a])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c])

vi. The announced code (line 15) must satisfy the event relies specification. Being

S ≡ bill.setA(bill.a()+1); // a = a+ 1 : (tt, a ≥ ′a, [c, a])

It is required to construct a proof for: S w (c ≥ 0, a ≥ ′a, [a, c]), as follows.

S

w 〈by (ASSIGNMENT) rule〉

(P[a+1/a, a/ ′a, c/ ′c], P, [a])

≡ 〈by P ≡ a ≥ ′a〉

(a+ 1 ≥ a, a ≥ ′a, [a])

116

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c])

vii. The body of method Base.total() (lines 11-16) must satisfy its specification. Being

S ≡ announce TotalingEvent(bill) {
bill.setA(bill.a()+bill.c()); // a = a+ c : (c ≥ 0, a ≥ ′a, [c, a])
}
announce TotalingEvent(bill) {
bill.setA(bill.a()+1); // a = a+ 1 : (tt, a ≥ ′a, [c, a])
}

It is required to construct a proof for: S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c]):

S

w 〈by results v. and vi. and (ANNOUNCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (tt, a ≥ ′a, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ ′a, [a, c])

w 〈by (PROPAGATION) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ ′a ∧ ′a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a ≥ a0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (PROPAGATION) rule〉

(c ≥ 0 ∧ a ≥ a0, a ≥ ′a ∧ ′c ≥ 0 ∧ ′a ≥ a0, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0 ∧ a ≥ a0, a ≥ a0, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (SEQUENCE) rule〉

(c ≥ 0 ∧ a ≥ a0, a ≥ a0, [a, c])

117

w 〈by (CONSEQUENCE) rule〉

(a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c])

This approach preserves the behavior of the original (without events) base code, which guarantees

that the system behaves as expected, but for that it imposes a strong specification on the handlers,

the least upper bound of all the blocks of announced code.

6.2.5 Non-Modular Individual Refinement Reasoning

If at each event announcement every applicable handler proceed-composed with the current announced-

code specification satisfies this same specification then the announce statement preserves that

specification. In this approach the event has no specification and instead each handler is checked

to satisfy the previous condition at each event announcement.

1 public class Base {
2 public void main(){
3 Bill bill=new Bill(100,8);
4 registerHandlers();
5 total(bill);
6 }
7 /*@ requires bill.c>=0; @*/ // c ≥ 0
8 /*@ modifies bill.a, bill.c; @*/ // [a, c]
9 /*@ ensures bill.a()>=\old(bill.a())+\old(bill.c()); @*/ // a ≥ ′a

10 public void total(Bill bill){
11 announce TotalingEvent(bill) {
12 bill.setA(bill.a()+bill.c()); // a = a+ c : (c ≥ 0, a ≥ ′a, [a, c])
13 }
14 announce TotalingEvent(bill) {
15 bill.setA(bill.a()+1); // a = a+ 1 : (tt, a ≥ ′a, [a, c])
16 }
17 }
18 }

Figure 6.9: Non-Modular Individual Refinement Example

118

19 public void event TotalingEvent {
20 Bill bill;
21 }
22 public class PaymentHandler { // Payment Processing Fee Handler
23 public void handleTotaling(TotalingEvent next){
24 next.bill().setC(next.bill().c()+1); // c = c+ 1
25 next.invoke();
26 }
27 when TotalingEvent do handleTotaling;
28 public PaymentHandler(){ register(this); }
29 }
30 public class ShippingHandler { // Shipping Fee Handler
31 public void handleTotaling(TotalingEvent next){
32 next.bill().setC(next.bill().c()+5); // c = c+ 5
33 next.invoke();
34 }
35 when TotalingEvent do handleTotaling;
36 public ShippingHandler(){ register(this); }
37 }

Figure 6.9: Non-Modular Individual Refinement Example

To reason about the system requires to check that each handler (lines 23-26 and 31-34) proceed-

composed with the specification at each announcement (line 12 and 15) satisfy that specification.

i. The body of handler method PaymentHandler.handleTotaling() (lines 24-25) pro-

ceed composed with the specification for the first announcement (line 12) should satisfy that

specification. Being

S ≡ next.bill().setC(next.bill().c()+1); // c = c+ 1
next.invoke();

it is required to prove that (S } (c ≥ 0, a ≥ ′a, [a, c])) w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥

a0, [a, c]), as follows.

