
Translating Separation Logic into
Dynamic Frames Using Fine-Grained Region Logic

Yuyan Bao, Gary T. Leavens, and Gidon Ernst

CS-TR-13-02a
March 2014

Keywords: Frame axiom, modifies clause, separation logic, dynamic frames, region logic, formal methods, Dafny language,
DafnyR language.

2013 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — Formal methods, programming by
contract; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions,
logics of programs, pre- and post-conditions, specification techniques;

Submitted for publication.

Computer Science
4000 Central Florida Blvd.

University of Central Florida
Orlando, Florida 32816, USA

2

Translating Separation Logic into
Dynamic Frames Using Fine-Grained Region Logic

Yuyan Bao Gary T. Leavens
Computer Science, University of Central Florida,

Orlando, FL 32816 USA
ybao@eecs.ucf.edu, leavens@eecs.ucf.edu

Gidon Ernst
Universität Augsburg, D-86135 Augsburg,

Germany
ernst@informatik.uni-augsburg.de

Abstract
Several techniques have been proposed for specification and
verification of frame conditions, making it difficult for spec-
ification language designers to know which to pick. Ideally
there would be a single mechanism that could be used to ex-
press specifications written in all techniques. In this paper
we provide a single mechanism that can be used to write
specifications in the style of both separation logic and dy-
namic frames. This mechanism shows common characters
between the two methodologies.

Categories and Subject Descriptors H.4 [Information Sys-
tems Applications]: Miscellaneous; D.2.4 [Software Engi-
neering]: Software/Program Verification—formal methods,
programming by contract

General Terms verification

Keywords Region logic, sequential programming, separa-
tion logic, dynamic frames, formal methods, frame axioms,
DafnyR language

1. Introduction
In Hoare-style reasoning about sequential, imperative pro-
grams, framing is important for verification. A method’s
frame describes the locations that the method may not
change [3]. Framing allows verification to carry properties
past statements such as method calls, since properties about
unchanged locations will remain valid.

Due to the importance of framing, many authors have
focused on methodologies for specification of frame condi-
tions and associated verification techniques

[Copyright notice will appear here once ’preprint’ option is removed.]

1.1 Separation Logic
Separation logic [8, 18] extends Hoare’s logic with reason-
ing about locations on the heap. The separating conjunction,
P ˚Q denotes that assertions P and Q hold in separate parts
of the heap. A binary tree could be defined in separation
logic as follows:

treeptq
def
“ pt “ nullñ empq ˚ pt ‰ nullñ t.val ÞÑ

˚ treept.leftq ˚ treept.rightqq.

Separation logic is concise because its frame rule allows ig-
noring separated parts of the heap during reasoning; for ex-
ample one can ignore the right subtree when reasoning about
the left subtree. Therefore, separation logic simplifies rea-
soning about data structures that consist of isolated substruc-
tures, such as acyclic linked lists and binary trees.

On the other hand, one cannot use separation when there
is sharing, as in a directed acyclic graph (DAG), where the
left and right sides of a DAG may share nodes. Specifying
sharing and framing for shared parts of a data structure is
challenging and tricky [21], and may need the ramification
operator [7].

1.2 Dynamic Frames and Region Logic
Unlike separation logic, dynamic frames theory [9, 10] uses
regions that are (conceptually) stored in variables to specify
frame properties. It defines a region as a set of locations.
Regions are represented by specification-only variables that
vary as a program’s state changes. Dafny [13–15] and region
logic [1] are two approaches that apply dynamic frames
theory.

1.2.1 The idea of Dynamic Frames
Fig. 1 shows code snippets specifying a linked-list pro-
gram written in Dafny [13–15]. Dafny uses modifies and
reads clauses to specify frame properties. The dynamic
frame is specified by the ghost field footprint. It stores
a set of object references including this and its successors
in the list. This property is defined in the function Valid.
Valid serves as an invariant that must be satisfied once a
Node object is created.

3 2014/3/25

1 class Node<T> {
2 var list: seq<T>;
3 var footprint: set<Node<T>>;
4 var data: T;
5 var next: Node<T>;
6 // constructor and other methods omitted
7 function Valid(): bool
8 reads this, footprint;
9 {

10 this in this.footprint && null !in this.footprint &&
11 (next == null ==> list == [data]) &&
12 (next != null ==>
13 next in footprint &&
14 next.footprint <= footprint &&
15 this !in next.footprint &&
16 list == [data] + next.list &&
17 next.Valid())
18 }
19 method Prepend(d: T) returns (r: Node<T>)
20 requires Valid();
21 ensures r != null && r.Valid() &&
22 fresh(r.footprint - old(footprint));
23 ensures r.list == [d] + list;
24 {
25 r := new Node<T>;
26 r.data := d;
27 r.next := this;
28 r.footprint := {r} + this.footprint;
29 r.list := [r.data] + this.list;
30 }
31 }

Figure 1. A linked-list code snippet specifying in the
styling of dynamic frame. Code snippets are from the Dafny
repository [12].

Compared to separation logic’s assertions that couple lo-
cations and their content, the dynamic frames technique al-
lows one to specify heap locations independently. For ex-
ample, the Prepend method ensures that one adds the new
frame (new node) to the ghost variable footprint. Al-
though this increases coding tasks, properties can be freely
specified by set operations and first-order expressions. Set
membership and disjointness can specify isolated structures.
For example, line 16 in Fig. 1 requires that this can not
be in its successor’s footprint, which guarantees acyclic-
ity. Moreover, first-order expressions can easily describe
arbitrary sharing properties. In the example of specifying
Schorr-Waite algorithm shown in Fig. 2, line 11 to 13 spec-
ifies a graph with random sharing. This flexibility is conve-
nient for use in verifying a traversal algorithm, where the
exact shape is not of concern. Furthermore, in the example
of binary trees with sharing defined in Fig. 3, because each
subtree stores its own children, the frame of part of unvisited
right subtrees can be calculated by right.ftp ´ left.ftp,
which is non-trivial in separation logic.

1.3 Motivation
As we have shown, each approach has its own advantages
and disadvantages. A single mechanism that can be used to
write specification in the style of both approaches can make
best use of each one’s advantages.

Region logic [1] was conceived as a way to write specifi-
cations that mimic those in separation logic, but which only

1 class Node {
2 var children: seq<Node>;
3 var marked: bool;
4 var childrenVisited: int; // other fields omitted...
5 }
6 method RecursiveMark(root: Node, ghost S: set<Node>)
7 requires root in S;
8 // S is closed under ’children’:
9 requires (forall n :: n in S ==> n != null &&

10 (forall ch :: ch in n.children ==>
11 ch == null || ch in S));
12 requires (forall n :: n in S ==> ! n.marked &&
13 n.childrenVisited == 0);
14 modifies S;
15 ensures root.marked;
16 // nodes reachable from ’root’ are marked:
17 ensures (forall n :: n in S && n.marked ==>
18 (forall ch :: ch in n.children &&
19 ch != null ==> ch.marked));
20 ensures (forall n :: n in S ==>
21 n.childrenVisited==old(n.childrenVisited) &&
22 n.children == old(n.children));
23 { /* ... */ }

Figure 2. Method specification of Schorr-Waite algorithm
in Dafny from its repository [12].

1 class Node {
2 var left: Node; var right: Node;
3 var marked: bool; var ftp: set<Node>;
4 predicate Dag() reads this, ftp;
5 {
6 null !in ftp && this in ftp &&
7 (this.left==null && this.right==null==>
8 ftp=={this}) &&
9 (this.left!=null && this.right==null==>

10 this.left in ftp-{this} &&
11 this.left.ftp==ftp-{this} &&
12 this.left.Dag()) &&
13 (this.left==null && this.right!= null==>
14 this.right in ftp-{this} &&
15 this.right.ftp == ftp-{this} &&
16 this.right.Dag()) &&
17 (this.left!=null && this.right!=null ==>
18 (this.left!=this.right ==>
19 {this.left}+{this.right} == ftp-{this} &&
20 (this.left.ftp+this.right.ftp)==ftp-{this} &&
21 this.left.Dag() && this.right.Dag()) &&
22 (this.left == this.right ==>
23 {this.left}+{this.right}==ftp-{this} &&
24 this.left.ftp==this.right.ftp &&
25 this.left.ftp==ftp-{this} &&
26 this.left.Dag() && this.right.Dag()))
27 } }

Figure 3. A DAG code snippet written in Dafny.

require first-order theorem-proving. Since regions are also
used in the dynamic frames technique, we believe that re-
gions are a mechanism into which one can translate both sep-
aration logic and dynamic frame style specifications. This
idea largely works, but for simplicity and better algebraic
properties of the region logic operators, we changed the def-
inition of regions to match that used in the dynamic frames
theory: sets of locations. We call the result a “fine-grained”
region logic. Using sets of locations is also a good match for
specification languages such as JML [5, 11].

Separation logic [8, 18] eliminates frame conditions, but
requires one to implicitly request access to locations in a
method’s precondition. Intuitively, we could simply take

4 2014/3/25

these locations as the frame condition in dynamic frame
specifications. Thus it seems that Dafny [13–15] could be
used to simulate separation logic. However, consider the
separation logic assertion px.f ÞÑ vq ˚ px1.f 1 ÞÑ v1q. The
locations named are tpx.fq, px1.f 1qu, which are represented
by a set of pairs of an object and a field name. But Dafny
uses a set of object references to specify frame properties,
and those objects need to have a single type. Thus using
sets of objects in Dafny is not the best way to encode sep-
aration logic. Region logic [1] allows one to specify frame
properties at the granularity of an object’s fields. However,
its region type still represents a set of objects. Region union
on sets of locations is not defined. That is a hindrance for
computing locations for framing from separation logic as-
sertions.

We consider all allocated memories as a heap, H . Al-
though the frame condition in the dynamic frames technique
provides a set of locations that may be changed in a method,
the dynamic frames technique does not restrict the subset of
dompHq that programs can access. In separation logic, rea-
soning about a method is restricted to the part of the heap
that is specified in its precondition. Our general approach is
to use the footprint of method preconditions from separa-
tion logic specifications to obtain a partial heap h such that
domphq Ď dompHq.

1.4 Contributions
The contributions of this paper are as follows:

• We introduce a fine-grained region logic. This fine-
grained region logic is used in a variant of Dafny,
DafnyR. It allows one to directly translate separation
logic’s points-to assertions into frame axioms. Our im-
plementation of DafnyR is available from http://
dafnyr.codeplex.com/.
• We introduce an if-then-else region expression that al-

lows region expressions to more precisely match the foot-
print of assertions.
• We show how to translate a restricted separation logic

into DafnyR in a way that preserves the meaning of
assertions.
• We show how to translate proofs of correctness in sepa-

ration logic into proofs in DafnyR’s logic, and show that
provability is preserved.

1.5 Overview of the results
In the next section, we present our language, DafnyR. Sec-
tion 3 introduces a restricted separation logic that we encode
into DafnyR. Section 4 shows the translation from the re-
stricted separation logic to DafnyR, and proves the seman-
tics meaning is preserved in the translation. Section 5 dis-
cusses the encoding of overlapping conjunction, which is an
extension of separation logic, and the backward translation,

from DafnyR to separation logic. Section 6 describes related
work. Section 7 gives conclusions and future work.

2. The DafnyR Language
DafnyR uses a version of region logic in a variant of Dafny
[13–15]. To simplify our presentation, we only use a subset
of DafnyR’s syntax. In particular, we do not allow recursive
predicates.

2.1 Syntax of DafnyR
DafnyR adds region expressions to Dafny. Fine-grained
regions not only allow us to define the built-in predicate
PointsTof as later explained, they also allow us to define
operations, such as union, on these fine-grained regions. In
particular, the conditional region expression (if) allows us to
syntactically represent regions that can only be determined
dynamically. An assertion of the form P pinsq invokes the
predicate P with argument list ins.

DEFINITION 2.1 (DafnyR Syntax). The syntax of DafnyR
assertions, expressions, and statements is as follows:

Assrt ::“ Expr1 = Expr2 | Assrt1 && Assrt2
| Assrt1 ‘||’ Assrt2 | Assrt1 ñ Assrt2
| D x.Assrt | P(ins) | REAssrt

Expr ::“ x | null | n | x.f | RE
ins ::“ Empty | ExprList
Empty ::“
ExprList ::“ ExprList, Expr | Expr
RE ::“ alloc | region{} | region{Expr.f}

| fpt(Expr) | fpt(Assrt)
| RE1 ` RE2 | RE1 ˚ RE2

| if Assrt then RE1 else RE2

REAssrt ::“ RE1 !! RE2 | RE1 ă“ RE2

Stmt ::“ x := Expr | x.f := Expr | x1 := x2.f
| x := new K
| if(Expr‰0)then{Stmt1}else{Stmt2}
| while(Expr‰0){Stmt} | Stmt1;Stmt2

where x P Id is an identifier, n is a numeric literal, and f is a
field name.

We define other logical operators and predicates as fol-
lows: true ” p0 “ 0q, false ” p0 “ 1q, Assrt ”
pAssrt ñ falseq, e ‰ e1 ” pe “ e1q, and @x.Assrt ”
 pDx. Assrtq.

