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ABSTRACT

Specification languages have long featured ways to describe what
does not change when an imperative procedure is executed: the so-
called frame problem. Solutions to the frame problem are needed
for formal verification in imperative programming, as otherwise a
verification would not be able to accumulate information from one
statement to the next. Region logic is one of the approaches to
solving the frame problem. We present a modified version of re-
gion logic with fine-granularity and introduce conditional effects
that allows one to specify more precise frame conditions.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software Program Verification—
Class invariants, correctness proofs, formal methods, programming
by contract, object orientation; D.3.1 [Programming Languages]:
Definitions and Theory—Classes and objects, modules, packages;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—Assertions, invariants, log-
ics of programs, pre- and post-conditions, specification techniques

General Terms
Verification, Language

Keywords
Region logic, framing, formal specification, formal verification,
Hoare logic

1. INTRODUCTION

In a formal specification language, frame properties describe what
is allowed to change and thus what does not change when an im-
perative procedure is executed [5]. There are two common ways of
expressing frame properties. One is a clause in a procedure’s spec-
ification (such as modifies, assignable and wr) to specify
write effects [2, 3] by listing a set of abstract locations that may be
changed in a method. Another is using post conditions, such as a
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= old(a), which says a’s value is the same as the value before
the method call. Dynamic frames [7, 8] techniques, such as Dafny
[10] and region logic [2, 3], use unconditional effects that usually
over-approximate write effects. That means locations where the
values are preserved in some conditions also appear in frame con-
ditions. Consequently, one has to specify which parts of the specific
objects are not changed in post-conditions.

We explain the problem of unconditional effects by a toy example
written in FRL. It is an adaption of the Dafny’s solution [10] to the
problem #4 in the VSI benchmark [?]. The purpose of this example
is to overview the FRL language and to illustrate the issues of un-
conditional effects. The detailed implementations of the functions
and methods are omitted. And we also only show some excerpts of
the specifications that are related to the issues that we are discussing
in this paper. The FRL! programing language is a sequential pro-
gramming language. A FRL program can consist of a set of classes
with fields and methods. The example in Fig. 1 shows a generic
map implemented by an acyclic list. The keywords requires
and ensures are used to specify method preconditions and post-
conditions, and the keywords reads and modifies are used to
specify read effects [2, 3] and write effects. Read effects describe
a set of locations that expressions depend on. Method Init is a
map’s constructor; it can be used on the right-hand side of an as-
signment statement. The use of £resh in its postcondition allows
one to add newly allocated Node to fpt. The ghost variable
fpt, declared as type region, is used to store abstract locations
of a map, which is a map’s dynamic frame. fpt needs to be explic-
itly updated when the map changes, as in method Add. Such state-
ments involving regions cause ghost state changes, which must
not affect the programs’ control flow. For example, regions cannot
appear in the tests of branching statements. Function® Valid de-
scribes the structure of a map by logic formulas. In this example,
Valid is considered as an invariant, which must be kept valid af-
ter a map is initialized, and before and after each method call. The
detailed implementation of Valid is omitted. The method Add
updates the value of the key, k, with a new value, v, if it is already
in the map, otherwise, a new key-value pair, (k, v), is prepended
to the map.

The frame condition, modifes fpt, means all the locations in the
map may be modified by the method Add. It over-approximates
Add’s real write effect, since if k is held by a key-value pair, p, in
the map, only the location region{p.val} will be changed; oth-
erwise only the location region{this. fpt} will be changed.

'FRL language is a blend of Dafny [10] and VERL [11].

2Functions in FRL are boolean-valued methods that have no write
effects.



So one has to specify that the value of the extra locations are pre-
served. For example, the specification in line 22 means all the val-
ues of the key-value pairs, whose key is not k, are preserved. The
expression old (fpt) denotes the values in the pre-state. That
is the value evaluated before Add executes. We call such a post-
condition a make-up frame condition. The condition o.key =
old (o.key) in line 21 is also a make-up frame condition. If
we allow one to specify frame conditions more precisely, then the
make-up frame conditions can be avoided, such as the following
frame condition and postcondition:
modifies if Find(key) = null then region{this.fpt}
else region{Find(key) .val};

ensures Valid() && fresh(fpt - old(fpt));
ensures 3J region{o.*} & fpt. (o.key =

The frame condition uses the pure method Find that returns the
reference that holds k if it is in the map, otherwise returns null ref-
erence. The technique of pure methods in region logic is discussed
in Banerjee and Naumann’s work [1], and is out of the scope of this
paper. The frame condition says if there is an object, p, that holds
the key, k, then the location region{p.val} can be modified, oth-
erwise the location region{this.fpt} can be modified. Because
the frame condition is much more precise than the one in Fig. 1, the
make-up frame conditions are avoided in the post-condition. The
conditional effect is caused by conditional statements in the pro-
gram where mutually exclusive conditions branches the execution
traces of programs. Our CONMASK1 and CONMASK?2 rules dis-
cussed in section 5 can drop the condition. Therefore conditional
effects do not necessarily increase the complexity of the composi-
tions of effects.

Contribution: in this paper, we propose a fine-grained region logic.
It defines a region as a set of locations, that is as ghost state in a
program that can be mentioned in a modifies clauses. We introduce
a novel if-then-else effects, 1f £ then €; else €3, which allows
one to specify frame properties more precisely. Such conditional
effects are our major contribution.