S } (c ≥ 0, a ≥ ′a, [a, c])

w 〈by (ASSIGNMENT) rule and definition of }〉

119

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (c ≥ 0, a ≥ ′a, [a, c])

w 〈by (CONSEQUENCE) rule〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ ′a, [a, c])

w 〈by (PROPAGATION) rule 〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ ′a ∧ ′c ≥ 0 ∧ ′a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule 〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [a, c])

≡ 〈by P ≡ c ≥ 0 ∧ a ≥ a0〉

(c+ 1 ≥ 0 ∧ a ≥ a0, c ≥ 0 ∧ a ≥ a0, [c]); (c ≥ 0 ∧ a ≥ a0, a ≥ a0, [a, c])

≡ 〈by (SEQUENCE) rule〉

(c+ 1 ≥ 0 ∧ a ≥ a0, a ≥ a0, [a, c])

≡ 〈by (CONSEQUENCE) rule〉

(a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c])

ii. The body of handler method ShippingHandler.handleTotaling() (lines 32-33) pro-

ceed composed with the specification for the first announcement (line 12) should satisfy that

specification. Being

S ≡ next.bill().setC(next.bill().c()+5); // c = c+ 5
next.invoke();

it is required to prove that (S } (c ≥ 0, a ≥ ′a, [a, c])) w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥

a0, [a, c]). That can be done as in (i.)

iii. The body of handler method PaymentHandler.handleTotaling() (lines 24-25) pro-

ceed composed with the specification for the second announcement (line 15) should satisfy

that specification. Being

S ≡ next.bill().setC(next.bill().c()+1); // c = c+ 1
next.invoke();

120

it is required to prove that (S } (tt, a ≥ ′a, [a, c])) w (a = a0 ∧ c = c0, a ≥ a0, [a, c]), as

follows.

S } (tt, a ≥ ′a, [a, c])

w 〈by (ASSIGNMENT) rule and definition of }〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (tt, a ≥ ′a, [a, c])

w 〈by (CONSEQUENCE) rule〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (a ≥ a0, a ≥ ′a, [a, c])

w 〈by (PROPAGATION) rule 〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (a ≥ a0, a ≥ ′a ∧ ′a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule 〉

(P[c+1/c, a/ ′a, c/ ′c], P, [c]); (a ≥ a0, a ≥ a0, [a, c])

≡ 〈by P ≡ a ≥ a0〉

(a ≥ a0, a ≥ a0, [c]); (a ≥ a0, a ≥ a0, [a, c])

≡ 〈by (SEQUENCE) rule〉

(a ≥ a0, a ≥ a0, [a, c])

≡ 〈by (CONSEQUENCE) rule〉

(a = a0 ∧ c = c0, a ≥ a0, [a, c])

iv. The body of handler method ShippingHandler.handleTotaling() (lines 32-33) pro-

ceed composed with the specification for the second announcement (line 15) should satisfy

that specification. Being

S ≡ next.bill().setC(next.bill().c()+5); // c = c+ 5
next.invoke();

it is required to prove that (S } (tt, a ≥ ′a, [a, c])) w (a = a0 ∧ c = c0, a ≥ a0, [a, c]). It

can be done as in (iii.)

121

v. The body of method Base.total() (lines 11-17) must satisfy its specification. Being

S ≡ announce TotalingEvent(bill) {
bill.setA(bill.a()+bill.c()); // a = a+ c : (c ≥ 0, a ≥ ′a, [c, a])
}
announce TotalingEvent(bill) {
bill.setA(bill.a()+1); // a = a+ 1 : (tt, a ≥ ′a, [c, a])
}

}

It is required to construct a proof for: S w (a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c]), as

follows.

S

w

〈
by the results from (i.,ii.,iii.,iv.) and the (ANNOUNCE) rule that keeps the an-

nounced code behavior.