For convenience in encoding separation logic’s points-to
assertions, we assume that, for each field f of type S in each
class T , there is a built-in predicate PointsTof defined as:

predicate PointsTof(o: T, v: S)
reads region{o.f}; { o ‰ null && o.f = v }

We define Γ as a type environment that maps variables to
types:

Γ P TypeEnv “ Id Ñ Type

5 2014/3/25

Γ $ x : T where pΓ xq “ T Γ $ null : K where isClasspKq Γ $ n : int

Γ $ x : K

Γ $ x.f : T

where isClasspKq
and pf : T q P fieldspKq

Γ $ alloc : region Γ $ regiontu : region

Γ $ Expr : K

Γ $ regiontExpr.fu : region
where isClasspKq
and pf : T q P fieldspKq

Γ $ Expr : T

Γ $ fptpExprq : region

Γ $ Expr1 : region, Γ $ Expr2 : region

Γ $ Expr1 O Expr2 : region
where O P t`, ˚u

Γ $ Assrt : bool

Γ $ fptpAssrtq : region

Γ $ Assrt : bool, Γ $ RE1 : region, Γ $ RE2 : region

Γ $ ifAssrt thenRE1 elseRE2 : region

Figure 4. Typing rules for DafnyR expressions. The predicate isClass returns true just whenK is either object or a declared
class name in the program. The auxiliary function fields takes a class name and returns a list of its declared field names and
their types.

Γ $ Expr1 : T, Γ $ Expr2 : T

Γ $ Expr1 “ Expr2 : bool

Γ $ Assrt1 : bool, Γ $ Assrt2 : bool

Γ $ Assrt1 O Assrt2 : bool
where O P t&&, ||,ñu

Γ, px : T q $ Assrt : bool

Γ $ Dx.Assrt : bool

Γ $ RE1 : region, Γ $ RE2 : region

Γ $ RE1 O RE2 : bool
where O P t!!,<=u

Γ $ Expr1 : T1, . . . , Γ $ Exprn : Tn

Γ $ P pinsq : bool
where px1 : T1, . . . , xn : Tnq “ formalTypespP q, n ě 0,
and pExpr1, . . . ,Exprnq “ ins

Figure 5. Typing rules for DafnyR Assertions. The auxiliary function formalTypes takes a predicate name and returns the list
of its declared formal parameters and their types.

Γ $ x : T, Γ $ Expr : T

Γ $ x :“ Expr : okpΓq

Γ $ x.f : T, Γ $ Expr : T

Γ $ x.f :“ Expr : okpΓq

Γ $ x : T, Γ $ x1.f : T

Γ $ x :“ x1.f : okpΓq

Γ $ x : K, Γ $ newK : K

Γ $ x :“ newK; : okpΓq

Γ $ Expr1 ‰ 0 : bool, Γ $ Stmt1 : okpΓ1q, Γ $ Stmt2 : okpΓ2q

Γ $ if pExpr ‰ 0q tStmt1uelse tStmt2u : okpΓq

Γ $ Expr ‰ 0 : bool, Γ $ Stmt : okpΓ1q

Γ $ while pExpr ‰ 0q tStmtu : okpΓq

Γ $ Stmt1 : okpΓ2q, Γ2 $ Stmt2 : okpΓ1q

Γ $ Stmt1; Stmt2 : okpΓ1q

Figure 6. Typing rules for DafnyR statements.

6 2014/3/25

The typing rules for expressions are defined in Fig. 4, the
typing rules for assertions are defined in Fig. 5, the typing
rules for statements are defined in Fig. 6.

2.2 Semantics of DafnyR
We now present a semantics of DafnyR expressions and as-
sertions. We introduce a set Loc, which represents locations
in a heap as pairs of object references and field names. We
use a store σ, which is a partial function that maps a variable
to its value, and a heap H , which maps from an object ref-
erence and a field name to that location’s value. A Value is
either a Boolean, an object reference (which may be null),
an integer, or a set of locations.

Value “ Boolean ` Object` Int ` PowerSetpLocq`
tErroru

Definition of heap
Heaps (H) are finite maps from Loc to values. Heaps are
manipulated using the following operations.

DEFINITION 2.2 (Heap Operations). Lookup in a heap,
written Hro, f s, is defined when po, fq P dompHq. Hro, f s
is the value that H associates to po, fq.
H2 extends H1, written H1 Ď H2, means:
@po, fq P dompH1q : po, fq P dompH2q : H1ro, f s “

H2ro, f s.
H1 is disjoint from H2, written H1KH2, means

dompH1q X dompH2q “ H.
The combination of two partial heaps written H1 ¨ H2,

is defined when H1KH2 holds, and is the partial heap such
that: dompH1 ¨ H2q “ dompH1q Y dompH2q, and for all
po, fq P dompH1 ¨H2q :

pH1 ¨H2qro, f s “

"

H1ro, f s, if po, fq P dompH1q,
H2ro, f s, if po, fq P dompH2q.

2.3 Footprints
2.3.1 Semantic Footprints
Semantically, a footprint is the smallest set of (heap) loca-
tions on which the value of an expression or assertion de-
pends. The notion of dependency is formalized by consider-
ing the evaluation in two heaps, and finding what locations
the heaps must agree on to result in the same value.

DEFINITION 2.3 (Agree on Locations). Let H1 and H2 be
two heaps and let Loc be a set of locations (i.e., of pairs of
object references and fields). Two heaps, H1 and H2, agree
on Loc, written H1

Loc
” H2 when @po, fq P Loc :: ppo, fq P

dompH1q X dompH2qq ^H1ro, f s “ H2ro, f s.

A semantic footprint is the minimal set of locations nec-
essary to evaluate an expression or assertion in a given state.
That is, changing the value that the state associates to a lo-
cation outside the footprint will not change the value of the
expression or assertion.

DEFINITION 2.4 (Semantic Footprint of Expressions). Let
Expr be an expression, and pσ,Hq be a state. Let E be the
expression evaluation function. Let F be a set of locations.
Then F is the semantic footprint of Expr in the state pσ,Hq
if and only if:

1. @H 1 :: H
F
” H 1 ñ pErrExprssσ,H “ ErrExprssσ,H1q, and

2. pEF 1 : F 1 Ă F :

p@H 1 :: H
F1

” H 1 ñ pErrExprssσ,H “ ErrExprssσ,H1qqq.

DEFINITION 2.5 (Semantic Footprint of Assertions). Let an
assertion Assrt, and a state pσ,Hq be given. Let F be a set
of locations. Then F is the semantic footprint of Assrt in
the state pσ,Hq if and only if:

1. p@H 1 :: H
F
” H 1 ñ

pσ,H (Assrt ðñ σ,H 1 (Assrtqq, and
2. pEF 1 : F 1 Ă F :

p@H 1 :: H
F1

” H 1 ñ
pσ,H (Assrt ðñ σ,H 1 (Assrtqqq.

To illustrate this definition, consider an implication asser-
tion, Assrt1 ñ Assrt2. A program evaluates Assrt1 first
by accessing a set of locations, Loc1. If it is true, Assrt2
is evaluated by accessing a set of locations, Loc2, otherwise
Assrt2 is skipped. Therefore, if the assertion is true in a
given state, then the semantic footprint of this implication
assertion in that state is Loc1 Y Loc2, otherwise it is just
Loc1.

2.3.2 Syntactic representation for footprint
Now we consider a way to statically determine a syntactic
representation of the semantic footprint of an assertion.

Naive approaches to obtaining such a syntactic represen-
tation can be very imprecise and do not necessarily reflect
the meaning of separation logic assertions. For example,
consider the assertion: ppb ‰ 0q ñ x.f ÞÑ 0q ˚ ppb “
0q ñ y.f ÞÑ 0q. According to the semantics of separat-
ing conjunction, there must be two disjoint heaps, h1 and
h2, where pb ‰ 0q ñ x.f ÞÑ 0 and pb “ 0q ñ y.f ÞÑ 0 are
valid, respectively. This assertion depends on the variable b,
and thus the assertion neither requires nor prohibits x and y
from being aliases. However, a naive syntactic computation
of footprints might prohibit x and y from being aliased (if it
required that domph1q “ tpx, fqu and domph2q “ tpy, fqu).
Therefore, we need a representation that respects the way as-
sertions (and expressions) are evaluated. For this reason, we
added the conditional region expression (if) to DafnyR.

2.3.3 Semantics of DanyR
We now show the semantics of DafnyR’s expressions and
assertions and show that DanfyR’s built-in function fpt
computes a footprint that is equal to the semantic footprint
in every state.

In the following semantics, EDR gives the denotation of
an expression, RE gives the denotation of a region expres-

7 2014/3/25

sion, and ADR gives the Boolean denotation of an assertion.
The built-in footprint function fpt syntactically maps ex-
pressions and assertions to region expressions.

Region expressions, RE (Definition 2.1), are used to ma-
nipulate regions; they denote sets of locations. We consider
region expressions and the + operator to form a commuta-
tive monoid with unit element regiontu, which denotes
the empty region. The region expression alloc denotes the
domain of the heap, which is all the allocated locations. The
region expression region{Expr.f} denotes a set contain-
ing the location of field f in the object that is the value of
Expr (if Expr is not null), and all locations needed to evalu-
ate Expr. Operators `, ˚, !!, and ă“ are set notations, de-
noting union, intersection, disjointness and subset of regions
respectively. For example, RE1 !! RE2 is true just when the
regions RE1 and RE2 are disjoint.

The region expression, ifAssrtthenRE1 elseRE2,
denotes that when the Assrt is true, the region is the mean-
ing of RE1, otherwise, it is the meaning of RE2. Note that
the fpt function is not symmetric with respect to con-
junction, disjunction and separating conjunction. For in-
stance, fptpAssrt1&&Assrt2q does not necessarily equal
fptpAssrt2&&Assrt1q. Instead, the fpt function follows
Dafny’s left-to-right evaluation order [13]. For example,
when checking the assertion o ‰ null && o.f “ 5, the
sub-expression o ‰ null is evaluated first.

DEFINITION 2.6 (Semantics of Expressions and Assertions).
Let a fixed set of predicate declarations for a program be
given. The meaning of expressions in DafnyR is given by
the following, where N is the standard meaning function for
numeric literals.

EDR : Expr Ñ Storeˆ Heap Ñ Value
EDRrrxssσ,H “ σpxq EDRrrnullssσ,H “ null
EDRrrnssσ,H “ N rrnss EDRrrREssσ,H “ RErrREssσ,H
EDRrrx.f ssσ,H “ HrEDRrrxssσ,H , f s

The semantics of region expressions, RErr´ssσ,H , is
shown in Fig. 8.

The semantics of assertions, ADRrr´ssσ,H is defined by:

ADR : AssrtÑ Storeˆ Heap Ñ Boolean

ADRrrAssrtssσ,H “

"

true, if σ,H (DR Assrt
false, if σ,H *DR Assrt

The validity of assertions in DafnyR is defined in Fig. 7.

We now present a denotational semantics for DafnyR’s
statements. A program state S of the form pσ,Hq contains
a store and a heap: State “ pStore ˆ Heapq ` tErroru.
The allocate function takes the heap and the class name
as parameters, and returns a location and a new heap. Also
fieldNames is a function that takes a class name and returns
a list of the names of its declared fields.

RErr´ss “ RE Ñ Storeˆ Heap Ñ PowerSetpLocq
RErrallocssσ,H “ dompHq
RErrregion{}ssσ,H “ H
RErrregiontExpr.fussσ,H “ RErrfptpExprqssσ,H

Y tpo, fq | o “ EDRrrExprssσ,H , o ‰ nullu
RErrRE1+RE2ssσ,H “ RErrRE1ssσ,H YRErrRE2ssσ,H

RErrRE1 ˚RE2ssσ,H “ RErrRE1ssσ,H XRErrRE2ssσ,H

RErrifAssrt thenRE1 elseRE2ssσ,H “

if ADRrrAssrtssσ,H “ true thenRErrRE1ssσ,H

elseRErrRE2ssσ,H

RErrfptpxqssσ,H “ RErrregiontussσ,H
RErrfptpnullqssσ,H “ RErrregiontussσ,H
RErrfptpnqssσ,H “ RErrregiontussσ,H
RErrfptpx.fqssσ,H “ RErrregiontx.fussσ,H
RErrfptpREqssσ,H “

$

&

%

RErrfptpAssrtqssσ,H , if RE “ ifAssrt then
RE1 elseRE2

RErrregiontussσ,H , otherwise
RErrfptpExpr1 “ Expr2qssσ,H “
RErrfptpExpr1qssσ,H Y RErrfptpExpr2qssσ,H

RErrfptpAssrt1&&Assrt2qssσ,H “
RErrfptpAssrt1qssσ,H Y ifAssrt1 then
RErrfptpAssrt2qssσ,H elseRErrregiontussσ,H

RErrfptpAssrt1 ||Assrt2qssσ,H “
RErrfptpAssrt1qssσ,H Y ifAssrt1 then
RErrregiontussσ,H elseRErrfptpAssrt2qssσ,H

RErrfptpAssrt1 ñ Assrt2qssσ,H “
RErrfptpAssrt1qssσ,H Y ifAssrt1 then
RErrfptpAssrt2qssσ,H elseRErrregiontussσ,H

RErrfptpDx.Assrtqssσ,H “ RErrallocssσ,H
RErrfptpP pinsqqssσ,H “
RErrFrmpP qrins{formalspP qs+fptpinsqssσ,H
where FrmpP q is the frame of predicate P given

in its declaration, and formalspP q is the list of P ’s
formal parameter names.

RErrfptpRE1!!RE2qssσ,H “

RErrfptpRE1qssσ,H YRErrfptpRE2qssσ,H

RErrfptpRE1<=RE2qssσ,H “

RErrfptpRE1qssσ,H YRErrfptpRE2qssσ,H

Figure 8. Semantics of region expressions

DEFINITION 2.7 (The semantics of DafnyR Statements).
The meaning of statements in DafnyR is given by the fol-
lowing, where K is a class name.