2. RELATED WORK

Our work is an adaption of region logic [2, 3]. To ease compari-
son, we try to use the same symbols and definitions as the work [3],
such as fipt function and the separator */.. Our work has two major
differences from region logic. (1) In region logic, regions, G, are
sets of references, possibly containing null [3]. For example, {o}
is a region containing a singleton object o. Image expressions 0" f
denotes the location which corresponds to our region{o.f}. Our
work made an extension to region logic to uniformly use sets of lo-
cations, which one can think of as sets of pairs of object references
and field names; for this reason we call our region logic a “fine-
grained” region logic. Using sets of locations is also a good match
for specification languages such as JML [6], in which frames are
specified in terms of sets of locations. The pair (null, f) is not
allowed in the regions of our languages’ semantics. Since we re-
defined region expressions, the fipt function and */ are re-defined.
(2) The work on region logic [2, 3] does not consider conditional
effects. Recent work [1] considers a logical analysis of framing for
specifications with pure method calls. Our work can also be used
in method calls with side effects. We re-defined the frame judg-
ments and the new /- definitions based on our new syntax. Due
to the introduction of conditional effects, we revised the definition
of the POSTTOFR, FRTOPOST, VARMASK and FIELDMASK
rules, and also introduce the CONEFF, CONMASKI1 and CON-
MASK? rules in proving program correctness. These are our con-
tributions.

key && o.val = val);

class Node<Key,Value> {

var key: Key; var val: Value;
var next: Node<Key,Value>;

}

class Map {

var head : Node<Key, Value>;
ghost var fpt: region;
function Valid() : bool{ ... };

constructor Init ()

modifies region{this.x*};

ensures Valid() && fresh(fpt - region{this.=x});
{

fpt :=
}
method Add(k: Key, v: Value)

requires Valid();

modifies fpt;

ensures Valid() && fresh (fpt - old(fpt));
ensures J region{o.x} & fpt.

region{this.«}; head := null;

(old(o.key)=k => o.val=v && o.key=old(o.key));
ensures V region{o.x} € old(fpt).
(old(o.key) != k => o.key = old(o.key) &&
o.val = old(o.val));
{
var p = Find(k);
if (p = null) {
var h := new Node<Key, Value>;
h.key := k; h.val := v; h. next := head;
fpt := fpt + region{h.x};
} else { p.val := val; }

}

pure method Find(k: Key)returns (p: Node<Key,Value>)
requires Valid();

reads fpt;
ensures p = null => V region{o.*} € fpt. (o.key!=k);
ensures p != null => region{p.*x} S fpt && p.key = k;

...

Figure 1: The toy example of Map

The work [9, 12, 13] allows one to write specifications for different
cases. For example, the keyword also is used in [6]. We consider
it as a syntactic sugar for our conditional effects.

3. AN OVERVIEW OF FRL

The FRL ® programing language is a sequential programming lan-
guage. A FRL program can consist of a set of classes with fields
and methods. The keywords requires and ensures are used
to specify method preconditions and postconditions, and the key-
words reads and modifies are used to specify read effects [2,
3] and write effects. Read effects describe a set of locations that
expressions depend on. The decreases clause specifies termi-
nation conditions for recursive methods.

The code in Fig. 2 shows a linked-list example written in FRL.
To simplify the presentation, the specification only describes the
shape of a linked-list. Method Init is a list’s constructor; it can
be used on the right-hand side of an assignment statement. The
use of fresh in its postcondition allows one to add newly allo-
cated Node to fpt. The ghost variable fpt, declared as type
region, is used to store abstract locations of a linked list, which
is a list’s dynamic frame. fpt needs to be explicitly updated when
the list changes, as in method Append. Such statements involving
regions cause ghost state changes, which must not affect the pro-
grams’ control flow. For example, regions cannot appear in the tests

SFRL language is a blend of Dafny [10] and VERL [11].



class Node {
var val: int; var next: Node; ghost var fpt: region;
function Valid(): bool
reads this, fpt; {
region{this.x} <= fpt &&

(this.next == null ==> region{this.x} == fpt) &&
(this.next != null ==> region{next.x} < fpt &&
next.fpt <= fpt && ! (region{this.x} <= next.fpt) &&
fpt == region{this.x} + next.fpt && next.valid()) }

constructor Init (d: int)
modifies region{this.x};

ensures Valid() && val == d && next == null;
ensures fresh (fpt - region{this.x});
{ wval := d; next := null; fpt := region{this.x}; }
method Append(v: int, n: Node) returns (ret : Node)
requires n == null || n.Valid();
modifies n != null => n.fpt;
ensures ret != null && ret.valid();
ensures n == null ==> fresh(ret.fpt);
ensures n != null ==> n == ret &&
fresh (n.fpt - old(n.fpt));
decreases if n == null then region{} else n.fpt;
{ if(n == null){ ret := new Node.Init (v);
lelse { n.next := Append(v, n.next);
n.fpt := n.fpt + n.next.fpt; ret := n;}}

Figure 2: A linked-list example

of branching statements. Function® Valid describes the struc-
ture of a linked-list by logic formulas. In this example, Valid
is considered as an invariant, which must be kept valid after a list
is initialized, and before and after each method call. The frame of
Append is specified by a conditional effect. One could specify
it by modifies n.fpt. But the problem is when n = null,
n. fpt dereferences null reference, which makes no sense. The
conditionn != null is necessary to have meaningful frame con-
ditions in the common programming concept, although the work of
region logic [2, 3] defines null.fpt as an empty set.

4. PROGRAMMING LANGUAGE

This section presents the FRL programming language for which we
formalize the programming logic.