〉
(c ≥ 0, a ≥ ′a, [a, c]); (tt, a ≥ ′a, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ ′a, [a, c])

w 〈by (PROPAGATION) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ ′a ∧ ′a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(a ≥ a0 ∧ c ≥ 0, a ≥ ′a, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (PROPAGATION) rule〉

(a ≥ a0 ∧ c ≥ 0, a ≥ ′a ∧ ′a ≥ a0 ∧ ′c ≥ 0, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (CONSEQUENCE) rule〉

(a ≥ a0 ∧ c ≥ 0, a ≥ a0, [a, c]); (a ≥ a0, a ≥ a0, [a, c])

w 〈by (SEQUENCE) rule〉

(a ≥ a0 ∧ c ≥ 0, a ≥ a0, [a, c])

122

w 〈by (CONSEQUENCE) rule〉

(a = a0 ∧ c = c0 ∧ c ≥ 0, a ≥ a0, [a, c])

This approach gives for flexibility to the handlers as they are reasoned about considering the con-

crete specification of each announced code, instead of a weaker generalization of them. The draw-

back of the approach is that it is not modular.

123

CHAPTER 7: CONCLUSION

The aimed problem of this dissertation has been to do formal reasoning for specific scenarios

in implicit-invocation and aspect-oriented like languages. The scenarios correspond to different

configurations of important tradeoffs faced when reasoning programs developed with these types

of languages.

Several reasoning tradeoffs have been identified. Scenarios derived from making choices regarding

these tradeoffs has been configured and characterized. Proof rules for reasoning about programs in

the different scenarios were formalized. Operational semantics for the new or updated languages

constructs was defined. The soundness of the proof rules, with regard to the defined semantics,

was demonstrated. Reasoning examples illustrating the use of the proof rules were also developed.

7.1 Tradeoffs and Reasoning

The main identified tradeoffs and how they affect the reasoning process is summarized in the

following:

Modular vs. Non-Modular: In modular reasoning, component invocations are reasoned about

using the components’ specifications instead of their implementations. This approach has

may advantages but may be limiting in some situations. If at a certain point many com-

ponents may be invoked, like in OO dynamic dispatch or II event announcement, then a

common specification that abstracts them all would have to be used, maybe loosing use-

ful reasoning information. In this cases the modular-vs-non-modular tradeoff is important.

The Full Delivery (5.4.1), PtolemyRely (5.4.2.1), Ptolemy (5.4.2.2) and Behavior-Preserving

Modular (5.4.2.3) scenarios use modular reasoning while the Non-Modular Individual Re-

124

finement Scenario (5.4.2.4) uses non-modular reasoning.

Case analysis vs. Abstraction: This tradeoff is closely related to the previous one. In non-modular

reasoning, to reason about a client component one needs to consider all the components that

could be invoked at a certain point, so a case by case analysis is required. In modular rea-

soning all the invoked components are abstracted by a common specification, an it is used to

reason about the invocation at that given point.

Full vs. Single Delivery: In event based implicit invocation systems many handlers could be reg-

istered for an event. Whether the system invokes them all, like in C# delegates [22, 46]

and Java JavaBeans [61] or just one, like PtolemyRely [55]) and Ptolemy [54], is a tradeoff

considered in configuring the reasoning scenarios. In Full-Delivery each handler must leave

the system in an state such that the next handler can be invoked, so an invariant specification

should be imposed in all of them, and this invariant can be use to reason about the event

announcement. In Single-Delivery a specification is defined for all the handlers and this

specification can be used to reason both the event announcement itself and any next-handler

invocation in the body of a handler.

Explicit vs. Implicit Invocation: Explicit invocation, as supported by OO languages, has the ad-

vantage that the specification of the unique invoked component can be used to reason about

the invocation; but it has the disadvantage that tightly couples the invoking and invoked

components. Implicit invocation, as in event based and AO languages, does not suffer of

the coupling problem, but makes it harder to reason about the event announcement: non-

modular reasoning can be used or a common specification can be imposed on all handlers,

restoring the modular reasoning.

Explicit vs. Implicit Announcement: With Explicit Announcement, the place where an event

occurs in the client code is explicit, that being done by some kind of announce construct.

125

Then, the announcement can be reasoned about using explicit or implicit invocation. On the

other hand, in Implicit Announcement, as in AO languages, the client remains oblivious of

where and what functionality may be invoked. One partial solution proposed [35] to reason

about system with implicit announcement is to do it in two phases. A whole program non-

modular analysis first determine the advised points and then a modular reasoning is applied

to each one of them, using an implicit invocation approach.