8 2014/3/25

K (DR Assrt ðñ true
Error (DR Assrt ðñ true
σ,H (DR Expr1 “ Expr2 ðñ EDRrrExpr1ssσ,H “ EDRrrExpr2ssσ,H
σ,H (DR P pinsq ðñ ARSLrrAssrtssσ1,H

where σ1 is σrparams ÞÑ EDRrrinsssσ,Hs and P has body Expr and params are its formals.
σ,H (DR Assrt1 &&Assrt2 ðñ if σ,H (DR Assrt1 then σ,H (DR Assrt2 else false
σ,H (DR Assrt1 || Assrt2 ðñ if σ,H (DR Assrt1 then true else σ,H (DR Assrt2
σ,H (DR Assrt1 ñ Assrt2 ðñ if σ,H (DR Assrt1 then σ,H (DR Assrt2 else true
σ,H (DR Dx.Assrt ðñ exists v.pσrx ÞÑ vs, H (DR Assrtq
σ,H (DR RE1!!RE2 ðñ pRErrRE1ssσ,H XRErrRE2ssσ,Hq “ H

σ,H (DR RE1 ă“ RE2 ðñ RErrRE1ssσ,H Ď RErrRE2ssσ,H

Figure 7. Validity of assertions in DafnyR

S : StateK Ñ StateK
Srrpx :“ Exprqssσ,H “ pσrx ÞÑ EDRrrExprssσ,Hs, Hq
Srrpx.f :“ Exprqssσ,H “ if EDRrrxssσ,H ‰ null

then pσ,HrpEDRrrxssσ,H , fq ÞÑ EDRrrExprssσ,Hsq
else Error

Srrpx :“ x1.fqssσ,H “ if EDRrrx1ssσ,H ‰ null
then pσrx ÞÑ HrEDRrrx1ssσ,H , fqs, Hq else Error

Srrpx :“ newKqssσ,H “
let pl,H 1q “ allocatepK,Hq in
let pf1, . . . , fnq “ fieldNamespKq in
let σ1 “ σrx ÞÑ ls in
pσ1, H 1rpσ1pxq, f1q ÞÑ 0, . . . , pσ1pxq, fnq ÞÑ 0sq

SrrpifpExpr ‰ 0qtStmt1uelsetStmt2uqssσ,H “
if EDRrrExprssσ,H ‰ 0 then SrrStmt1ssσ,H
else SrrStmt2ssσ,H

SrrpwhilepExpr ‰ 0q tStmtussσ,H “
fix pλg . λs .

if EDRrrExprssσ,H ‰ 0
then let s1 “ SrrStmtssσ,H in gs1
else sqpσ,Hq

SrrpStmt1; Stmt2qssσ,H “
let pσ1, H 1q “ SrrStmt1ssσ,H in SrrStmt2ssσ1,H1

Next we show that the denotation of the syntactic foot-
print is the semantic footprint.

LEMMA 2.8. Let pσ,Hq be a state. For all assertionsAssrt
and expressions Expr, the semantic footprint of Assrt
equals RErrfptpAssrtqssσ,H and the semantic footprint of
Expr equals RErrfptpExprqssσ,H .

Proof: We prove it by simultaneous induction on the struc-
ture of expressions and assertions.

The first base cases are expressions, where Expr is of the
form x, null, n, or the region expressions regiontu. In
each of these cases R “ RErrfptpExprqssσ,H “ H, by
Def. 2.6. For these cases, by the definition (2.5) the semantic
footprint is alsoH.

The second base case is region expression alloc. In this
case,R “ RErrfptpExprqssσ,H “ dompHq, by Def. 2.6. By
definition of semantic footprint is also dompHq.

The inductive hypothesis is that for all subexpressions
Expri, all subassertions Assrti, for each subexpression, its
semantic footprint, Fi, equals either RErrfptpExpriqssσ,H
(for a subexpression) or RErrfptpAssrtiqssσ,H (for an sub-
assertion).

The first inductive case is when Expr is of the form
Expr1.f . In this case, R1 “ RErrfptpExpr1qssσ,H and thus

R1 “ RErrfptpExpr1qssσ,H
Y tpo, fq | o “ EDRrrExpr1ssσ,H , o ‰ nullu,

by Def. 2.6. By the inductive hypothesis, the semantic foot-
print of Expr1 is also R1. There are two subcases; for both
of these let o be EDRrrExpr1ssσ,H . One case is if o ‰ null,
in which case the semantic footprint includes the location
po, fq, because po, fq is in the value of the expression. The
other case is if o “ null, in which case the semantic foot-
print does not include po, fq, and is thus just R1. Thus in
both cases the result follows.

The second inductive case is when Assrt is of the form
Expr1 “ Expr2. By the inductive hypothesis, Expr1’s se-
mantic footprint is F1 “ RErrfptpExpr1qssσ,H , and Expr2’s
semantic footprint is F2 “ RErrfptpExpr2qssσ,H . By the
semantics of DafnyR (Def. 2.6), RErrfptpAssrtqssσ,H is
F1 Y F2. Since the validity of Expr1 “ Expr2 depends on
the value of both Expr1 and Expr2, its semantic footprint is
also F1 Y F2.

Another inductive case is when Assrt is of the form
REAssrt. By the inductive hypothesis, let F1 be RE1’s se-
mantic footprint, such thatF1 “ RErrfptpREAssrt1qssσ,H ,
and let F2 be RE2’s semantic footprint, such that F2 “

RErrfptpREAssrt2qssσ,H . By the semantics of DafnyR
(Def. 2.6), let R “ F1 Y F2. And the validity of REAssrt
depends on RE1 and RE2. Therefore its semantic footprint
is also F1 Y F2.

Another inductive case is when Expr is if Assrt then
RE1 else RE2. By definition RErrfptpExprqssσ,H is
RErrfptpAssrtqssσ,H . By the inductive hypothesis,Assrt’s
semantic footprint is RErrfptpAssrtqssσ,H , which is the se-
mantic footprint of the entire expression.

Another inductive case is when Assrt is of the form
Assrt1&&Assrt2, where Fa1 “ RErrfptpAssrt1qssσ,H

9 2014/3/25

and Fa2 “ RErrfptpAssrt2qssσ,H We prove it by two cases
according to whether Assrt1 is valid or invalid.

Case 1. Assrt1 is valid in the state pσ,Hq. By the def-
inition of DafnyR’s footprint and semantics (Def.2.6), let
R “ RErrfptpAssrt1&&Assrt2qssσ,H “ Fa1 Y Fa2. By

definition of semantic footprint (Def. 2.5), @H 11.H1
Fa1
”

H 11 ñ σ,H1 (DR Assrt1 ðñ σ,H 11 (DR Assrt1,

and @H 12.H2
Fa2
” H 12 ñ σ,H2 (DR Assrt2 ðñ

σ,H 12 (DR Assrt2. By assumption, Assrt1 is valid in the
state pσ,Hq, whether Assrt1&&Assrt2 is valid or not de-

pends on Assrt2. By our analysis above, @H 1.H
Fa2
” H 1 ñ

pσ,H (DR Assrt2 ðñ σ,H 1 (DR Assrt2q. Moreover,
by inductive hypothesis, there does not exists F 1a2, such that

F 1a2 Ă Fa2 and H2

F1
a2
” H 12 ñ pσ,H2 (DR Assrt2 ðñ

σ,H 12 (DR Assrt2q. So Fa1 Y Fa2 is minimal. Hence
Fa1 Y Fa2 is the semantic footprint of Assrt1&&Assrt2.
Therefore R “ Fa1 Y Fa2.

Case 2. Assrt1 is invalid in the state pσ,Hq. By the se-
mantics of DafnyR (Def. 2.6), letR “ RErrfptpAssrt1qssσ,H .
By inductive hypothesis, R “ Fa1. By the semantics of
DafnyR and Assrt is invalid, we have Assrt1&&Assrt2
is invalid in the given state no matter what locations that
Assrt2 asserts. Therefore Fa1 is the semantic footprint of
Assrt1&&Assrt2. Therefore R “ Fa1.

Another inductive case is when Assrt is of the form
Assrt1 ñ Assrt2. We prove it by two cases according to
whether Assrt1 is valid or invalid.

Case 1. Assrt1 is valid in state pσ,Hq. Let

R “ RErrfptpAssrt1q ` fptpAssrt2qssσ,H .

By the inductive hypothesis, R “ Fa1 Y Fa2, where each
Fai is the semantic footprint of the corresponding Assrti.
By definition of semantic footprint (Def. 2.5), @H 1.H

Fa1
”

H 1 ñ σ,H (DR Assrt1 ðñ σ,H 1 (DR Assrt1, and
@H 1.H

F2
” H 1 ñ σ,H (DR Assrt2 ðñ σ,H 1 (DR

Assrt2. Therefore, @H 1. H
Fa1YF2
” H 1 ñ σ,H (DR

Assrt1 ðñ σ,H 1 (DR Assrt1 and σ,H (DR

Assrt2 ðñ σ,H 1 (DR Assrt2. By assumption,
Assrt1 is valid in the state pσ,Hq, whether Assrt1 ñ

Assrt2 is valid or not depends on Assrt2. By our analysis
above, @H 1.H

F1YF2
” H 1 ñ pσ,H (DR Assrt2 ðñ

σ,H 1 (DR Assrt2q. Moreover, by inductive hypothe-
sis, there does not exists F 11 and F 12, such that F 11 Ă F1,

F 12 Ă F2 and @H 1.H
F1

1
” H 1 ñ pσ,H (DR Assrt1 ðñ

σ,H 1 (DR Assrt1q, and H
F1

2
” H 1 ñ pσ,H (DR

Assrt2 ðñ σ,H 1 (DR Assrt2q. So F1 Y F2 is min-
imal. Hence F1 Y F2 is the semantic footprint of Assrt1 ñ
Assrt2. Therefore R “ F1 Y F2.

Case 2. Assrt1 is invalid in the state pσ,Hq. By the se-
mantics of DafnyR (Def. 2.6),letR “ RErrfptpAssrt1qssσ,H .
By inductive hypothesis, R “ F1. By the semantics of

DafnyR and Assrt1 is invalid, we have Assrt1 ñ Assrt2
is invalid in the given state no matter what locations that
Assrt2 asserts. Therefore F1 is the semantic footprint of
Assrt1 ñ Assrt2. Therefore R “ F1.

Another inductive case is when Assrt is of the form
D x. Assrt. By the semantics of DafnyR (Def. 2.6), let
R “ RErrfptpD x. Assrtqssσ,H “ dompHq. It is trivial
true.

Another inductive case is when Assrt is of the form
P pinsq. By the semantics of DafnyR (Def. 2.6),let R “

RErrFrmpP qrins{formalspP qsssσ,HYRErrfptpinsqssσ,H .
By assumption, RErrFrmpP qrins{formalspP qsssσ,H equals
the semantic footprint of P ’s body. By the inductive hy-
pothesis RErrfptpinsqssσ,H equals ins’s semantic footprint.
Therefore R equals its semantic footprint.

The inductive case of disjunction is similar.

2.4 Verification Logic
The validity of a Hoare-formula t´uStmtt´ur´s means
that it is partially correct and respects the specified frame
(given by the region expression after the postcondition).

DEFINITION 2.9 (Valid Hoare-formula). Let Stmt be a state-
ment, let P andQ be assertions, let ε be a region expression,
and let pσ,Hq be a state. Then tP u Stmt tQurεs is valid in
pσ,Hq, written σ,H (DR tP u Stmt tQurεs, if and only if
whenever σ,H (DR P and pσ1, H 1q “ SrrStmtssσ,H , then
σ1, H 1 (DR Q and for all po, fq P dompHq,

H 1ro, f s ‰ Hro, f s ñ po, fq P RErrεssσ,H .

A Hoare-formula tP uStmttQurεs is valid, written (DR
tP uStmttQurεs, if and only if for all states pσ,Hq, σ,H (DR

tP u Stmt tQurεs.

The proof axioms and rules for DafnyR are adapted from
various papers [1, 6].

DEFINITION 2.10 (Proof rules and axioms for DafnyR). The
axioms and inference rules for the partial correctness of
DanfyR statements are shown in Fig. 9.

3. Restricted Separation Logic
In this section we introduce a slightly restricted version
of separation logic, which we call RSL, and show how to
translate it into DafnyR.

3.1 Syntax of RSL
Our syntax for RSL follows Parkinson and Summers [17] in
restricting existential assertions so that they can only quan-
tify over values stored in the heap. Without such a restriction
separation logic tools are not complete [17]. In addition, we
exclude the emp predicate and separating implication, for
reasons that we will explain in the discussion.