4.1 Syntax

Fig. 3 shows the syntax of the FRL language. A program consists
of a statement S in the context of some class declarations. A class
consists of fields and methods. A field is declared with type: in-
teger, boolean, a user-defined datatype, or region. A method is
declared in a class. In a method implementation, there are local
variable declarations, update statements, condition statements, and
loop statements. Unlike the type rgn in region logic [2, 3], which
ranges over sets of references, the type region stores locations of
fields. Each field’s location is represented by a pair of an allocated
reference and a field name. The region expression region{} de-
notes the empty region. For each x that evaluates to an non-null ob-
ject, a region expression of the form region{x.f} denotes a sin-
gleton set that stores the location of field f in the object that is the
value of . The form region{z.x} denotes a set containing the
abstract locations represented by the reference x and all its fields .
A region expression of the form £ilter{RE, C, f} denotes one
of the two meanings: if f’s type is region, it is the union of all
the regions o. f, where (o, f) is in RE and o has type C'; otherwise,

*Functions in FRL are boolean-valued methods that have no write
effects.

Since we are not considering subtyping, the fields in
regionf{z.x} are based on the static type of the reference denoted
by x, which will also be its dynamic type.

it is the location of form (o, f) , where each object reference, o, has
the type C'. A region expression of the form filter{RE, C} de-
notes the subset of RE with references of type C. For example,
let RE = {o1.f1,01.f2,02.f}, where only o, has type C, then
filter{RE,C} = {o01.f1,01.f2}. The operators +, —, and *
denote union, difference and intersection respectively.

Class ::= class C { Member }
Member ::= Field | Method
Field ::= var f:T

Method ::= void m(x:T)returns (x’ :T){ S }
T ::= int | bool | C | region
E:=n|x| null | E®E
RE ::= x | region{} | region{x.f} | region{x.x}
| £filter{RE,C,f} | filter{RE,C}
| RE; ® RE-
F = E | RE

S u= var x:T; | x:=F; | x1:=x2.f; | x.f:=F;
| x:=new C; | if E then {S;} else {S:};
| while E {S}; | $152

@D : =
® u= + | — | =

Figure 3: The syntax of FRL language.

We use I for type environments, which map variables to types:
I' € TypeEnv = var — T. The typing rules for expressions is
defined in Fig. 4, for region expressions are defined in Fig. 5, and
for statements are defined in Fig. 6.

4.2 Semantics

The set Loc represents locations in a heap. The semantics uses
a store o, which is a partial function that maps a variable to its
value, and a heap H, which maps from an object reference and a
field name to that location’s value. A Value is either a Boolean,
an object reference (which may be null), an integer or a set of
locations:Value = Boolean + Object + Int + PowerSet(Loc).
Region expressions evaluate to regions, i.e., sets of locations. A
program I'-state contains a store and a heap: I'-State=Store x Heap.
Type is a function that takes a reference and a store and returns the
type of the reference. Also fieldNames is a function that takes a
class table and a type and returns a list of the names of the de-
clared fields of the type. Fig. 7 shows the semantics of expres-
sions and region expressions. The semantics of statements is stan-
dard.  The disjointness of two regions can be represented by
RE:, * RE; = region{}. We use RE1!!RF> as a syntactic
sugar for this boolean expression.

S. ASSERTION LANGUAGE

In this section, we formalize RSL’s assertion language.

5.1 Syntax and semantics of assertions

The syntax of assertions is shown in Fig. 9. We call the first three
atomic assertions. Quantification is restricted in the syntax. Quan-
tified variables may denote an int, or a location drawn from a
region. The typing rules for assertions are in Fig. 10. The seman-
tics of assertions are shown in Fig. 11. RE; < RF> means RE;
is subregion of RFE5>. Note that the semantics identifies errors (err)
with false.



IF'~a:T where (T'z) =T I' - null : C where isClass(C) I'-n:int

I'~Ei:Th I'-Es: T I'-®: 7Ty -1 > T
I'-E1®E: T

Figure 4: Typing rules for expressions. The predicate isClass returns true just when C' is a declared class name in the program.

M-az:C where isClass(C)
I I region{z.f} : region and (f :T) € fields(C)

I'  region{} : region

T'+ax:C . I'— RE : region
- - where isClass(C) - -
I' - region{z.*} : region I'— filter{RE,C, f} : region
I'- RE: ! I' - RE: : ion, I' - RE>: i
region where isClass(C) 1 : region > : region

'+ filter{RE,C}: region '+ RE1 ® RE> : region

Figure 5: Typing rules for region expressions. The predicate isClass returns true just when C' is a declared class name in the program. The auxiliary function fields takes a class
name and returns a list of its declared field names and their types.

'-z:T,T+-F:T 'z :T, T a2 f:T '-z.f:T,I'+-F:T
I'-varz:T;:0k(T,z:T)

Pz := F;:ok() D'k z1 o= za.f;: 0k(T) P x.f = F;:0k(D)
F'+z:C,T+new(C:C 'k E:bool, '+ S1:0k(l1), T'+ Sz : 0k(T2) I'HE:bool, T'S: ok(I)
'z := newC;: ok(I) I' - if E then{S:}else {S2};: ok(I") I' - while E {S};: ok(T)

'Sy OIC(PN)7 I Sy Ok(F,)
'~ S5185:: Ok(F,)

Figure 6: Typing rules for statements.