7.2 Scenarios

Different scenarios were derived by taking choices regarding the identified tradeoffs. They are

summarized as follows:

II/EA Full Delivery Scenario: This scenario is configured by using explicit event announcement,

implicit invocation of all registered handlers and modular reasoning. The invariant specifi-

cation is included in the event declaration. Handlers are modularly reasoned about against

this specification and event announcements are reasoned about using this invariant.

II/EA Ptolemy Modular Scenario: This scenario correspond to the original definition of Ptolemy

language [54] and its specification and verification features [7]. It follows the single-delivery

strategy: at event announcement only one registered handler is invoked. It is left under the

developer control to include invoke statements in the body of a handler for invoking the next

handler (or announced code). This scenario has all the advantages of explicit announcement,

implicit invocation, single delivery and modular reasoning. Announce and invoke statements

are reasoned about against the event specification, included in the event declaration. Han-

dlers and announced-code must be reasoned about against that event specification. One

weakness of imposing the same specification on both the handlers and announced code is

126

that this does not allow to enforce certain properties that depend on having different behav-

iors for them.

II/EA PtolemyRely Modular Scenario: This scenario correspond to an enhancement made by

the author to the Ptolemy specification and verification features [55, 56], for separating

the specifications for handlers and announced code. It is also an explicit announcement,

implicit invocation, single delivery and modular reasoning scenario. Announce statements

are reasoned about as the non-deterministic choice between the handlers specification and

the particular announced-code behavior. Invoke statements are reasoned about as the non-

deterministic choice between the handlers specification and the announced-code specifica-

tion, as stated in the event declaration. Handlers must be reasoned about against that han-

dlers specification and announced-code against announced-code specification. This scenario

is flexible and more complete than the Ptolemy scenario, as any Ptolemy system can be en-

coded as a PtolemyRely system using the same specification for handlers and announced

code.

II/EA Behavior-Preserving Modular Scenario: This scenario is not based on extra language

features but in a developer discipline used on top of PtolemyRely language. The starting

point is the specifications of the blocks of announced code. The discipline consist in set-

ting the event announced-code specification as the greatest lower bound of these blocks’

specifications and the event handlers specification as the least upper bound of the blocks’

specifications. As demonstrated in section 5.4.2.3, using these settings announce statements

preserve the corresponding blocks specifications, keeping the original client behavior. This

scenario has the advantage of preserving the original behavior but it could impose a strong

specification on the handlers, leaving to their implementers the responsibility of coping with

this.

II/EA Behavior-Preserving Non-Modular Scenario: This scenario explores the non-modular ap-

127

proach while preserving the original client behavior. The event declaration has no specifi-

cations at all. At each event announcement every applicable handler, composed with the

current announced-block specification is reasoned about against this same specification. As

demonstrated in sections 5.4.2.4 and 6.1.3, announce statements preserve the corresponding

blocks specifications, keeping the original client behavior. This approach gives for flexibil-

ity to the handlers as they are reasoned about considering the concrete specification of each

announced block, instead of a weaker generalization of them. The drawback of the approach

is that it is not modular.

AO Scenario: The AO scenario is similar to the Implicit Invocation scenarios. The main differ-

ence is that the events are considered to be triggered not explicitly by announce statements

but implicitly by the execution of the shadows picked by pointcuts. The pointcut declaration

in AO is analogous to the event declaration in II. The shadows corresponds to the blocks of

announced code and the pieces of advice correspond to the handlers. Pointcut declarations

can be annotated with specifications similar to those used in II events (like in Ptolemy or

PtolemyRely). Reasoning about AO scenarios can be done in a two-phase approach. First,

for each join point in the base code all matching pointcuts are identified, and all the pieces

of advice for those pointcuts are considered the handlers for the join point event. Then the

reasoning strategies used for the single delivery II/EA scenario can be used. This scenario

provides all the flexibility of AO but is not modular.

7.3 Future Work

Some lines of investigation are suggested for further work.

The starting point of many of the scenarios is the specifications for the blocks of code (announced

code) triggering events. Currently this specifications are supposed to be provided by the developer.