DEFINITION 3.1 (Restricted Separation Logic). The syntax
of restricted separation logic has assertions (a) and expres-
sions (e) defined as follows:

10 2014/3/25

pALLOCDRq $DR ttrueu x :“ newK t&&n
i“1PointsTofipx, 0qu rregiontus where pf1, . . . , fnq “ fieldNamespKq

pASGNDRq $DR ttrueu x :“ Expr tx “ Expru rregiontus where x R FVpExprq
pUPDDRq $DR tx ‰ nullu x.f :“ Expr tx.f “ Expru rregiontx.fus where x R FVpExprq
pACCDRq $DR tx

1
‰ null && x1.f “ Expru x :“ x1.f tx “ Exprsu rregiontus where x ‰ x1 and x R FVpExprq

pIFDRq

$DR tP && Expr ‰ 0u Stmt1tQu rεs,
$DR tP && Expr “ 0u Stmt2tQu rεs

$DR tP u ifpExpr ‰ 0qtStmt1uelsetStmt2utQu rεs

pWHILEDRq

$DR tI && Expr ‰ 0u StmttIu rεs

$DR tIu whilepExpr ‰ 0q tStmtu tI && Expr “ 0u rεs
pSEQDRq

$DR tP u Stmt1 tQ1u rε1s, $DR tQ1u Stmt2tQu rε2s

$DR tP u Stmt1; Stmt2tQu rε1 ` ε2s

pSubEffDRq

$DR tP uStmttQu rεs, P $ ε ă“ ε1

$DR tP uStmttQu rε1s
pCONDRq

$ P ñ P 1, $ Q1 ñ Q, $DR tP
1
uStmttQ1urεs

$DR tP uStmttQu rεs

pFRMDRq

$DR tP u Stmt tQu

$DR tP &&Ru Stmt tQ && Ru rεs

where pModifypStmtq X FVpRqq “ H
and ε ˚ fptpRq “ regiontu

Modifyp´q computes the set of (stack) variables that may be updated by a statement. It is defined as follows:
Modifypx :“ Exprq “ txu
Modifypx.f :“ Exprq “ tu
Modifypx :“ x1.fq “ txu
Modifypx :“ newKq “ txu
ModifypifpExpr ‰ 0qtStmt1uelsetStmt2uq “ ModifypStmt1q Y ModifypStmt2q
ModifypwhilepExpr ‰ 0qtStmtuq “ ModifypStmtq
ModifypStmt1; Stmt2q “ ModifypStmt1q Y ModifypStmt2q

Let ε and η be frames (region expressions). We define sub-frame rules as follows:

$ ε ă“ ε $ regiontu ă“ ε $ ε` η ă“ η ` ε
$ ε1 ă“ ε2

$ ε1 ` η ă“ ε2 ` η

$ ε1 ă“ ε2 $ ε2 ă“ ε3

$ ε1 ă“ ε3

Figure 9. Proof rules and axioms in DafnyR

a ::“ e1 = e2 | x.f ÞÑe | a1 ˚ a2 | a1 ^ a2
| a1 _ a2 | a1 ñ a2 | Dx’.x.f ÞÑ x’ ˚ a

e ::“ x | null | n

We use the same abbreviations in RSL as in DafnyR for
true, false, , and @. In addition, we write Dx1.x.f ÞÑ x1

as an abbreviation for Dx1.x.f ÞÑ x1 ˚ true.

3.2 Semantics of RSL
The semantics of RSL is given using states that consist of a
pair, pσ, hq, of a store and a heap, as in DafnyR’s semantics.
Stores (σ), heaps (h), and Values are also as in DafnyR.

We adapt the Reynolds’s classical semantics for Separa-
tion Logic [18], because it is more expressive than the intu-
itionistic semantics [8].

DEFINITION 3.2 (RSL Semantics). Assuming that N is the
standard meaning function for numeric literals and σ is a
store, then the semantics of expressions in separation logic
is:

ERSL : eÑ Store Ñ Value
ERSLrrxssσ “ σpxq ERSLrrnssσ “ N rrnss
ERSLrrnullssσ “ null

The semantics of assertions, ARSLrr´ssσ,h is defined by:

ARSL : aÑ Storeˆ Heap Ñ Boolean

ARSLrrassσ,h “

"

true, if σ, h (RSL a
false, if σ, h *RSL a

The validity of assertions in RSL is defined in Fig. 10.

3.3 Verification Logic
To allow comparison with DafnyR’s logic, we use DafnyR
statements in a verification logic that uses RSL assertions.
The meaning of Hoare triples t´uStmtt´u is defined as
follows

DEFINITION 3.3 (Validity of Hoare Triples). Let Stmt be
a DafnyR statement, a1 and a2 be RSL assertions, and let
pσ, hq be a program state. Then the Hoare triple ta1uStmtta2u
is valid in pσ, hq, written σ, h (RSL ta1u Stmt ta2u, if and
only if whenever σ, h (RSL a1 and pσ1, h1q “ SrrStmtssσ,h,
then σ1, h1 (RSL a2.
ta1u Stmt ta2u is valid, written (RSL ta1u Stmt ta2u, if

and only if, for all states pσ, hq, σ, h (RSL ta1u Stmt ta2u.

3.3.1 Provability Relation
Our proof axioms and rules for DafnyR statements, using
RSL, are adapted from various papers [6, 18]. Note that con-

11 2014/3/25

σ, h (RSL e “ e1 ðñ ERSLrressσ “ ERSLrre1ssσ
σ, h (RSL x.f ÞÑ e ðñ domphq “ tpERSLrrxssσ, fqu and ERSLrrxssσ ‰ null and hrERSLrrxssσ, f s “ ERSLrressσ
σ, h (RSL a1 ˚ a2 ðñ exists h1, h2.ph1Kh2 and h “ h1 ¨ h2 and if σ, h1 (RSL a1 then σ, h2 (RSL a2 else falseq
σ, h (RSL a1 ^ a2 ðñ if σ, h (RSL a1 then σ, h (RSL a2 else false
σ, h (RSL a1 _ a2 ðñ if σ, h (RSL a1 then true else σ, h (RSL a2
σ, h (RSL a1 ñ a2 ðñ if σ, h (RSL a1 then σ, h (RSL a2 else true
σ, h (RSL Dx

1. x.f ÞÑ x1 ˚ a ðñ exists v. pσrx1 ÞÑ vs, h (RSL x.f ÞÑ x1 ˚ aq

Figure 10. Validity of assertions in RSL

ventionally, predicate emp is used to specify the precondi-
tion of allocation. However, since RSL does not have emp,
we use true instead.

DEFINITION 3.4 (Proof rules and axioms in RSL). Let P
andQ be assertions in RSL. Let Stmt be a well-formed state-
ment in DafnyR. Then the form $RSL tP uStmttQu is a
partial correctness judgment for DafnyR programs in RSL.
It is defined in Fig. 11.

Modifyp´q computes the set of (stack) variables that
may be updated by a statement. It is defined in Fig. 9.

4. Translation from RSL to DafnyR
The translation from RSL assertions to DafnyR assertions is
syntactic and local.

The syntactic mapping TRrr´ss is overloaded. It operates
on both RSL expressions and assertions.

4.1 Translation of Expressions
The translation for expressions is trivial.

DEFINITION 4.1. The syntactic mapping from RSL expres-
sions to DafnyR expressions is defined as follows:

TRrrxss “ x TRrrnullss “ null TRrrnss “ n

This preserves the meaning of RSL expressions.

LEMMA 4.2. Let e be an RSL expression, σ be a store and
H be a heap. Then ERSLrressσ “ EDRrrTRrressssσ,H .

Proof: By the semantics of RSL, the meaning of an expres-
sion solely depends on σ. Therefore, the heap H is irrele-
vant, and thus the values of the expression in both semantics
are equal.

4.2 Translation of Assertions
The translation for assertions is more interesting.

DEFINITION 4.3. The syntactic mapping from RSL asser-
tions to DafnyR assertions is defined in Fig. 12

4.3 Footprint of assertions in RSL and results about
the translation

To show that the syntactic mapping in Definition 4.3 pre-
serves their meanings, we must show that (1) the transla-
tion preserves the semantic footprints of assertions in each

state, and (2) the translation preserves validity of assertions.
Therefore we first give a hypothetical footprints of asser-
tions in terms of RSL’s syntax and region expressions, and
prove that it is the semantic footprint. Then we prove that
the meaning of both hypothetical footprints and assertions
are preserved by the translation. Finally we define the syn-
tactical footprint of assertions of RSL in terms of region ex-
pressions in DafnyR’s syntax.

4.3.1 Hypothetical footprint of assertions in RSL
We want to give a syntactical definition of assertions’ se-
mantic footprint in RSL in terms of region expressions in
DafnyR’s syntax. However, some assertions’ semantic foot-
prints need to be expressed with conditional region expres-
sions (if Assrt then RE1 else RE2). For example, the
semantic footprint of a1 ˚ a2 is the union of the semantic
footprint of a1 and the semantic footprint of a2 if a1 is true,
otherwise, it is just the semantic footprint of a1. However,
we cannot use TRrra1ss in defining its semantic footprint, be-
cause we do not know if TRrra1ss semantically equals a1;
indeed, that is what we want to prove.

Therefore, we temporarily presume that region expres-
sions support the syntax if a then RE1 else RE2. Its
semantics is defined in formula (1) below:

RErrif a thenRE1 elseRE2ssσ,h “

if ARSLrrassσ,h “ true then RErrRE1ssσ,h

else RErrRE2ssσ,h

(1)

Using these presumed region expressions, we define a hypo-
thetical footprint of assertions in RSL, and prove our trans-
lation of assertions of RSL preserves their meanings.

DEFINITION 4.4 (Hypothetical footprint for RSL). The hy-
pothetical footprint function for expressions maps all expres-
sions to the empty region: fpHypeq “ regiontu.

The hypothetical footprint function for assertions maps
assertions to region expressions as follows:

12 2014/3/25

pALLOCRSLq $RSL ttrueu x :“ newK t

n
æ

i“1

x.fi ÞÑ 0u where pf1, . . . , fnq “ fieldspKq

pASGNRSLq $RSL ttrueu x :“ Expr tx “ Expru where x R FVpExprq
pUPDRSLq $RSL tDv.x.f ÞÑ vu x.f :“ Expr tx.f ÞÑ Expru
pACCRSLq $RSL tx

1.f ÞÑ Exprux :“ x1.ftx “ Expr ^ x1.f ÞÑ Expru where x ‰ x1 and x R FVpExprq
pIFRSLq

$RSL tP ^ Expr ‰ 0u Stmt1 tQu, $RSL tP ^ Expr “ 0u Stmt2 tQu

$RSL tP u ifpExpr ‰ 0qtStmt1uelsetStmt2u tQu
pWHILERSLq

$RSL tI ^ Expr ‰ 0u Stmt tIu

$RSL tIu whilepExpr ‰ 0qtStmtu tI ^ Expr “ 0u

pSEQRSLq

$RSL tP u Stmt1 tQ1u, $RSL tQ
1
u Stmt2 tQu

$RSL tP u Stmt1; Stmt2 tQu
pCONRSLq

$ P ñ P 1, $RSL tP
1
u Stmt tQ1u, $ Q1 ñ Q

$RSL tP u Stmt tQu

pFRMRSLq

$RSL tP u Stmt tQu

$RSL tP ˚Ru Stmt tQ ˚Ru
where pModifypStmtq X FVpRqq “ H

Figure 11. Axioms and inference rules for verification of statements using RSL.

TRrre1 “ e2ss “ TRrre1ss “ TRrre2ss TRrrx.f ÞÑ ess “ PointsTof pTRrrxss,TRrressq
TRrra1 ˚ a2ss “ TRrra1ss&&TRrra2ss&& pfptpTRrra1ssq!!fptpTRrra2ssqq
TRrra1 ^ a2ss “ TRrra1ss&&TRrra2ss TRrra1 _ a2ss “ TRrra1ss||TRrra2ss
TRrra1 ñ a2ss “ TRrra1ss ñ TRrra2ss TRrrDx1.x.f ÞÑ x1 ˚ ass “ Dx1.TRrrx.f ÞÑ x1 ˚ ass

Figure 12. Syntactic mapping from RSL assertions to DafnyR assertions

fpHype1 “ e2q “ regiontu
fpHypx.f ÞÑ eq “ regiontx.fu
fpHypa1 ˚ a2q “ fpHypa1q `

if a1 then fpHypa2q else regiontu
fpHypa1 ^ a2q “ fpHypa1q `

if a1 then fpHypa2q else regiontu
fpHypa1 _ a2q “ fpHypa1q `

if a1 then regiontu else fpHypa2q
fpHypa1 ñ a2q “ fpHypa1q ` if a1 then

fpHypa2q else regiontu
fpHypDx

1.x.f ÞÑ x1 ˚ aq “
regiontx.fu ` fpHypaqrx.f{x

1s.

Next we show our semantic evaluation function RE of the
built-in syntactic footprint function fpHy gives the semantic
footprint.

LEMMA 4.5. Let pσ, hq be a state. Let a be an assertion
in RSL. Let F be the semantic footprint in state pσ, hq. Let
R “ RErrfpHypaqssσ,h. Then R “ F .

Proof: We prove the theorem by the induction on the
assertion’s structure. One base case is when a is of
the form e1 “ e2. By definition of hypothetical foot-
print (Def. 4.4) and semantics of DafnyR (Def. 2.6), R “

RErrfpHype1 “ e2qssσ,h “ RErrregiontussσ,h “ H. By
definition of semantic footprint (Def. 2.5), F “ H. There-
fore R “ F .

The second base case is when a is of the form x.f ÞÑ e.
By definition of hypothetical footprint (Def. 4.4) and seman-
tics of DafnyR (Def. 2.6), R “ RErrfpHypx.f ÞÑ eqssσ,h “
RErrregiontx.fussσ,h “ tpERSLrrxssσ,h, fqu. By defini-
tion of semantic footprint (Def. 2.5), pERSLrrxssσ,h, fq is the
only location whose value can affect the assertion’s validity.
Therefore R “ F .

The inductive hypothesis is that for each subassertion
ai, if its semantic footprint in pσ, hq is Fi, and if Ri “
RErrfpHypaiqssσ,h, then Ri “ Fi.

The first inductive case is when a is of the form a1 ˚ a2.
By semantics of RSL, the current heap h can be divided into
two disjoint sub-heaps, h1 and h2, where a1 and a2 hold
separately. We prove R “ F by two cases according to
whether a1 is valid or invalid.