& : E — TypingJudgment — State — Value

EIl +2z:T(o,H) = o(x) ET+HEL1®E2 : T|(0,H) =
E[T + null: Cf(o, H) = null letv; = E[T'+ E1 : T](o, H)in
EIT + n:int](o, H) = Nn] letvo = E[T'+ Ez : TN (o, H) in vy MO[@] v2
R : RE — TypingJudgment — State — Value + {err} R[T + filter{RE,C, f} : region](c, H) =
letv = R[I'+ RE : region]|(o, H)in
R[T + region{} : region](o, H) = & if v # err then
R|I + region{z.f} : region](c, H) = if f : region € fieldNames(CT, C) then
if o(z) # null then {(c(x), f)} else err U{H]Jo, f1l(o, f) € v A Type(o) = C}
R[T + region{z.x} : region]|(c, H) = else {(o, f)|(o, f') € v A f' = f A Type(o) = C}
if o () # null then else err
{(o, /)| (f:T) € fieldNames(CT,T'(z))} else err R[T + RE:1 ® RE- : region] (o, H) =
R[T + filter{RE,C}: region](c,H) = letvy = R[[I'+ RE : region](c, H) in
letv = R[I'+ RE : region](o, H)in letv; = R[[I'+ RE : region](c, H) in
if v # err then {(o, f)|(o, f) € v A Type(o) = Clelse err if v1 # err A vy # errthen vi MO[Q®] v2 else err

Figure 7: Semantics of Expressions. A is the standard meaning function for numeric literals. The function MO gives the semantics of operators [4].



I'HEL:T, I'Ex: T
FI—E1=E2:bOOl

'+a.f:T, T'—E:T
I'x.f =FE:bool

I' - RE, : region, I' - RE; : region
I'- RE1 < REs :bool

I'+ P :bool, I' - P, : bool I'- P :bool, I' - P, : bool I' - P :bool I'z:int - P : bool

I'- P && P, : bool

I' - RE : region, T'z:C} P :bool
I'-V(z, f) e RE.P : bool

I'- RE : region,

FI—Pl ||P2 : bool

where isClass(C)

I' - =P :bool I' - Vz:int.P : bool

I'z:int — P :bool
I'3dxz:int.P : bool

I'z:C+ P:bool

I' - 3(x, f) € RE.P : bool

where isClass(C)

Figure 10: Typing rules for assertions. The predicate isClass returns true just when C' is a declared class name in the program.

o, HEVE1 =Ey = E[T+E1:T|(o,H) = &[T+ E2 : T](o, H)

r —
o HE z.f=F < {false

Hlo(z), fl=E[T +E:T\(o,H) ifo(z)# null and(o(z), f) € dom(H)

otherwise

R[I' - RE: : region]|(c,H) € R[[I' - RE> : region](c, H)

o, H =" RE; < RE; <«

if R[I' + RE; : region](c, H) # err,and i = 1,2

false otherwise

o H=EY PL&& Py < o,HEY Plando, H Y Py
o HEY Pl Py = 0, HEY Proro,HED Py
o HEY =P «— o, H¥' P

o, HE=N Ve int. P — Sorallv.(o[x — v], H pTe:int P)
forallo,C.((o, f) € RT I RE : region]|(co, H) and type(o) = C and

o,H E" Vregion{z.f} S RE.P —
false

o, HE Jz: int. P < ewistsv. olr —»v],H lheint p

olz — o], H "¢ P)

if R[T - RE : region](o, H) # err
otherwise

exists 0,C.((o, f) € R[I' - RE : region](c, H) and type(o) = C and

o,H =" 3region{z.f} £ RE.P +——
false

olr—o|,H Elhec pP)

if R[T" + RE : region]|(c, H) # err
otherwise

Figure 11: Semantics of Assertions

5.2 EFFECTS

Effects (e) are used in frame conditions. The keyword modifies

specifies write effects and reads specifies read effects. fresh(RE)

means all the locations in RE did not exist (were not allocated) in
the pre-state. We introduce a conditional effect: if E then ¢;
else eo; it denotes that if £ # 0, the effect is €1, otherwise the
effect is €.

€ == (empty) | €,¢ | if E then ¢; else e
| reads RE | reads x | modifies RE
| modifies x | fresh (RE)

The latter five forms are called atomic effects. We omitmodifies
and reads when the context is obvious. For example, in a mod-
ifies clause we write if £ then RE else x instead of if E
then modifies RE else modifies x. And if E then ¢
is an abbreviation of 1f E then ¢ else (). A verified method
must make sure that the actual write effect in the method is the
sub-effect of the specified effect in the frame condition. Consider
verifying Add’s frame condition in Fig. 1. The frame obligation
in line 30 is: region{this.fpt} < (if Find (k) = null then
region{this.fpt} else region{Find(k).val}) with the as-
sumption Find (k) =null. We use the sub-effect rule [4] to reason
about such cases. It encodes the standard properties of sets.

5.3 Framing

Let R be the region that the frame condition of a method, m, spec-
ifies in a given state. R contains the locations that may be modified
in m. The locations that are preserved are the compliment of R,
written R. Let R’ be locations that may be used in evaluating an
assertion, P, written reads R’ frmP.If R’ € R, i.e., R'R, then
P’s validity is preserved after m is called. We use fipt in Fig. 14
to define R’ for expressions, atomic region expressions, and atomic
assertions. The frame judgment, P ' § frm @, means that in the
type context I', § contains the locations that are needed to evaluate
Q in a state that satisfies P. Note that we use ¢ to denote reads ef-
fects and € to denote write effects, and I is omitted when the type
context is the same in the judgment. Fig. 15 shows the judgment
for non-atomic region expressions and assertions.

Definition 1 says that if two states agree on a read effect, §, then
the values of the expressions that depend on § are identical.

Definition 1. (Agreement on read effects) Let  be an effect that
is type-checked in T'. Let IV 2 T'and I 2 T'. Let o and o’ be

. s,
I"-state and I'”-state respectively. o and ¢’ agree on 6, o = o, if
and only if:

1. forall reads x € §, o(x) = o' (x)
2. for all reads region{z.f} < 6, &[T+ a.f : T](0) =
EIT b x.f : T] (o).