128

An interesting venue of research is the automatic inference of these specifications. A initial ap-

proach is to use weakest precondition computations starting from the postcondition of the method

containing the blocks, but this assumes that this method has a specification itself. More work is

required in this area.

A detailed design of the specifications features that would be required for annotating AO pointcut

declarations, similar to those in PtolemyRely, is also an area for future work.

An entire Hoare-style logic, including rules like the ones in section 6.2, for reasoning in the pres-

ence of two-state postcondition would be very helpful for doing that in a more concise and intuitive

way.

The Behavior-Preserving Modular scenario presented in section 5.4.2.3 depends on a developer

discipline consisting in setting the event announced-code specification as the greatest lower bound

of these blocks’ specifications and the event handlers specification as the least upper bound of the

blocks’ specifications. Exploring the possibility of enforcing this automatically is also a topic that

can be developed.

129

LIST OF REFERENCES

[1] Martı́n Abadi and K. Rustan M. Leino. A logic of object-oriented programs. In Michel Bidoit

and Max Dauchet, editors, TAPSOFT ’97: Theory and Practice of Software Development, 7th

International Joint Conference CAAP/FASE, Lille, France, volume 1214 of Lecture Notes in

Computer Science, pages 682–696. Springer-Verlag, New York, NY, 1997. Expanded in DEC

SRC report 161.

[2] Pierre America. A behavioural approach to subtyping in object-oriented programming lan-

guages. Technical Report 443, Philips Research Laboratories, Nederlandse Philips Bedrijven

B. V., January 1989. Superseded by a later version in April 1989.

[3] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction.

Graduate Texts in Computer Science. Springer-Verlag, Berlin, 1998.

[4] Mehdi Bagherzadeh, Robert Dyer, Rex D. Fernando, Hridesh Rajan, and Jose Sanchez. Mod-

ular reasoning in the presence of event subtyping. Technical Report 14-02b, Iowa State Uni-

versity, Dept. of Computer Sc., 2014.

[5] Mehdi Bagherzadeh, Gary T. Leavens, and Robert Dyer. Applying translucid contracts for

modular reasoning about aspect and object oriented events. In Proceedings of the 10th inter-

national workshop on Foundations of aspect-oriented languages, FOAL ’11, pages 31–35,

New York, NY, USA, 2011. ACM.

[6] Mehdi Bagherzadeh, Hridesh Rajan, and Ali Darvish. On exceptions, events and observer

chains. Technical Report 12-12, Iowa State University, Dept. of Computer Sc., 2012.

[7] Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, and Sean Mooney. Translucid con-

tracts: Expressive specification and modular verification for aspect-oriented interfaces. In

130

Proceedings of the tenth international conference on Aspect-oriented software development,

AOSD ’11, pages 141–152, New York, NY, USA, 2011. ACM.

[8] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Local reasoning for global

invariants, part i: Region logic. Journal of the ACM, 60(3):18:1–18:56, June 2013.

[9] Mike Barnett, Manuel Fahndrich, K. Rustan M. Leino, Peter Mueller, Wolfram Schulte, and

Herman Venter. Specification and verification: The spec# experience. Communications of

the ACM, 54(6):81–91, June 2011.

[10] Rolando Blanco and Paulo Alencar. Categorization of implicit invocation systems. Techni-

cal Report CS-2007-31, University of Waterloo, Cheriton School of Computer Science, 200

University Avenue West Waterloo, ON, Canada N2L 3G1, 2007.

[11] Eric Bodden, Éric Tanter, and Milton Inostroza. Joint point interfaces for safe and flexi-

ble decoupling of aspects. ACM Transactions on Software Engineering and Methodology

(TOSEM), Vol. 23, Issue 1, February 2014.

[12] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame problem in procedure

specifications. IEEE Transactions on Software Engineering, 21(10):785–798, October 1995.

[13] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: Ad-

vanced specification and verification with JML and ESC/Java2. In Formal Methods for Com-

ponents and Objects (FMCO) 2005, Revised Lectures, volume 4111 of Lecture Notes in Com-

puter Science, pages 342–363, Berlin, 2006. Springer-Verlag.