Case 1. a1 is valid in the state pσ, hq. By the defini-
tion of hypothetical footprint (Def. 4.4), we have R “

RErrfpHypa1q ` fpHypa2qssσ,h. By the inductive hypoth-
esis, R “ F1 Y F2, where each Fi is the semantic foot-
print of the corresponding ai. By definition of seman-
tic footprint (Def. 2.5), @h11.h1

F1
” h11 ñ σ, h1 (RSL

a1 ðñ σ, h11 (RSL a1, and @h12.h2
F2
” h12 ñ

σ, h2 (RSL a2 ðñ σ, h12 (RSL a2. By set the-
ory, F1 Ď pF1 Y F2q and F2 Ď pF1 Y F2q. By defini-

tion of heap (Def. 2.2), @h11, h
1
2.h1 ¨ h

1
2

F1YF2
” h11 ¨ h

1
2 ñ

σ, h1 ¨ h
1
2 (RSL a1 ðñ σ, h11 ¨ h

1
2 (RSL a1, and

@h11, h
1
2.h2 ¨ h

1
1

F1YF2
” h12 ¨ h

1
1 ñ σ, h2 ¨ h

1
1 (RSL a2 ðñ

σ, h12 ¨ h
1
1 (RSL a2. Therefore, since h “ h1 ¨ h2, we con-

13 2014/3/25

clude @h1.h
F1YF2
” h1 ñ pσ, h (RSL a1 ðñ σ, h1 (RSL

a1q and pσ, h (RSL a2 ðñ σ, h1 (RSL a2q. By as-
sumption, a1 is valid in the state pσ, hq, whether a1 ˚ a2
is valid or not depends on a2. By our analysis above,
@h1.h

F1YF2
” h1 ñ pσ, h (RSL a2 ðñ σ, h1 (RSL a2q.

Moreover, by inductive hypothesis, there does not exist F 11
and F 12, such that F 11 Ă F1, F 12 Ă F2 and @h11, h

1
2.h1

F1
1
”

h11 ñ pσ, h1 (RSL a1 ðñ σ, h11 (RSL a1q, and

h2
F1

2
” h12 ñ pσ, h2 (RSL a2 ðñ σ, h12 (RSL a2q.

So F1 Y F2 is minimal. Hence F1 Y F2 is the semantic
footprint of a1 ˚ a2. Therefore R “ F1 Y F2.

Case 2. a1 is invalid in the state pσ, hq. By the definition
of hypothetical footprint, R “ RErrfpHypa1qssσ,h. By the
inductive hypothesis, the semantic footprint of a1 is F1. By
the semantics of RSL and a1 is invalid, we have a1 ˚ a2 is
invalid in the given state no matter what locations that a2
asserts. Therefore F1 is the semantic footprint of a1 ˚ a2.
Therefore R “ F1.

The second inductive case is when a is of the form a1 ñ
a2. We prove it by two cases according to whether a1 is valid
or invalid.

Case 1. a1 is valid in state pσ, hq. By the definition of hy-
pothetical footprint, R “ RErrfpHypa1q ` fpHypa2qssσ,h.
By the inductive hypothesis, R “ F1 Y F2, where each Fi
is the semantic footprint of the corresponding ai. By def-
inition of semantic footprint (Def. 2.5), @h1.h

F1
” h1 ñ

σ, h (RSL a1 ðñ σ, h1 (RSL a1, and @h1.h
F2
”

h1 ñ σ, h (RSL a2 ðñ σ, h1 (RSL a2. Therefore,
@h1. h

F1YF2
” h1 ñ σ, h (RSL a1 ðñ σ, h1 (RSL

a1 and σ, h (RSL a2 ðñ σ, h1 (RSL a2. By assump-
tion, a1 is valid in the state pσ, hq, whether a1 ñ a2 is valid

or not depends on a2. By our analysis above, @h1.h
F1YF2
”

h1 ñ pσ, h (RSL a2 ðñ σ, h1 (RSL a2q. Moreover, by
inductive hypothesis, there does not exist F 11 and F 12, such

that F 11 Ă F1, F 12 Ă F2 and @h1.h
F1

1
” h1 ñ pσ, h (RSL

a1 ðñ σ, h1 (RSL a1q, and h
F1

2
” h1 ñ pσ, h (RSL

a2 ðñ σ, h1 (RSL a2q. So F1 Y F2 is minimal. Hence
F1 Y F2 is the semantic footprint of a1 ñ a2. Therefore
R “ F1 Y F2.

Case 2. a1 is invalid in the state pσ, hq. By the definition
of hypothetical footprint, R “ RErrfpHypa1qssσ,h. By the
inductive hypothesis, the semantic footprint of a1 is F1.
By the semantics of RSL, since a1 is invalid, a1 ñ a2 is
invalid in the given state no matter what locations a2 asserts.
Therefore F1 is the semantic footprint of a1 ñ a2, and thus
R “ F1.

The third inductive case is when a is of the form Dx1.x.f ÞÑ
x1 ˚ a. By the definition of hypothetical footprint, the foot-
print of existential assertions do not depend on the existen-
tial variables. Therefore this case is the same as the case of
separating conjunction.

The other inductive cases, conjunction and disjunction,
are similar.

We have shown that the hypothetical footprint is the se-
mantic footprint of assertions of RSL. So, from now on, we
use hypothetical footprint as a synonym for the semantic
footprint of RSL assertions. Using Lemma 4.2, we can show
that the hypothetical footprint of each assertion of RSL is al-
ways a subset of the domain of the current heap correspond-
ing to the definition of RSL’s semantics in Definition 3.2.

LEMMA 4.6. Let pσ, hq be a state. Let a be an assertion of
RSL, and F be its hypothetical footprint in state pσ, hq. Then
σ, h (RSL añ F Ď domphq.

Proof: By induction on the structure of assertions.
Let a and pσ, hq be given. Let F be a’s hypothetical

footprint in pσ, hq. Assume σ, h (RSL a. We proceed by
induction on the structure of a.

One base case is when a is e1 “ e2. By the semantics of
RSL (Def. 4.4), each expression’s footprint is an empty set,
H. By set theory,H Ď domphq.

The second base case is when a is x.f ÞÑ e. By the
semantics of RSL (Def. 4.4), domphq “ tpERSLrrxssh, fqu.
And by definition, this is also the hypothetical footprint of a.

The inductive hypothesis is that for all subassertions ai,
the heap h, for each subassertion ai, its hypothetical foot-
print, Fi, is a subset of dom(h).

The first inductive case is when a is of the form a1 ˚ a2.
By the semantics of RSL (Def. 3.2), there exists h1 and h2,
such that h1 ¨ h2 “ h. Let a1’s footprint be F1, and a2’s
footprint be F2. Let us consider the set, F1YF2. By inductive
hypothesis, F1 Ď domph1q and F2 Ď domph2q. Thus by set
theory, pF1YF2q Ď pdomph1qYdomph2qq. By definition of
heap (Def. 2.2), domph1q Y domph2q “ domphq. Therefore
pF1 Y F2q Ď domphq.

The second case is when a is of the form a1 ñ a2.
Let a1’s footprint be F1, and a2’s footprint be F2. Let us
consider the set, F1 Y F2. By inductive hypothesis, F1 Ď

domphq and F2 Ď domphq. By set theory, F1 Y F2 Ď

domphq.
The third inductive case is when a is of the form Dx1.x.f ÞÑ

x1 ˚ a. By the definition of hypothetical footprint, the foot-
print of existential assertions do not depend on the existential
variables. So the result follows by the same reasoning as in
the separating conjunction case.

The cases for conjunction and disjunction of assertions
are similar.

COROLLARY 4.7. Let a1 and a2 be assertions in RSL, then
@pσ, hq. σ, h (RSL a1 ˚ a2 ñ RErrfpHypa1qssσ,h X
RErrfpHypa2qssσ,h “ H.

Proof: Let σ and h be given. Assume σ, h (RSL a1 ˚
a2. Then by semantics of RSL (Def. 3.2), there exists
h1 and h2, such that h1Kh2. Thus by definition of heap
(Def. 2.2), domph1q X domph2q “ H. By lemma 4.6, we

14 2014/3/25

have that RErrfpHypa1qssσ,h Ď domph1q and also that
RErrfpHypa2qssσ,h Ď domph2q. Therefore, by set theory,
they are disjoint.

4.3.2 Results about the assertion translation
Now we prove the semantic meaning of RSL assertions is
preserved by the syntactic mapping function, TR. The key to
this proof is showing that in a given state, the hypothetical
footprint of a RSL assertion, a, is also the semantic footprint
of its translated assertion, TRrrass. Then a’s validity can be
preserved in the translation by the definition of footprints.
The proof also uses the following technical lemma.

LEMMA 4.8. Let σ be a store, and h and H be heaps. Let
a be a RSL assertion and Assrt be a DafnyR assertion. If
σ, h (RSL a ðñ σ,H (DR Assrt, then ARSLrrassσ,h “
ADRrrAssrtssσ,H .

Proof: For a given state pσ, hq and RSL assertion a, by the
semantics of RSL, ARSLrrassσ,h is true , if σ, h (RSL a,
otherwise it is false . Similarly, for a given state pσ,Hq
and DafnyR assertion Assrt, by the semantics of DafnyR,
ADRrrAssrtssσ,H is true , if σ,H (DR Assrt, other-
wise it is false . Therefore, by assumption σ, h (RSL

a ðñ σ,H (DR Assrt, we can achieve the conclu-
sion ARSLrrassσ,h “ ADRrrAssrtssσ,H .

THEOREM 4.9. Let a be an assertion in RSL. Let σ be a
store, h and H be heaps, and F “ RErrfpHypaqssσ,h. If

h
F
” H , then F “ RErrfptpTRrrassqssσ,H , and σ, h (RSL

a ðñ σ,H (DR TRrrass.

Proof: We prove this theorem by induction on the structure
of the assertion a. The proof is found in Appendix A.

According to this theorem, a valid assertion in RSL is
translated to the corresponding assertion in DanfyR that is
also valid. Conversely, an invalid assertion in RSL is trans-
lated to the corresponding assertion in DafnyR that is also
invalid. Thus, the translation preserves assertion validity.

4.3.3 Footprint of RSL
By Theorem 4.9, RSL assertions a and the translated asser-
tions TRrrass are semantically equivalent on the states pσ, hq
and pσ,Hq, where h and H agree on a’s hypothetical foot-
print. Therefore we can replace a with TRrrass in the defini-
tion of the hypothetical footprint function for RSL.

DEFINITION 4.10 (Footprint of RSL). The footprint func-
tion for expressions maps all expressions to the empty re-
gion: fpRSLpeq “ regiontu. The footprint function for
assertions maps assertions to regions, as shown in Fig. 13.

4.4 Translation of Proofs
In this section, we explore a syntactical mapping on proof
rules and show that it also preserves proofs.

4.4.1 Results about the proof translation
We consider mapping assertions and Hoare-tripes in RSL
to those in DafnyR by syntactically translating assertions.
The trouble is that the mapping for the field-update, field-
acc and frame rules do not seem obvious. For example,
according to definition 4.3, Dv. x.f ÞÑ v in RSL maps
to the predicate Dv. PointsTof px, vq in DafnyR. How-
ever, UPDRSL requires a precondition, Dv. x.f ÞÑ v, but
UPDDR requires a precondition, x ‰ null, not the predicate
Dv. PointsTof px, vq. Recall that PointsTof px,Expr1q is
defined as x ‰ null&&x.f “ Expr1. That entails x ‰ null.
Therefore we derive a new rule,DUPDDR, shown in Fig. 14.
Similarly, we relax the precondition for ACCDR. But we
encounter another trouble that ACCDR seems to miss a
corresponding postcondition, x1.f ÞÑ Expr of ACCRSL.
Actually, this is entailed by DafnyR’s frame condition,
rregiontus, which means the heap is not changed by the
statement, and the value of x1.f is preserved before and af-
ter executing it. Therefore we can derive a relaxed proof
rule DACCDR shown in Fig. 15. Note that in the last step,
we change the frame to regiontx1.fu, this is justified be-
cause the postcondition specifies the desired value at loca-
tion regiontx1.fu.

Finally we derive a relaxed frame rule DFRMDR shown
in Fig. 16. Note that we put ε ˚ fptpRq “ regiontu as
a side condition. Therefore, if the side condition appears
in a proof translated form RSL, then it will hold in the
translation.

Now we use the derived rules to define a syntactic map-
ping between RSL and DafnyR.

DEFINITION 4.11 (Syntactic Mapping from RSL to DafnyR).
Let P and Q be assertions in RSL. We define a syntac-
tic mapping TRRSLrr´ss from RSL’s assertions and Hoare-
triples to DafnyR’s as:

TRRSLrrP ss “ P
TRRSLrrtP u Stmt tQuss “

tTRRSLrrP ssu Stmt tTRRSLrrQssu rfptpTRrrP ssqs.
Let h1, . . . , hn be hypothesis and c be conclusion in

RSL’s inference rules and axioms. The syntactic mapping
from them to DafnyR’s rules and axioms are defined as:

TRRSLrr
h1, . . . , hn

c
ss “

TRRSLrrh1ss, . . . , TRRSLrrhnss

TRRSLrrcss

Preservation of Provability
Now we prove that proofs are preserved by the syntactic
mapping TRRSLrr´ss, i.e., proofs done in RSL can be con-
verted into DafnyR proofs. This result gives in practice the
ability to use existing approaches or decision procedures for
RSL and apply them to the more general world of dynamic
frames.

15 2014/3/25

fpRSLpe1 “ e2q “ regiontu fpRSLpx.f ÞÑ eq “ regiontx.fu
fpRSLpa1 ˚ a2q “ fpRSLpa1q ` if TRrra1ss then fpRSLpa2q else regiontu
fpRSLpa1 ^ a2q “ fpRSLpa1q ` if TRrra1ss then fpRSLpa2q else regiontu
fpRSLpa1 _ a2q “ fpRSLpa1q ` if TRrra1ss then regiontu else fpRSLpa2q
fpRSLpa1 ñ a2q “ fpRSLpa1q ` if TRrra1ss then fpRSLpa2q else regiontu
fpRSLpDx

1.x.f ÞÑ x1 ˚ aq “ regiontx.fu ` fpRSLpaqrx.f{x
1s.