P+ RE; < REs

P+ RE> < RE3 PP=P P+ RE, < RE;

- region{} < RE + RE < RE

- RE1 < RE1 U RE> —RE1 — RE>; < RE,

FID(z)=C

P+~ RE: < RE3

I region{z.f} < RE

P'+ RE\ < RE»
—RE1 " RE>; < RE, —RE1 " RE>; < REs

I region{z.f} < filter{RE,C, f}

I region{z.f} < region{z.x}

- filter{RE,C, f} < filter{RE, C}

F region{z.f} < filter{RE,C, f}

I filter{RE,C, f} < region{z.f}

P+~ RE, < RE,

P+~ RE,

P filter{RE:,C, f}

<
= - filter{RE,C} < RE

filter{RE,,C, f}

RE>

P filter{RE:,C}

IN|IN

filter{RE,,C}

Figure 12: Sub-region rules.

, , €' is a write or read effect ,
Fe<e Fe€e <e,¢ ; - fresh RE,e < ¢ false e <€
e<ee
Pre <e Ple<es P =P Plre <e Plre <e
Pre <es P e <e P e, e<ee

- modifies RFE:1, RE>

I modifies filter{RE,C, f} < modifies RF

RFE; < RE> - modifies REy < modifies RF>

PAFE1#0AFEy#0F €1 <e3
PAE1#0AFE;=0F¢1 < e

- if Ethene; elsees < €1, €2

S modifies RE: + RE>

<
>

- reads RFE1, RE> reads RE; + RE->
I modifies filter{RE,C} < modifies RE
RFE, < RE> + reads RE, < reads RE»

PAFE1=0AFEs#0F €2 <es
PAE1=0AFE;=0F¢3< €4

P if E1thene¢; elseecy; < if Es thenes else ey

Figure 13: Subeffect rules. The sub-region rule is defined in Fig. 12.

Definition 2 says that if two states agree on a read effect, §, then
the validity of assertions, (), that depend on that read effect are
preserved under condition, P.

Definition 2. (Frame validity) P ' § frm Q is valid,

P " § frm Q, if and only if for all states o, o', if &
o=V P AQ, theno' EN Q.

written

o’ and

Lemma 1. (frame soundness of expressions) Let o and ¢’ be arbi-

fipt(T,E)

trary states. Let E be an expression. If o o’, then

EIT+E:T|(o) =E&[T + E: T](c").

Proof. The proof is straightforward by structural induction on ex-
pressions. O

Lemma 2. (frame soundness of atomic region expressions) Let o
and o’ be arbitrary states. Let RE be an atomic region expression.

1t 0 """ o/, then R[T + RE : region]|(c) =
R[T + RE : region]|(c’)

Proof. The proof is straightforward by structural induction on atomic
region expressions. O

Lemma 3. (frame soundness of assertions) Every derivable fram-
ing judgment is valid.

Proof. By induction on a derivation of a framing judgment P
0 frm@. The proofis similar to [3]. We leave it as future work. [

We use */- to define the disjointness on effects in Fig. 17. The region
disjoint rules are defined in Fig. 16. We treat reads ¢, where
¢ is not a conditional effect, as reads if true then § else .
For example, Let RE be if z.f=0 then region{y.f} else
region{}. Suppose z # y and z.f # 0. The separation of
reads region{y.f} and modifies RF is reduced to reads
region{y.f} / modifies region{}.

Lemma 4. Let RE; and RFE> be two regions. Let o be a state. If
o EY RE; ' RE,, then reads RE; /- modifies RE> and
reads REF, /modifies RE;.

The following lemma says if read effects, J, and write effects, € are
separate, then the values on J are preserved.

Lemma 5. (separator agreement) Let o
MS[T - S : ok(I)[[(CT)(0). Let € be the write effect of exe-



_ fipt(region{xz.x}) = readscz
) C eadsr fpi(ilter(RE,f}) - fpi(RE)
ﬁit( ull) - & fipr(filter{RE,C,f}) = fipt(RE)
fipt(Ey ® E2) = fpt(D B fipi(T Es)  PIEEL @ RES) — foiRE) fip RE,)

- . _ fipt(Ex = E2) = fipt(Er), fipt(E2)
ftpt(reglon{}) 9 fipt(x. f E) = reads z,region{z.f},/fipt(E)
fipt(region{z.f}) = readsz P B » £eg I3 I

firt(REL < RE») = fipt(REL), fipt(RE2)
Figure 14: Footprint of expressions, atomic region expressions and atomic assertions

FRMFTPT FRMSUB FRMCON]J

P is atomic RE 6 frmQ@Q QF 61 <02 P=R PrEGS frmQa PE 6§ frmQaq
true + fipt(T, P) frm P P+ 02 frm @ P frm@Qi&&Q2
FRMDISJ FRMFTPTNEG FRMY:
Pr4dfrmQa P+ §frm Qo P is atomic P D®int 5 reads z frm Q

P 6 frmQ1]|Q2 true + fipt(T, P) frm —P PrEéfrmVa:int Q

FRMV3

I'z:C

P+ readsfipt(I', RE) < ¢ P A reads region{x.f} <J ¢, reads z, region{z.f} frm Q

P+ 6 frmVregion{z.f} € RE.Q

FRM3,
PE=int 5 reads z frm Q

PI—F(SfrmH;r:intQ

FRM3q
P+ readsfipt(I', RE) < § P A reads region{z.f} < 6 "¢ §, reads z, region{z.f} frm Q

P+ § frm3region{z.f} € RE.Q

Figure 15: Rules for the framing judgment.I" is omitted when it is the same in the judgment.