[14] Yonghao Chen and Betty H. C. Cheng. A semantic foundation for specification matching. In

Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based Systems,

pages 91–109. Cambridge University Press, New York, NY, 2000.

131

[15] Curtis Clifton and Gary T. Leavens. Obliviousness, modular reasoning, and the behavioral

subtyping analogy. In SPLAT 2003: Software engineering Properties of Languages for Aspect

Technologies at AOSD 2003, March 2003. Available as Computer Science Technical Report

TR03-01a from ftp//:ftp.cs.iastate.edu/pub/techreports/TR03-01/TR.pdf.

[16] David Cok. OpenJML: JML for Java 7 by extending OpenJDK. In Mihaela Bobaru, Klaus

Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal Methods, volume 6617

of Lecture Notes in Computer Science, pages 472–479. Springer-Verlag, Berlin, 2011.

[17] Patrick Cousot. Compositional separate modular static analysis of programs by abstract in-

terpretation. In Proc. SSGRR 2001 – Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet, 6 – 10, 2001.

[18] Frank S. de Boer. A WP-calculus for OO. In Wolfgang Thomas, editor, Foundations of

Software Science and Computation Structures (FOSSACS), volume 1578 of Lecture Notes in

Computer Science, pages 135–149. Springer-Verlag, 1999.

[19] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algo-

rithms for the Construction and Analysis (TACAS), volume 4963 of Lecture Notes in Com-

puter Science, pages 337–340, Berlin, 2008. Springer-Verlag.

[20] Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin Steffen. Lazy behavioral sub-

typing. In FM 2008: Formal Methods, volume 5014 of Lecture Notes in Computer Science,

pages 52–67, Berlin, 2008. Springer-Verlag.

[21] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Technical report, SRI

International, 2006.

[22] ECMA. C# language specification. ECMA Standard 334, February 2006.

132

[23] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming: Introduction.

Communications of the ACM, 44(10):29–32, October 2001.

[24] Robert E. Filman. What is aspect-oriented programming, revisited. In Work-

shop on Advanced Separation of Concerns (ECOOP 2001), Budapest, Hungary,

June 2001. Available from http://trese.cs.utwente.nl/Workshops/

ecoop01asoc/papers/Filman.pdf.

[25] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quantification

and obliviousness. In OOPSLA 2000 Workshop on Advanced Separation of Concerns, Min-

neapolis, MN, October 2000.

[26] David Garlan and Mary Shaw. An introduction to software architecture. In Advances in

Software Engineering and Knowledge Engineering, pages 1–39. Publishing Company, 1993.

[27] David Gorlan and David Notkin. Formalizing design spaces: Implicit invocation mecha-

nisms. Lecture Notes in Computer Science, 551:31–44, 1991.

[28] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew Parkinson.

Behavioral interface specification languages. ACM Computing Surveys, 44(3):16:1–16:58,

June 2012.

[29] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In AOSD 04, pages 26–35,

2004.

[30] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580,583, October 1969.

[31] Kevin Hoffman and Patrick Eugster. Bridging java and aspectj through explicit join points. In

Proceedings of the 5th International Symposium on Principles and Practice of Programming

in Java, PPPJ ’07, pages 63–72, New York, NY, USA, 2007. ACM.

133

http://trese.cs.utwente.nl/Workshops/ecoop01asoc/papers/Filman.pdf
http://trese.cs.utwente.nl/Workshops/ecoop01asoc/papers/Filman.pdf

[32] Kevin Hoffman and Patrick Eugster. Cooperative aspect-oriented programming. Sci. Comput.

Program., 74(5-6):333–354, March 2009.

[33] Kevin Hoffman and Patrick Eugster. Trading obliviousness for modularity with cooperative

aspect-oriented programming. ACM Trans. Softw. Eng. Methodol., 22(3):22:1–22:46, July

2013.

[34] K. Huizing and R. Kuiper. Verification of object-oriented programs using class invariants.

In E. Maibaum, editor, Fundamental Approaches to Software Engineering, volume 1783 of

Lecture Notes in Computer Science, pages 208–221. Springer-Verlag, 2000.

[35] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-

Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi

Matsuoka, editors, ECOOP ’97—Object-Oriented Programming 11th European Conference,

Jyväskylä, Finland, Proceedings, volume 1241 of Lecture Notes in Computer Science, pages

220–242. Springer-Verlag, New York, NY, June 1997.