Figure 13. Footprint function for RSL assertions

$
x.f “ Expr ñ
x.f “ Expr

$
PointsTof px,Expr1q

ñ x ‰ null

(UPDDR)

$DR

tx ‰ nullu
x.f :“ Expr
tx.f “ Expru

[regiontx.fu]
(CONDR)

$DR

tPointsTof px,Expr1qu
x.f :“ Expr

tx.f “ Expru [regiontx.fu]

$
x ‰ null&&x.f “ Expr
ñ PointsTof px,Exprq

$
x.f “ Expr ñ
x.f “ Expr

(CONDR)

$DR

tPointsTof px,Expr1qu
x.f :“ Expr

tPointsTof px,Exprqu [regiontx.fu]

Figure 14. Derivation of the DUPDDR rule

$
PointsTof px

1,Exprq ðñ
x1 ‰ null&& x1.f “ Expr

$
x “ Expr ñ
x “ Expr

(ACCDR)

$DR

tx1 ‰ null&& x1.f “ Expru
x :“ x1.f

tx “ Expru [regiontu]
(CONDR)

$DR

tPointsTof px
1,Exprqu

x :“ x1.f
tx “ Expru [regiontu]

(FRMDR)

$DR

tPointsTof px
1,Exprqu

x :“ x1.f
tx “ Expr && PointsTof px

1,Exprqu
[regiontu]

PointsTof px
1,Exprq $DR

regiontu ă“ regiontx1.fu

(SubEffDR)

$DR

tPointsTof px
1,Exprqu

x :“ x1.f
tx “ Expr && PointsTof px

1,Exprqu
[regiontx1.fu]

where x R FVpExprq and txu X FVpPointsTof px
1,Exprqq “ H

Figure 15. Derivation of the DACCDR rule

$DR tP u Stmt tQurεs
(FRMDR)

$DR tP &&Ru Stmt tQ&&Rurεs P $ ε ă“ ε` fptpRq
(SubEffDR)

$DR tP &&Ru Stmt tQ&&Rurε` fptpRqs
where pModifypStmtq X FVpRqq “ H
and ε ˚ fptpRq “ regiontu

Figure 16. Derivation of the DFRMDR rule

16 2014/3/25

In the theorem below, the assumption $ x ‰ null ñ
Dv.PointsTof px, vq is implicit in DafnyR, since DafnyR
assumes arbitrary values for un-initialized variables.

THEOREM 4.12. Assume that for all variables x and fields
f of x’s type, $ x ‰ nullñ Dv.PointsTof px, vq. Let x be
a triple in RSL, then if $RSL x, then $DR TRRSLrrxss.

Proof: The proof strategy is to syntactically translate the
proof of x into DafnyR, using TRRSLrr´ss (Definition 4.11).
Then we show in each case that the translated proof is a proof
in DafnyR by induction.

Assume $RSL x. We prove it by induction on the struc-
ture of the RSL proof.

1. (ALLOC) One base case is when x has the form of
ttrueux :“ newKt

Æn
i“1 x.fi ÞÑ 0u, where tf1, . . . , fnu

“ fieldspKq.

TRRSLrrttrueu x :“ newK t
Æn

i“1 x.fi ÞÑ 0uss
“ xby rule mapping (Def. 4.11)y

TRrrttrueuss
x :“ newK

TRrrt
Æn

i“1 x.fi ÞÑ 0ussrfptpTRrrtruessqs
“ xby assertion mapping (Def. 4.3)y

ttrueu
x :“ newK

t&&ni“1PointsTofipx, 0q&&
!!ni“1fptpPointsTofipx, 0qqurfptptrueqs

“ xby semantics of RSL (Def. 2.6)y
ttrueu

x :“ newK
t&&ni“1PointsTofipx, 0q&&

!!ni“1fptpPointsTofipx, 0qqurregiontus

The translated form is a derived rule DALLOCDR
shown in Fig. 17.

2. (ASGN) The second base case is when x has the form
ttrueu x :“ Expr tx “ Expru

TRRSLrrttrueu x :“ Expr tx “ Expruss
“ xby rule mapping (Def. 4.11)y

tTRrrtruessu
x :“ Expr

tTRrrx “ ExprssurfptpTRrrtruessqs
“ xby assertion mapping (Def. 4.3)y

ttrueu
x :“ Expr

tx “ Expru rfptptrueqs
“ xby semantics of DafnyR (Def. 2.6)y

ttrueu
x :“ Expr

tx “ Expru rregiontus

The form above is the ASGNDR rule in DafnyR.

3. (UPD) The third base case is when x has the form

tDv.x.f ÞÑ vu x.f :“ Expr tx.f ÞÑ Expru

TRRSLrr
tDv.x.f ÞÑ vu
x.f :“ Expr
tx.f ÞÑ Expru

ss

“ xby rule mapping (Def. 4.11)y
tTRrrDv.x.f ÞÑ vssu

x.f :“ Expr
tTRrrx.f ÞÑ Exprssu

[fptpTRrrx.f ÞÑ Expr1ssq]
“ xby assertion mapping 4.3y

tDv.PointsTof px, vqu
x.f :“ Expr

tPointsTof px,Exprqu
[fptpPointsTof px,Expr1qq]

“ xby semantics of DafnyR (Def. 2.6) y
tDv.PointsTof px, vqu

x.f :“ Expr
tPointsTof px,Exprqu

[regiontx.fu]

This form is the derived rule DUPDDR shown in Fig. 14.

4. (ACC) The fourth base case is when x has the form
tx1.f ÞÑ Expru x :“ x1.f tx “ Expr ^ x1.f ÞÑ Expru

TRRSLrr
tx1.f ÞÑ Expru
x :“ x1.f

tx “ Expr ^ x1.f ÞÑ Expru
ss

“ xby rule mapping (Def. 4.11)y
tTRrrx1.f ÞÑ Exprssu

x :“ x1.f
tTRrrx “ Expr ^ x1.f ÞÑ Exprssu

[fptpTRrrx1.f ÞÑ Exprssq]
“ xby assertion mapping (Def. 4.3)y

tPointsTof px
1,Exprqu

x :“ x1.f
tx “ Expr && PointsTof px1,Exprqu

[fptpPointsTof px1,Exprqq]
“ xby semantics of DafnyR (Def. 2.6)y

tPointsTof px
1,Exprqu

x :“ x1.f
tx “ Expr && PointsTof px1,Exprqu

[regiontx1.fu]

The formula the derived ruleDACCDR shown in Fig. 15.
Now we have proven all the base cases. Next we prove
inductive cases. The inductive hypothesis is that for all
hypothesis rules x, if $RSL x, then $DR TRRSLrrxss.

5. (IF) In this case, x has the form
tP ^ Expr ‰ 0u Stmt1 tQu,
tP ^ Expr “ 0u Stmt2 tQu

tP u ifpExpr ‰ 0qtStmt1u elsetStmt2u tQu
By the inductive hypothesis, this is derivable in DafnyR.

17 2014/3/25

$

p&&ni“1PointsTofipx, 0q&&
!!ni“1fptpPointsTofipx, 0qqq
ñ &&ni“1PointsTofipx, 0q,

$ true ñ true,

(ALLOCDR)

$DR

ttrueu
x :“ newK
t&&ni“1PointsTofipx, 0q
&&p!!ni“1fptpPointsTofipx, 0qqqu rregiontus

CONDR
$DR ttrueu x :“ newK t&&ni“1PointsTofipx, 0qu rregiontus
where pf1, . . . , fnq “ fieldNamespKq

Figure 17. DALLOCDR rule

6. (WHILE) In this case, x is
$SL tI ^ Expr ‰ 0u Stmt tIu

$SL tIu whilepExpr ‰ 0qtStmtu tI ^ Expr “ 0u

By the inductive hypothesis, this is derivable in DafnyR.

7. (SEQ) In this case x is
$SL tP u Stmt1 tQ1u $SL tQ

1u Stmt2 tQu
$SL tP u Stmt1; Stmt2 tQu

By the inductive hypothesis, this is derivable in DafnyR.

8. (CONSEQ) In this case, x is
$ P ñ P 1 $SL tP

1uStmt tQ1u $ Q1 ñ Q

$SL tP u Stmt tQu
By the inductive hypothesis, this is derivable in DafnyR.

9. (FRM) In this case, x is
$SL tP u Stmt tQu

$SL tP ˚Ru Stmt tQ ˚Ru
The calculation is shown in Fig. 18, where the condition
fptpTRrrP ssq!!fptpTRrrQssq satisfies the side-condition
of DafnyR’s frame rule, therefore, the rule above can be
simplified as:
tTRrrP ssu Stmt tTRrrQssurfptpTRrrP ssqs

tTRrrP ss&&TRrrRssu
Stmt

tTRrrQss&&TRrrRss
[fptpTRrrP ssq ` fptpTRrrRssq]

This formula is the derived rule, DFRMDR, shown in
Fig. 16.

Conservatism of the Translation
According to Theorem 4.12, an axiom or provable Hoare-
triple in RSL is translated to the corresponding axiom, prov-
able Hoare-formula or provable derived Hoare-formula in
DafnyR.

For the converse, we can combine theorem 4.9 with the
soundness of DafnyR’s verification logic to show that the
translation cannot translate invalid Hoare triples in RSL into
provable Hoare-formula in DafnyR.

THEOREM 4.13. Suppose a1 and a2 are RSL assertions and
ta1u Stmt ta2u is an invalid Hoare triple. Then its transla-

tion, TRRSLrrta1u Stmt ta2uss, is not provable in DafnyR’s
verification logic.

Proof: Let a1 and a2 be RSL assertions. Suppose that
ta1u Stmt ta2u is invalid. By the semantics of partial cor-
rectness Hoare-triples (Def. 3.3) this means that there is
some state σ, h such that σ, h (RSL a1 and pσ1, h1q “
SrrStmtssσ,h, but σ1, h1 *RSL a2. We will show that $DR
TRRSLrrta1u Stmt ta2uss is a contradiction to the soundness
of DafnyR’s verification logic (see Appendix B). By defini-
tion, the translation is

tTRrra1ssu Stmt tTRrra2ssurfptpTRrra1ssqs.

Let F1 “ RErrfpHypa1qssσ,h. By definition h
F1
” h, thus by

Theorem 4.9, F1 “ RErrfptpTRrra1ssqssσ,h and σ, h (DR
TRrra1ss. Let F2 “ RErrfpHypa2qssσ1,h1 . Since by defini-

tion h1
F2
” h1, and we are assuming that σ1, h1 *RSL a2,

by Theorem 4.9 again it follows that σ1, h1 *DR TRrra2ss.
Thus the translation is invalid as a Hoare-formula. However,
the DafnyR verification logic is sound [2], so this is a con-
tradiction to the provability of the translation in DafnyR’s
verification logic.

Therefore, our translation makes DafnyR’s logic a con-
servative extension of RSL.

5. Discussion
In this section we discuss issues related to separation logic
features.

5.1 Other Assertions in Standard Separation Logic
In section 3, we introduced a restricted separation logic
(RSL) that excludes the emp predicate and separating im-
plication. We discuss these excluded assertion forms in this
section.

5.1.1 The emp predicate
The semantics of the emp predicate given by Reynolds [18]
is: σ, h (emp ðñ domphq “ H. This asserts that the
heap, h, is empty. It is used in specifying memory allocation

18 2014/3/25

TRRSLrr
tP u Stmt tQu

tP ˚Ru Stmt tQ ˚Ru
ss

“ xby rule mapping (Def. 4.11)y
tTRrrP ssu Stmt tTRrrQssurfptpTRrrP ssqs
tTRrrP ˚Rssu Stmt tTRrrQ ˚Rssu

“ xby assertion translation (Def. 4.3)y
tTRrrP ssu Stmt tTRrrQssurfptpTRrrP ssqs

tTRrrP ss&&TRrrRss&&pfptpTRrrP ssq!!fptpTRrrQssqqu Stmt tTRrrQss&&TRrrRss&&pfptpTRrrQssq!!fptpTRrrRssqqu
[fptpTRrrP ss&&TRrrRss&&pfptpTRrrP ssq!!fptpTRrrRssqqq]

“ xby semantics of DafnyR (Def. 2.6)y
tTRrrP ssu Stmt tTRrrQssurfptpTRrrP ssqs

tTRrrP ss&&TRrrRss&&pfptpTRrrP ssq!!fptpTRrrQssqqu Stmt tTRrrQss&&TRrrRss&&pfptpTRrrQssq!!fptpTRrrRssqqu
[fptpTRrrP ss&&TRrrRssqs

“ xby semantics of DafnyR (Def. 2.6)y
tTRrrP ssu Stmt tTRrrQssurfptpTRrrP ssqs

tTRrrP ss&&TRrrRss&&pfptpTRrrP ssq!!fptpTRrrQssqqu Stmt tTRrrQss&&TRrrRss&&pfptpTRrrQssq!!fptpTRrrRssqqu
[fptpTRrrP ssq ` fptpTRrrRssq]

Figure 18. Calculation on Frame formulas

and deallocation as in the following axioms:

tempu x :“ newK t

n
æ

i“1

x.fi ÞÑ 0u (2)

t

n
æ

i“1

x.fi ÞÑ 0u free x tempu (3)

In definition 3.4, we defined the ALLOCRSL rule as

ttrueu x :“ newK t

n
æ

i“1

x.fi ÞÑ 0u (4)

When specifying heap allocation, the precondition of (2) is
stronger than that of (4). However, this is not problematic,
since in practice, emp will be applied to an empty heap, and
both emp and true will hold for an empty heap.

However, the story is different for deallocation, which in
the verification logic of DafnyR could be specified as:

t

n
æ

i“1

x.fi ÞÑ 0u free pxq ttrueu (5)

Note that the postcondition of (3) is stronger than the post-
condition of (5). This shows an advantage of separation logic
over dynamic frames. Consider a method, disposeplstq that
disposes a linked-list, lst, by iteratively freeing each node in
lst. The postcondition of (5) does not have any proof obliga-
tion. That means it is always satisfied even if a statement in
the implementation of dispose does not free some nodes in
lst. But such an incorrect implementation could not be veri-
fied in RSL using (3), which specifies that the storage must
be deallocated.