) ~ RE, ! RE, Ffe=fy P RE, < RE; P\ RE>!'RE;
I region{}!! RE - -
— RE> ! RE; I region{z.f,}!! region{y.f,} P~ RE{!' RE;
P'=P P\ RE|!'RE, ~ RE:!! RE
P — RE,\!' REs = filter{REl, 6'17 f1} " filter{REQ, 02, fg}
FC1 # C2 Hf1# [
— f:i.l‘l:ell’.‘{PiE‘l7 Cl, fl} ” filter{REQ, CQ, fg} I— filter{REl, Cl, fl} ” filter{REQ, CQ, f2}
= RE1 ' RE, FCy # Ce
I— filter{REl, Cl} ” filter{REg, 02} I— f:i.:l.‘l',ell'.'{]’%EH7 Cl} ” filter{REg, CQ}

Figure 16: Disjoint region rules

reads RE; / modifies RFE>; = RE1!! RE; readsy/modifiesz =y #x
0 */- € = true for all other pairs of atomic effects ¢ / € = true in case § or € is empty

6/ (e€)=(0/)€ n(d)¢€) (6,0") fe=(6/)e€) A (& /e
if E then §; else §2 b1/ if P&&P
/ _ 51 / €2 if P && “P/
if F' thene¢; else € T ) d2fer if —P&&P
(Let P — E +# 0,and P' — E' + 0) Sy )es if —P&&—P

Figure 17: Separator. ¢ is read effect and e is write effect. The region disjoint rules are defined in the technique report [4]



MS : TypingJudgment — ClassTable — State| — State |
MS[T + (varz : T;) : ok(D)[(CT)(p, 0, H) =
cases 1" of
C — (p[z — C,o[z — nitVal(C)], H)
else (p, o[z — initVal(C)], H)
end
MSIT b (& := Fs) : ok(D)](p, 7, H) =
let T = typeOf(T', x) in
letval = E[T + F:T|(p,H,0)in
if val # errthen (p, o[z — val], H) else L
MSIT = (x.f := F;) : ok(D)][(p, 0, H) =
letvi = E[T+x.f:T]p,o0,Hin
letvs = E[L - F: T[p, o, H in
if v1 # err A v # errthen (p, o, H[vi — v2]) else L
MS[T b (x1 := x2.f) : k(D) (s, H) =
letvy = E[T - x1 : T]p,0,H in
letvy = ET + x2.f : T]lp, 0, H in
if v1 # err A va # errthen (p,o, H[vi — v2]) else L
MS[[(z := new C;)]p,0, H =
let (I, H') = allocate(C, H) in
let (fi,...,fn) = fieldNames(C) in
let o/ = o[z — []in
(p7 Ulv H/[(U/(I)v fl) — 07 S (O’,($)7 fn) = 0])
MS|T + (if E then{S:}else{S2};) : ok(T')[|(p, 0, H) =
letv = E[T'+E:T]p,0,Hin
cases v of

true — MS[T - S1: ok(D)]|(p, 0, H)
false - MS[T Sz : ok(T')]|(p, 0, H)
else |

end

MS|T + (while E {S};: ok(D)](p,0, H) =
fit(Ag.As.

letv = E[T' - E : bool]|(p,0, H) in

cases v of

true — lets’ = MS[T'+ S : ok(I')]|(p, 0, H) in gs’
false — s
else |
end)(p, o, H)
MS|T + (S152) : ok(D)[[(p, 0, H) =
let s’ = MS[T I S1:ok(I)](p, 0, H) in
if s’ # L then MS[[T - Sa : ok(I")]|(s’) else L

Figure 8: The semantics of statements. The allocate function takes the heap and the
class name as parameters, and returns a location and a new heap. We define a function
initVal that takes the variable’s type as a parameter and returns an arbitrary value of
that type.

—_—

— OO0 R W —

P..

= FE1=E> | X.f=E | RE1<RE2‘ P1&&Po | P | P2
|

| V x:int.P | V region{x.f}S RE.P
Jx:int.P | 3 region{x.f}<RE.P

-

Figure 9: The syntax of assertions

cuting S. Let § be a read effects, such that 0’ = §/-€, then o LAy

Proof. We leave it as future work.

6. PROGRAM CORRECTNESS

The validity of a Hoare-formula { P}S{Q}[¢] means that if a pro-
gram, S, executes from an initial state satisfying P, S does not
cause an error, and S terminates, then the final state satisfies @,
and any change happens in €. For simplicity, we omit modifies
when expressing the write effects. It means that if one can prove
that a statement, .S, can have different effects under the comple-
mentarity conditions, E # 0 and E' = 0, then one can conclude a
conditional effect for S. Examples of using CONEFF rules are in
our technical report [4]. We derive the IF2 rule with the IF rule in
the work of region logic [3]:

IIE {P AE #0}S1 {P'}e] F{P A E=0}S:{P}e]

I {P}if Ethen S else S2{P'}[¢]

The IF rule can over-approximates write effects in the sense that
€ is the union of the write effects of S; and S>. The derived
IF2 rule shows that if one can prove two branches with different
effects, then one can prove the IF statement with conditional ef-
fects, which gives a more precise frame condition, because the
write effects of IF statement is either those of S, or those of S
depending on the branch a program actually takes. To derive the
rule IF2, we begin with - {P A E # 0} S1 {P'}[e1], and +
{P A E = 0} So {P'}[e2]. Using the sub-effect rule, we have
PAE#0F ¢, <ifEthencielseccand PAE =0F €2 <
if E then €, else e2. Then we can derive the IF2 rule by using
the IF rule. Fig. 18 and Fig. 19 lists the axioms and structural
rules.