[36] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and modular reasoning.

In Proc. of the 27th International Conference on Software Engineering, pages 49–58. ACM,

2005.

[37] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-

ioral interface specification language for Java. ACM SIGSOFT Software Engineering Notes,

31(3):1–38, March 2006.

[38] Gary T. Leavens and Yoonsik Cheon. Design by contract with JML. Draft, available from

jmlspecs.org., 2005.

134

[39] Gary T. Leavens and David A. Naumann. Behavioral subtyping is equivalent to modular

reasoning for object-oriented programs. Technical Report 06-36, Department of Computer

Science, Iowa State University, Ames, Iowa, 50011, December 2006.

[40] Gary T. Leavens and David A. Naumann. Behavioral subtyping, specification inheritance,

and modular reasoning. Technical Report 06-20b, Department of Computer Science, Iowa

State University, Ames, Iowa, 50011, September 2006.

[41] Gary T. Leavens and William E. Weihl. Specification and verification of object-oriented

programs using supertype abstraction. Acta Informatica, 32(8):705–778, November 1995.

[42] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transac-

tions on Programming Languages and Systems, 16(6):1811–1841, November 1994.

[43] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY,

second edition, 1997.

[44] Carroll Morgan and Ken Robinson. Specification statements and refinement. In Carroll

Morgan and Trevor Vickers, editors, On the Refinement Calculus, Formal Approaches to

Computing and Information Technology (FACIT), pages 23–46. Springer London, 1992.

[45] Joseph M. Morris. Laws of data refinement. Acta Informatica, 26(4):287–308, February

1989.

[46] Peter Müller and Joseph N. Ruskiewicz. Rigorous methods for software construction and

analysis. chapter A Modular Verification Methodology for C# Delegates, pages 187–203.

Springer-Verlag, Berlin, Heidelberg, 2009.

[47] David Notkin, David Garlan, William G. Griswold, and Kevin J. Sullivan. Adding implicit

invocation to languages: Three approaches. In Proceedings of the First JSSST International

135

Symposium on Object Technologies for Advanced Software, pages 489–510, London, UK,

1993. Springer-Verlag.

[48] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-

tions of the ACM, 15(12):1053–1058, December 1972.

[49] Thomas Pawlitzki and Friedrich Steimann. Implicit invocation of traits. In Proceedings of

the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 2085–2089, New York,

NY, USA, 2010. ACM.

[50] C. Pierik and F.S. de Boer. On behavioral subtyping and completeness. In ECOOP Workshop

on Formal Techniques for Java-like Programs, 2005.

[51] Cees Pierik. Validation Techniques for Object-Oriented Proof Outlines. PhD thesis, Univer-

siteit Utrecht, 2006.

[52] G. D. Plotkin. Dijkstra’s predicate transformers and smyth’s powerdomains. In D. Bjorner,

editor, Abstract Software Specifications: 1979 Copenhagen Winter School Proceedings, vol-

ume 86 of Lecture Notes in Computer Science, pages 527–553. Springer-Verlag, New York,

NY, 1980.

[53] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language of quantified, typed events. Tech-

nical Report 07-13a, Iowa State University, Department of Computer Science, October 2007.

[54] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with quantified, typed events. In

Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming: 22nd European Confer-

ence, Paphos, Cyprus, volume 5142 of Lecture Notes in Computer Science, pages 155–179,

Berlin, July 2008. Springer-Verlag.

[55] José Sánchez and Gary T. Leavens. Separating obligations of subjects and handlers for more

flexible event type verification. In Walter Binder, Eric Bodden, and Welf Löwe, editors,

136

Software Composition, volume 8088 of Lecture Notes in Computer Science, pages 65–80.

Springer-Verlag, Berlin, 2013.

[56] José Sánchez and Gary T. Leavens. Static verification of ptolemyrely programs using open-

jml. In Proceedings of the 13th Workshop on Foundations of Aspect-oriented Languages,

FOAL ’14, pages 13–18, New York, NY, USA, 2014. ACM.

[57] Steve M. Shaner, Gary T. Leavens, and David A. Naumann. Modular verification of higher-

order methods with mandatory calls specified by model programs. In International Confer-

ence on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),

Montreal, Canada, pages 351–367, New York, NY, October 2007. ACM.