Because of the semantics of DafnyR, which works with
the entire heap, not just the part requested by a precondition,
DafnyR lacks the expressiveness to encode emp.

5.1.2 Separating implication
The separating implication (or “magic wand”) operator
poses problems for our translation, because we are unable
to determine a suitable footprint for it. The semantics of
separating implication assertions is [18]:

σ, h (a1 ˚́ a2 ðñ @h1.ph1Kh and σ, h1 (a1q
implies σ, h ¨ h1 (a2q

The trouble with creating a definition of the footprint of
such an assertion is that the footprint of the antecedent (a1)
is not necessarily a subset of the domain of the current heap.
But that would contradict Lemma 4.6, which says that in any
state, the footprint should be a subset of the current heap’s
domain.

5.2 Intuitionistic semantics of SL
We defined the semantics of RSL classically [18]. Separation
logic can also be given an intuitionistic semantics [8]. In
the intuitionistic semantics, emp is omitted, and there is a
monotonicity condition: which says that if @ h1, h : h Ď h1 :
σ, h (añ σ, h1 (a. Furthermore, the semantics of point-
to assertions and implication are defined as follows:

σ, h (SL x.f ÞÑ e ðñ tpERSLrrxssσ, fqu P domphq
and ERSLrrxssσ ‰ null and
hrERSLrrxssσ, f s “ ERSLrrxssσ

σ, h (SL a1 ñ a2 ðñ @h1 : h1 Ě h :
σ, h1 (a1implies σ, h

1 (a2

Since semantic footprints are minimal sets of locations,
the points-to assertions cause no problems in this semantics.

19 2014/3/25

However, the intuitionistic semantics of implication asser-
tions is similar to the semantics of magic wand discussed in
section 5.1.2. Thus we are unable to extend our result to this
semantics.

5.3 Encoding Ramifications
Hobor and Villard [7] extend separation logic with overlap-
ping conjunctions, of the form a1 Y› a2, which are use the
“ramification” (Y›) operator. They define the semantics of
such assertions as follows:

σ, h (SL a1 Y› a2 ðñ exists h1, h2, h3.h1Kh2Kh3
and h1 ¨ h2 ¨ h3 “ h and σ, h1 ¨ h2 (a1 and
σ, h2 ¨ h3 (a2.

Overlapping conjunction can be used to express assertions
about shared data structures.

Ramifications can be added to RSL without causing prob-
lems with our results. This can be done by extending the def-
inition of hypothetical footprint as follows.

DEFINITION 5.1. The hypothetical footprint for a ramifica-
tion assertion is given by:

fpHypa1 Y› a2q “ fpHypa1q ` if a1 then
fpHypa2q else regiontu.

The translation into DafnyR assertions would also be
simple:

DEFINITION 5.2.

TRrra1 Y› a2ss “ TRrra1ss&&TRrra2ss.

We can then adapt our proofs and show that the semantics
of assertions is preserved by this translation.

LEMMA 5.3. Let a1 and a2 be an assertions in RSL, and
pσ, hq and pσ,Hq be states. Let F be a1 Y› a2’s hypothetical

footprint F “ RErrfpHypa1 Y› a2qssσ,H . If h
F
” H , then

F “ RErrfptpTRrra1 Y› a2ssqssσ,H and σ, h (RSL a1 Y›
a2 ðñ σ,H (DR TRrra1 Y› a2ss.

Proof: We consider it as another inductive case in the proof
of Theorem 4.9 . The inductive hypothesis is that for all
subassertions ai, heaps hi and H 1, for each subassertion ai,
the footprint is Fi “ RErrfpHypaiqssσ,H1 . If h

Fi
” H 1, then

Fi “ RErrfptpTRrraissqssσ,H1 , and σ, hi (SL ai ðñ

σ,H 1 (DR TRrraiss.
We first prove RErrfptpTRrra1 Y› a2ssqssσ,H “

RErrfpHypa1 Y› a2qssσ,H as follows:

RErrfpHypa1 Y› a2qssσ,h
“ xby the hypothetical footprint (Def. 5.4)y

RE

»

–

»

– fpHypa1q ` if a1 then fpHypa2q
else regiontu

fi

fl

fi

fl

σ,h

“ xby the presumed semantics (formula (1)), twicey

RErrfpHypa1qssσ,h Y ifARSLrra1ssσ,h “ true
thenRErrfpHypa2qssσ,helseH

“

B

by inductive hypothesis, σ, h (RSL ai ðñ

σ,H (DR TRrraiss, and Lemma 4.8

F

RErrfpHypa1qssσ,h Y
ifADRrrTRrra1ssssσ,H “ true then
RErrfpHypa1qssσ,h elseH

“

C

by inductive hypothesis,
RErrfpHypaiqssσ,h “ RErrfptpTRrraissqssσ,H ,
twice

G

RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrra1ssssσ,H “ true then
RErrfptpTRrra2ssqssσ,H elseH

“ xby semantics of DafnyR (Def. 2.6), twicey

RE

»

–

»

– fptpTRrra1ssq ` pif TRrra1ss then
fptpTRrra2ssq else regiontuq

fi

fl

fi

fl

σ,H

“ xby semantics of DafnyR (Def. 2.6)y
RErrfptpTRrra1ss&&TRrra2ssqssσ,H

“ xby syntactic mapping (Def. 5.2)y
RErrfptpTRrra1 Y› a2ssqssσ,H

Next we prove σ, h (RSL a1 Y› a2 ðñ σ,H (DR

TRrra1 Y› a2ss.
We first prove it from the left side to the right side. As-

sume σ, h (RSL a1 Y› a2. By the semantics of ramification,
there exists three disjoint sub-heaps h1, h2, h3, such that a1
asserts h1 ¨ h2, and a2 asserts on h2 ¨ h3. Therefore F1 “

RErrfpHypa1qssσ,h1¨h2 and F2 “ RErrfpHypa2qssσ,h2¨h3 .
We calculate as follows:

σ, h (RSL a1 Y› a2
ðñ xby semantics of ramificationy

exists h1, h2, h3.h1Kh2Kh3 and h1 ¨ h2 ¨ h3 “ h and
σ, h1 ¨ h2 (SL a1 and σ, h2 ¨ h3 (SL a2

ñ xby Theorem 4.9y
σ,H (DR TRrra1ss and σ,H (DR TRrra2ss

ðñ xby semantics of DafnyR (Def: 2.6) y
σ,H (DR TRrra1ss && TRrra2ss

ðñ xby syntactical mapping (Def. 5.2)y
σ,H (DR TRrra1 Y› a2ss

Next we prove it from the right side to the left side.
Assume σ,H (DR TRrra1 Y› a2ss, where the footprints of
a1 is F1 “ RErrfptpTRrra1ssqssσ,H , and the footprint of a2
is F2 “ RErrfptpTRrra2ssqssσ,H . We calculate it as follows:

σ,H (DR TRrra1 Y› a2ss
ðñ xby syntactical mapping (Def. 5.2)y

σ,H (DR TRrra1ss && TRrra2ss
ðñ xby semantics of DafnyR (Def: 2.6) y

σ,H (DR TRrra1ss and σ,H (DR TRrra2ss

ñ

C

by definition of F1 and F2, we construct heaps
h1, h2 and h3, such that domph2q “ F1 X F2,
domph1q “ F1 ´ domph2q and domph3q “

F2´domph2q and h1 ¨h2
F1
” H and h2 ¨h3

F2
” H

G

20 2014/3/25

exists h1, h2, h3. F1 “ domph1q Y domph2q and
F2 “ domph2q Y domph3q and σ,H (DR TRrra1ss
and σ,H (DR TRrra2ss and σ, h1 ¨ h2 (DR TRrra1ss
and σ, h2 ¨ h3 (DR TRrra2ss

ðñ xby set theoryy
exists h1, h2, h3. domph1q X domph2q “ H and
domph2q X domph3q “ H and
domph1q X domph3q “ H and
F1 “ domph1q Y domph2q and
F2 “ domph2q Y domph3q and
σ,H (DR TRrra1ss and σ,H (DR TRrra2ss and
σ, h1 ¨ h2 (DR TRrra1ss and σ, h2 ¨ h3 (DR TRrra2ss

ðñ xby definition of heap (Def. 2.2)y
exists h1, h2, h3. h1Kh2Kh3 and
F1 “ domph1q Y domph2q and
F2 “ domph2q Y domph3q and σ,H (DR TRrra1ss
and σ,H (DR TRrra2ss and
σ, h1 ¨ h2 (DR TRrra1ss and σ, h2 ¨ h3 (DR TRrra2ss

ðñ xby Theorem 4.9, twicey
exists h1, h2, h3. h1Kh2Kh3
F1 “ domph1q Y domph2q and
F2 “ domph2q Y domph3q and
σ, h1 ¨ h2 (DR TRrra1ss and
σ, h2 ¨ h3 (RSL TRrra2ss and σ, h11 (RSL a1 and
σ, h12 (RSL a2

ñ

C

by Theorem 4.9, twice. And h1 ¨ h2
F1
” h11 and

h2 ¨ h3
F2
” h12

G

exists h1, h2, h3. h1Kh2Kh3 and
σ, h1 ¨ h2 (RSL a1 and σ, h2 ¨ h3 (RSL a2

ñ xby construction h “ h1 ¨ h2 ¨ h3y
exists h1, h2, h3. h1Kh2Kh3 and h “ h1 ¨ h2 ¨ h3
and σ, h1 ¨ h2 (RSL a1 and σ, h2 ¨ h3 (RSL a2

ðñ xby semantics of ramificationy
σ, h (RSL a1 Y› a2

By the result of Theorem 4.9 and Lemma 5.3, we can con-
clude RSL assertions a and the translated assertions TRrrass
are semantically equivalent on the states pσ, hq and pσ,Hq,
where h and H agree on a’s footprint. Thus, following our
earlier development, we can replace a with TRrrass in defini-
tion 5.1, and redefine the footprint of ramification assertion
in terms of region expressions in DafnyR’s syntax.

DEFINITION 5.4. The definition for ramification assertions’
footprints is:

fpRSLpa1 Y› a2q “ fpRSLpa1q ` if TRrra1ss then
fpRSLpa2q else regiontu

5.4 Translation of DafnyR to RSL
In this section, we show our attempt to encode dynamic
frames by translating DafnyR to the restricted separation
logic.

DafnyR uses specification-only or ghost variables with
type region to dynamically calculate frames as a program
proceeds. This calculation can also be achieved by a pure
method, such as in Smans’ work [20], which returns a set of
locations. Such a method is analogous to a DafnyR function
that returns a region.

In the translation, we assume RSL also has predicates. We
translate predicate invocations and declarations separately.

DEFINITION 5.5. (Syntactic Mapping DafnyR to Separation
Logic). Let DafnyR expressions and assertions be given in
definition 2.1. We define a syntactic mapping TRsrr´ss from
DafnyR expressions and assertions to separation logic ex-
pressions and assertions shown in Fig. 19.

Note that the translation of region expression, alloc, is
not clear. And a region union expression could also be trans-
lated as: TRsrrRE1 `RE2ss “ TRsrrRE1ss Y› TRsrrRE2ss,
using ramification.

However, as mentioned in the background, the region ex-
pressions given in definition 2.1 are only subset of DafnyR’s
region expressions. We omit some region expressions that
allow one to manipulate a region in a first class way.

RE ::“ . . .
| filter{RE, K} | filter{RE, K, f}

Assrt ::“ . . .
| Dx P RE.Assrt | fresh{RE} | old{Expr}

It is not clear how to translate these other expressions and
assertions to separation logic, since separation logic asser-
tions couples locations and their contents, and do not provide
a way to extract locations or to express types. Moreover, the
dynamic frames technique commonly declares region vari-
ables as ghost fields or ghost variables. These seem difficult
to translate into separation logic.

In a SMT based verifier, such as Dafny, DafnyR and
VERL [19], method calls are verified with respect to the
called method’s specification. At the method call site, the
method’s precondition is checked, and the locations spec-
ified in the frame condition are allowed to take on arbi-
trary values (with havoc), then its postcondition is assumed.
Therefore one must always gives desirable values to those
havoced locations in its postcondition. If the frame condition
is precise, which means it specifies a minimal set of locations
that may be changed, then one mentions fewer locations in
the postcondition, compared to less precise frame condition,
which make one specify post-state properties of a bigger
set of locations. In other words, if the frame contains more
than the necessary locations, one needs to specify that val-
ues in those unnecessary locations are preserved. That could
be done by old expression in Dafny, DafnyR and VERL or
by logical variables in VeriFast. Therefore although these
additional expressions provide a way to minimize the loca-
tions in the frame condition, they do not necessarily increase
DafnyR’s expressiveness.