Consider the example:

S = iftthenz.f=>5elsey.f=5

P = z#ynrz.f=4ryf=4

P = t#0=zf=5)A(t=0=y.f=05)

e = iftthenregion{z.f}elseregion{y.f}

We do forward reasoning:

{x #y A x.f=4Ay.f =141}
if t
then {
{t #0 A x #y A x.f =4 A y.f =4}
x.f =5
{t # 0 A x #Fy A x.f =5 A y.f =4} [region{x.f}]
} else {
{t =0 A x #Fy A x.f=4 A y.f =14}
y.f :=5
{t =0 A x #y A x.f=4 A y.f =05} [region{y.f}]

}
Formula in line 6 implies

t#O0rnz#Fynra.f=5nryf=4)v

t=0nrz#yrz.f=4ry.f=05) S



Formula in line 10 also implies (1) that is equivalent to P’. Using
the rule CONSEQ, we derive:

F{t#0Arz#yArx.f=4ryf=4lxf:=5{P}

[region{z.f}] o

F{t=0Arz#yArx.f=4nryf=4y.f:=5{P}

region{y.f}]

Consider the formula (2). Since
F{t=0At#20Arz#yra.f=4ryf=4yf:=5{P}
[region{z.f}]
“
is vacuously true, we can use rule IF and derive to
F{t£0Az#£ynrzf=4nryf=4}S{P}

[region{z.f}] ®)

and

F{z#yrxf=4ryf=4nrt=0}S{P'}[region{y.f}]
14)

Consider the proof of the formula (13). Using the rule IF, one need
to prove
Fl{r#Ayrxf=4Aryf=4At#0At#0}xf:=5{P}
[region{x.f}]
15)
and
Flz#yrzf=4Ayf=4At=0At#0y.f:=5{P}
[region{y.f}]
(16)

The formula (16) is vacuously true. The other formula can be
proved by the rules FRAME and FIELDUPD. Consider the exam-

ple in Fig. 1; the execution of S; causes the write effect, region{this. fpt},
and the execution of Sy causes the write effect, region{Find (key) .val}.
So we can prove that the frame condition is 1f Find (key) =

(6) null thenregion{this.fpt} elseregion{Find(key) .val}.

Similarly, we can derive (3) to
F{t=0Arz#£ynrz.f=4nryf=4}S{P'}
[region{y.f}]

Using the rule CONEFF, we can prove { P} S{P'}[e].
We do backward reasoning:
Approach 1 with the rule IF:

Using the rule IF, we need to prove
Flez#yraf=4ryf=4nrt#0}xf:=5{P}e ()
and
Flrtynaf=4nryf=4rt=0}y.f=5{P}e ®

Consider the formula (7), sincex # y Anx.f =4 Any.f =4 At #
0 = t # 0, using the rule CONMASKI, the proof obligation can
be discharged to:

Fl{x#yrxf=4Ayf=4At#0}xf:=5{P}
[region{z.f}]

Let@bex # y Ay.f =4 At # 0thatis the frame. Let § be
reads z,vy,y.f,t. Since

z.f=4F6 frmQ (10)

®

and
c#Eync.f=4nryf=4rt#0=>
0/modifies region{z.f}

Using the rule FRAME, the proof discharged to

F{z.f =4}z.f := 5{z.f = b}[region{x.f}] (12)

Using the rule FIELDUPD, one can prove (12). The formula (8)
can be proved in a similar way.

an

Approach 2 with the rule CONEFF:

Usint the rule CONEFF, we need to prove

Fl{r#yarxf=4ryf=4nrt#0}S{P'}[region{z.f}]
13)

Moreover, a more precise frame condition not only means fewer
locations that may be modified in some states, but also more lo-
cations are not changed and the validity of more assertions can
be preserved. Consider the FRAME °© rule in Fig. 18. Let Q
be o.data = 5 A o.valid = false, and € be modifies if
o.valid then region{o.data} else region{}, which is re-
duced to modifies region{} by the similar analysis in sec-
tion 4.1. § = reads o, o.data, o.valid, which frames Q. So J
/- modifies region{} by the definition of separator in Fig. 17.
Therefore we can prove () is the frame. If e approximates to just
region{o.data} without conditions, we cannot prove @ is the
frame.

We introduce two rules CONMASK]1 and CONMASK?2 that drop
conditional frames. The rule CONMASKI1 saysif if £ then RE;
else RF5» is in the frame condition, and £ # 0 is true in the pre-
condition, then it is sound to simplify the conditional frames to
RE,. The rule CONMASK?2 is similar.  One can always drop
conditional frames by appying the CONMASK1 and CONMASK?2
rules before applying the FRAME rule. Therefore, we can keep the
FRAME rule unchanged.

We also revised the rules POSTTOFR and FRTOPOST . They ma-
nipulate conditional freshness effects. Note that the un-conditional
freshness effects, £resh(RFE), can be considered as i £ true then
fresh(RE) else region{}. The special variable, alloc, has
type region, and contains all allocated locations in the heap. The
keyword old denotes values in the pre-state. If one can prove that
the postcondition of a statement, .S, implies that all fresh objects
may be allocated in region RE; or RFE> according to a comple-
mentarity conditions, E # 0 and E = 0. Then it is sound to add the
effect if £ then fresh(RFE;) else fresh (RE:) to S’s ef-
fect. The rule FRTOPOST is the reverse of the rule POSTTOFR. If
if Ethen fresh(RF;) else fresh(RE») is the fresh effect,
and reads old(alloc) separates ¢ in the post-condition P’, then it
is sound to conjoin old(E) # 0 = RE1 !! old(alloc) and old(E) =
0= RE> !! old(alloc) to the post-condition P’. The rules VAR-
MASKI1, VARMASK?2, FIELDMASK1 and FIELDMASK?2 drop
write effects. Consider of the example of proving {¢true} if

The frame rule is the same as the work [3]



true then x:= z{true}. Using the rule ASSIGN [4], CONSEQ
[4] and the rule IF, one can derive:

{true} if true then z := x {true}[if true thenz]. (17)

The variable y is not written by the statement. And in the pre-
state and post-state, x is equal to the value of y that is not changed.
So, P v P' = x = y is valid. And Therefore, using the rule
VARMASK]1, one can derive {true} if true then x:= z{true}
from (17). Similarly, FIELDMASK1 and FIELDMASK?2 are used
to prove, e.g., {z.f = 0} 1 £ true then z. f:=0{true}[].