[58] Friedrich Steimann and Thomas Pawlitzki. Types and modularity for implicit invocation with

implicit announcement. Obtained from the first author., August 2007.

[59] Kevin Sullivan, William Griswold, Yuanyuan Song, Yuanfang Cai, Macneil Shonle, Nishit

Tewari, and Hridesh Rajan. Information hiding interfaces for aspect-oriented design. In

Proc. of the 13th ACM SIGSOFT symposium on the Foundations of software engineering

(FSE-13), pages 166–175, Lisbon, Portugal, May 2005. ACM Press.

[60] Kevin Sullivan, William G. Griswold, Hridesh Rajan, Yuanyuan Song, Yuanfang Cai, Mac-

neil Shonle, and Nishit Tewari. Modular aspect-oriented design with xpis. ACM Transactions

on Software Engineering and Methodology, 20(2):5:1–5:42, September 2010.

[61] Sun. JavaBeans. Sun, August 1997.

[62] Jia Xu, Hridesh Rajan, and Kevin Sullivan. Aspect reasoning by reduction to implicit invoca-

tion. In Curtis Clifton, Ralf Lämmel, , and Gary T. Leavens, editors, FOAL 2004 Proceedings:

Foundations of Aspect-Oriented Languages Workshop at AOSD 2004, Lancaster, UK, num-

137

ber 04-04 in TR, pages 31–36, Ames, IA, 50011, March 2005. Dept. of Computer Science,

Iowa State University.

138

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Problem Definition
	1.2 Scope
	1.3 Motivation

	CHAPTER 2: BACKGROUND
	2.1 Reasoning and Modular Reasoning
	2.2 Specifications and Specification Refinement
	2.3 Proof Rules and their Soundness
	2.4 Deductive Program Verification and Weakest Precondition Semantics
	2.5 Behavioral Subtyping and Supertype Abstraction
	2.6 Event Based Implicit Invocation Programming
	2.7 Aspect Oriented Programming

	CHAPTER 3: IMPROVING AND STATICALLY VERIFYING THE PTOLEMY IMPLICIT INVOCATION LANGUAGE
	3.1 The Ptolemy Language
	3.2 PtolemyRely: Separating Obligations of Subjects and Handlers
	3.3 Static Verification of PtolemyRely Programs Using OpenJML
	3.4 Methodology Oriented Approaches

	CHAPTER 4: REASONING TRADEOFFS
	4.1 Modular vs. Non-Modular Reasoning
	4.2 Case analysis vs. Abstraction
	4.3 Explicit Invocation vs Implicit Invocation
	4.4 Explicit Announcement vs Implicit Announcement

	CHAPTER 5: REASONING SCENARIOS AND THEIR PROOF RULES
	5.1 Algebra of Specifications
	5.2 The Reference Scenario
	5.3 The Object Oriented Scenario
	5.4 II/EA Scenarios
	5.4.1 II/EA Full Delivery Scenario
	5.4.2 II/EA Single Delivery Scenarios
	5.4.2.1 II/EA PtolemyRely Modular Scenario
	5.4.2.2 II/EA Ptolemy Modular Scenario
	5.4.2.3 II/EA Behavior-Preserving Modular Scenario
	5.4.2.4 II/EA Non-Modular Individual Refinement Scenario

	5.5 AO Scenarios

	CHAPTER 6: EVALUATION
	6.1 Soundness of Scenarios' Proof Rules
	6.1.1 Single Delivery II: PtolemyRely
	6.1.2 Full Delivery II
	6.1.3 Single Delivery II: Non-Modular Individual Refinement

	6.2 Reasoning Cases
	6.2.1 II/EA Full Delivery Reasoning
	6.2.2 II/EA Ptolemy Reasoning
	6.2.3 II/EA PtolemyRely Reasoning
	6.2.4 Modular Behavior-Preserving Reasoning
	6.2.5 Non-Modular Individual Refinement Reasoning

	CHAPTER 7: CONCLUSION
	7.1 Tradeoffs and Reasoning
	7.2 Scenarios
	7.3 Future Work

	LIST OF REFERENCES