Definition 3 defines the validity of correctness judgment.

Definition 3. (Validity) The judgment I' - {P} S {Q}[€] is valid,
written o =" {P} S {Q}[¢], if and only if: if o =T P, o’ =
MS]T = (S) : 0k(I)]|(0), and o’ # L, then ¢’ =" Q and the
effect from o to ¢’ is covered by e.

Theorem 1. Every derivable correctness judgment is valid.

7. EXAMPLE REVISITED

Consider the client code in the introduction. Before o. sync () is
called, we have the state that satisfies Q = {o.data = 5ro0.valid =
false}. The postcondition of o.sync(), P',is o .valid=>o.data=
6, and the frame condition, ¢, is 0. valid=region{o.data}.
Apply the rule CONMASK?2, we obtain the new frame, €', that
is region{}. Q’s read effects, J, is reads{o, o.data, o.valid}.
So §°/-c. Therefore, we can apply the FRAME rule, and conclude
that @ is valid after o.sync () is called. Therefore the assertion
assert o.data=5 is valid.
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ALLOC ASSIGN

Fields(C) = f: T v#e
i~ {true} & == new C{z.] = default(T)}[z, alloc, £resh(zegion{zs})] (v =a/}a = E{z = (E/v—a)}[a]
FIELDACC . FIELDUPD

{2 # null A 1 = z2} 2 := xa. f {& = 1. f}[x] fo # null o = Bya.f:= E{e.f = a'}[zegionz.f}]
SEQ
{P} S1 {P1}[e1, £resh(RE)]
{P1} So {P'}[e2, RE'] RE'<=RE ¢ isfresh-frre P\ ex/er  Pi - RE/(ea, RE")
— {P} $152 {P'}[ RE1, RE>, fresh(RE)]

IF 1IF2
F{P AE#0}S {P}e] F{P A E =0} S {P'}[e2] H{P A E # 0} S1 {P'}e1] F{P A E =0} S {P}[ez]

I {P}if Ethen S; else S2{P'}[if E # O then ¢; else ¢] I {P}if Ethen S; else S>2{P'}[if E then ¢; else ¢]

WHILE
F{I A E+#0}S{I}e RE] e is fresh-free I = RE !l old(alloc) P e/e modifiesalloc¢ e

b {I} while E do S{I A E = 0}]€]

Figure 18: axioms. alloc is a special variable containing the set of locations. The keyword modifies is omitted when there is no confusion.



FRAME
F{P}S{P'}e] PréfrmQ PAQ=d/e
={P A Q}S{P A Qj[e]

SUBEFF
- {P} S {P'}[e] Pre<e¢
= A{P} S {P'}[¢]

CONSEQ CONEFF
F{Pi} S {P}[e] P= P P =P F{P AE#0}S{P}[e] F{P A E=0}S{P}[e]
 {P2} S{Ps}[e] - {P} S {P'}[if E then¢; else ¢2]
CONMASK1

CONMASK?2
 {P} S {P'}e,if Ethene; else ¢2] P=E=0
= A{P} S {P'}[e, e2]

 {P}S {P'}[e,if Ethen ¢ else ¢2] P=E#0
HA{P} S {P'}[e, e1]
POSTTOFR
 {P} S {P'}[e] P = (E # 0 A RE1 ! old(alloc)) P = (E =0 A RE> ! old(alloc))
F {P} S {P'}[e,if E then fresh(RE;) else fresh(RE>)]

FRTOPOST
I {P} S {P'}[e,if E then fresh(RE;) else fresh(RE>)]
— {P} S {P' A (old(E) # 0 = RE!old(alloc)) A (old(E) = 0 = RE>!old(alloc))}
[e,if E then fresh(RE,) else fresh(RE)]

VARMASK1
I {P} S {P'}[if E thenr,¢; else ea¢] P=E#0 PvP =xz=y PAoldE)#0F reads y/(z,¢)
 {P}S{P'}[if Ethene¢; else 2, ¢|

VARMASK?2
I {P} S{P'}[if Ethene; elsex,cz,c] P=E=0 PvP =x=y P AoldlE)=0} readsy/(z,¢)
 {P}S{P'}[if Ethene; else 2, ¢|

FIELDMASK1
I {P} S{P'}[¢,if E then region{z.f},c1 elseecs] P =E#0
P’ A old(E) # 0 - reads =’/ modifies ¢ P’ A old(E) # 0 - reads y/modifies ¢
 {P} S{P'}e,if Ethene; else e2]

PvP =zf=y

FIELDMASK?2
I {P} S {P'}[¢,if E then¢; else region{z.f}, 2] P=E=0
P’ Aold(E) =0+ reads v/ modifiese¢ P’ A old(E) = 0 |- reads y/modifies ¢
 {P} S {P'}e,if Ethene; else e2]

PvP =zf=y

Figure 19: Structural rules. alloc is a special variable containing the set of locations.