21 2014/3/25

TRsrrxss “ x TRsrrnullss “ null TRsrrnss “ n

TRsrrExpr1 “ Expr2ss “

"

TRsrrxss.f ÞÑ TRsrrExpr2ss if Expr1 “ x.f
TRsrrExpr1ss “ TRsrrExpr2ss otherwise

TRsrrAssrt1&&Assrt2ss “ TRsrrAssrt1ss ^ TRsrrAssrt2ss TRsrrAssrt1||Assrt2ss “ TRsrrAssrt1ss _ TRsrrAssrt2ss
TRsrrAssrt1 ñ Assrt2ss “ TRsrrAssrt1ss ñ TRsrrAssrt2ss TRsrrDx.ass “ Dx.TRsrrass ˚ true , where x is not a region variable.
TRsrrP pinsqss “ P pTRsrrinsssq, where we overload TRsrr´ss for lists of actual arguments,ins.
TRsrrP pdeclsqtAssrtuss “ P pTRsrrdeclssstTRrrAssrtssuq, where we overload TRsrr´ss for lists of declarations, decls.
TRsrrregiontx.fuss “ Dx1.pTRsrrxss.f ÞÑ x1 ˚ trueq TRsrrRE1 `RE2ss “ TRsrrRE1ss ˚ pTRsrrRE1ss ˚́ TRsrrRE2ssq

TRsrrRE1 ˚RE2ss “ pTRrrRE2ss ˚́ TRrrRE1ssq ˚́ TRrrRE1ss TRsrrRE1!!RE2ss “ TRsrrRE1ss ˚ TRsrrRE2ss

Figure 19. Syntactic mapping from DafnyR expressions and assertions to RSL’s

6. Related Work
In this section, we discuss related work.

6.1 Dynamic Frames
The theory of dynamic frames is due to Kassios [9, 10].
The theory is based on sets of locations, as in DafnyR, so
our translation from separation logic could perhaps also be
adapted to target other verification systems that use dynamic
frames [20]. These works do not show how to translate
separation logic into the dynamic frames technique.

6.2 Dafny
Leino’s Dafny system [13, 14] adopts the dynamic frames
technique, but uses variables that store sets of objects. In
Dafny it is not easy to specify frame properties at the level
of locations (fields), instead one must strengthen postcon-
ditions, by using old expressions to specify which fields
of threatened objects must not change. DafnyR can specify
frames at the level of locations directly.

Because in Dafny one writes frame conditions using sets
of objects, it would be difficult to precisely translate sepa-
ration logic’s points-to assertions into a predicate. By con-
trast, since DafnyR has regions that are sets of locations, it
is easy to specify the frame conditions of DafnyR’s built-in
PointsTof predicates.

6.3 Region Logic and VERL
The region logic of Banerjee, Naumann, and Rosenberg [1]
is the source of DafnyR’s region expressions. Region logic
defines regions as sets of objects. But region logic can use
wr (writes) and rd (reads) clauses to specify frame prop-
erties at the granularity of individual fields. Hence, as in
DafnyR a points-to assertion could be translated using pred-
icates with precise frames. However, it would be more dif-
ficult to deal with the translation of separating conjunction,
because in region logic one cannot directly express disjoint-
ness of regions that contain locations. Expressing such tests
directly on fine-grained regions is an advantage of DafnyR.

Rosenberg also defined a tool based on Dafny, VERL
[19], that adds region logic to Dafny. Like Dafny and region
logic, VERL uses sets of objects for regions. Furthermore,

that work did not address the connection between region
logic and separation logic.

6.4 Parkinson and Summers
Recently Parkinson and Summers [17], have shown a rela-
tionship between separation logic and the methodology of
implicit dynamic frames as used in concurrent languages
such as Chalice [16]. The methodology of implicit dynamic
frames for such languages uses permissions [4]. Parkinson
and Summers used “permission masks” to derive the par-
tial heaps used in the semantics of separation logic from the
permissions specified in the implicit dynamic frames tech-
nique. They use a Total Heaps Permission Logic to bridge
the gap between the two logics. Our work was inspired by
their approach. Instead of using permissions, DafnyR uses
fine-grained regions containing locations, but these regions
also can be thought of as determining partial heaps. The
work of Parkinson and Summers is based on the intuition-
istic semantics of separation logic [8], while ours is based
on the more expressive classical semantics [18]. Moreover,
their work did not present the connection between separation
logic and the dynamic frames technique.

For the connection between implicit dynamic frames and
dynamic frames, one can consider a location po, fq with a
positive permission in Parkinson and Summers’ work as a
singleton region tpo, fqu. In general a partial heap obtained
by a permission mask can be obtained by the corresponding
region. In this way one can draw many connections between
their work and our work on DafnyR. On the other hand, their
work does not use conditional permissions, which would be
the analogue of DafnyR’s conditional region expressions,
and they did not show that their translation preserves proofs
of correctness, as we have done.

7. Conclusion
We have shown that a restricted form of separation logic can
be translated into a fine-grained region logic in a way that
preserves the validity of assertions and proofs of partial cor-
rectness. The translation is precise in the sense that it trans-
lates invalid separation logic assertions into invalid region
logic assertions. The translation is based on a semantic no-

22 2014/3/25

tion of footprint, which we have shown can be computed
statically, due to the use of conditional region expressions.
Thus DafnyR’s fine-grained region logic can be used to write
specifications both the style of separation logic and in the
style of the dynamic frames technique.

Future work includes relaxing the restrictions on the form
of separation logic used in the technical results. In particu-
lar we would like to treat separating implication (or equiva-
lently, separation logic’s intitionistic semantics).

Future work includes incorporating these ideas into JML.
A prototype DafnyR system can be obtained from http:

//dafnyr.codeplex.com.

Appendix
A. Proof of Theorem 4.9
Theorem 4.9 is as follows.

Theorem 4.9: Let a be an assertion in RSL. Let σ be a
store, h and H be heaps, and F “ RErrfpHypaqssσ,h. If

h
F
” H , then F “ RErrfptpTRrrassqssσ,H , and σ, h (RSL

a ðñ σ,H (DR TRrrass.

Proof: Assume h
F
” H . We prove the theorem by induc-

tion on the structure of the assertion a.
One base case is when a is e1 “ e2.
We first prove RErrfptpTRrre1 “ e2ssqssσ,H “

RErrfpHype1 “ e2qssσ,h as follows:

RErrfptpTRrre1 “ e2ssqssσ,H
“ xby syntactic mapping (Def. 4.3)y

RErrfptpTRrre1ss “ TRrre2ssqssσ,H
“ xby semantics of DafnyR (Def. 2.6)y

RErrfptpTRrre1ssq ` fptpTRrre2ssqssσ,H
“ xby semantics of DafnyR (Def. 2.6), twicey

RErrregiontussσ,H
“ xby semantics of DafnyR (Def. 2.6)y

H

“ xby semantics of DafnyR (Def. 2.6)y
RErrregiontussσ,h

“ xby footprint in RSL (Def. 4.4)y
RErrfpHype1 “ e2qssσ,h

Next we prove σ, h (RSL e1 “ e2 ðñ σ,H (DR

TRrre1 “ e2ss as follows:

σ, h (RSL e1 “ e2
ðñ xby semantics of RSL in Definition 3.2y

ERSLrre1ssσ “ ERSLrre2ssσ
ðñ xby lemma 4.2y

EDRrre1ssσ,H “ EDRrre2ssσ,H
ðñ xby syntactic mapping (Def. 4.1), twicey

EDRrrTRrre1ssssσ,H “ EDRrrTRrre2ssssσ,H
ðñ xby semantics of DafnyR (Def. 2.6)y

σ,H (DR TRrre1ss “ TRrre2ss
ðñ xby syntactic mapping (Def 4.3)y

σ,H (DR TRrre1 “ e2ss

The second base case is when a is of the form x.f ÞÑ e,
and F “ RErrfpHypx.f ÞÑ eqssσ,h.

We first prove RErrfptpTRrrx.f ÞÑ essqssσ,h “
RErrfpHypx.f ÞÑ eqssσ,H as follows:

RErrfpHypx.f ÞÑ eqssσ,h
“ xby hypothetical footprint (Def. 4.4)y

RErrregiontx.fussσ,h
“ xby semantics of region expression (Def. 2.6)y

tpEDRrrxssσ,h, fqu
“ xby Lemma 4.2, twicey

tpEDRrrxssσ,H , fqu
“ xby semantics of region expression (Def. 2.6)y

RErrregiontx.fussσ,H

23 2014/3/25

“ xby semantics of DafnyR (Def. 2.6)y
RErrfptpPointsTof px, eqqssσ,H

“ xby syntactic mapping (Def. 4.3)y
RErrfptpTRrrx.f ÞÑ essqssσ,H

Next we prove σ, h (RSL x.f ÞÑ e ðñ σ,H (DR

TRrrx.f ÞÑ ess under the assumption that h
F
” H .

We first prove it from the left side to the right side. As-
sume σ, h (RSL x.f ÞÑ e, where F “ tpERSLrrxssσ, fqu.
We calculate it as follows:

σ, h (RSL x.f ÞÑ e
ðñ xby semantics of RSL (Def. 3.2)y

domphq “ tpERSLrrxssσ, fqu and
ERSLrrxssσ ‰ null and hrERSLrrxssσ, f s “ ERSLrressσ

ñ xby assumption: h
F
” Hy

HrERSLrrxssσ, f s “ ERSLrressσ and
ERSLrrxssσ ‰ null

ðñ

A

by ERSLrressσ “ EDRrressσ,H (Lemma: 4.2),
three times

E

HrEDRrrxssσ,H , f s “ EDRrressσ,H and
EDRrrxssσ,H ‰ null

ðñ xby syntactic mapping (Def. 4.1), three timesy
HrEDRrrTRrrxssssσ,H , f s “ EDRrrTRrressssσ,H and
EDRrrTRrrxssssσ,H ‰ null

ðñ xby semantics of DafnyR (Def. 2.6)y
σ,H (DR TRrrxss ‰ null &&
TRrrxss.f “ TRrress

ðñ xby definition of PointsTof predicatey
σ,H (DR PointsTof pTRrrxss,TRrressq

ðñ xby syntactic mapping (Def. 4.3) y
σ,H (DR TRrrx.f ÞÑ ess

Then we prove it from the right side to the left side. As-
sume σ,H (DR TRrrx.f ÞÑ ess, where its hypothetical foot-
print is F “ tpEDRrrxssσ,h, fqu. We calculate it as follows:

σ,H (DR TRrrx.f ÞÑ ess
ðñ xby syntactic mapping (Def. 4.3) y

σ,H (DR PointsTof pTRrrxss,TRrressq
ðñ xby definition of PointsTof predicatey

σ,H (DR TRrrxss ‰ null && TRrrxss.f “ TRrress
ðñ xby semantics of DafnyR (Def. 2.6)y

HrEDRrrTRrrxssssσ,H , f s “ EDRrrTRrressssσ,H and
EDRrrTRrrxssssσ,H ‰ null

ðñ xby syntactic mapping (Def. 4.1), three timesy
HrEDRrrxssσ,H , f s “ EDRrressσ,H and
EDRrrxssσ,H ‰ null

ñ

B

by definition of F , we can construct heap h,

such that domphq “ F and h
F
” H

F

domphq “ tpEDRrrxssσ,H , fqu and
EDRrrxssσ,H ‰ null and
hrEDRrrxssσ,H , f s “ EDRrressσ,H

ðñ

A

by ERSLrressσ “ EDRrressσ,H (Lemma: 4.2),
four times

E

domphq “ tpERSLrrxssσ, fqu and ERSLrrxssσ ‰ null
and hrERSLrrxssσ, f s “ ERSLrressσ

ðñ xby semantics of DafnyR (Def. 2.6)y
σ, h (RSL x.f ÞÑ e

The inductive hypothesis is that for all subassertions
ai, heaps hi and H 1, for each subassertion ai, the foot-
print is Fi “ RErrfpHypaiqssσ,hi

. If h
Fi
” H 1, then Fi “

RErrfptpTRrraissqssσ,H1 , and σ, hi (RSL ai ðñ σ,H 1 (DR
TRrraiss.

The first inductive case is when a is of the form a1 ˚ a2.
we first prove RErrfptpTRrra1 ˚ a2ssqssσ,H “
RErrfpHypa1 ˚ a2qssσ,h as follows:

RErrfpHypa1 ˚ a2qssσ,h
“ xby hypothetical footprint (Def. 4.4)y

RE
„„

fpHypa1q ` if a1 then fpHypa2q
else regiontu



σ,h

“ xby the presumed semantics (formula (1)), twicey
RErrfpHypa1qssσ,h Y ifARSLrra1ssσ,h “ true
thenRErrfpHypa2qssσ,helseH

“

B

by inductive hypothesis, σ, h (RSL ai ðñ

σ,H (DR TRrraiss, and Lemma 4.8

F

RErrfpHypa1qssσ,h Y
ifADRrrTRrra1ssssσ,H “ true
thenRErrfpHypa2qssσ,h elseH

“

B

by inductive hypothesis, RErrfpHypaiqssσ,h “
RErrfptpTRrraissqssσ,H , twice

F

RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrra1ssssσ,H “ true
thenRErrfptpTRrra2ssqssσ,H elseH

“ xby set theoryy
RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrra1ssssσ,H “ true
thenRErrfptpTRrra2ssqssσ,H Y HelseH

“ xby semantics of DafnyR (Def. 2.6)y
RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrrassssσ,H “ true
thenRErrfptpTRrra2ssqssσ,H Y

RE
„„

pif TRrra2ss then regiontu
else regiontuq



σ,H

elseH
“ xby semantics of Dafny (Def. 2.6)y

RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrrassssσ,H “ true
thenRErrfptpTRrra2ssqssσ,H Y

RE
„„

pif TRrra2ss then regiontu
else regiontuq



σ,H

elseH
“ xby semantics of Dafny (Def. 2.6)y

RE

»

—

—

—

—

–

»

—

—

—

—

–

fptpTRrra1ssq `
if TRrra1ss then fptpTRrra2ssq `
if TRrra2ss then
fptpfptpTRrra1ssq!!fptpTRrra2ssqq
else regiontuelse regiontu

fi

ffi

ffi

ffi

ffi

fl

fi

ffi

ffi

ffi

ffi

fl

σ,H

“ xby semantics of Dafny (Def. 2.6)y

24 2014/3/25

RE

»

—

—

–

»

—

—

–

fptpTRrra1ssq ` pif TRrra1ss
then fptpTRrra2ss&&
pfptpTRrra1ssq !! fptpTRrra2ssqqq
else regiontuq

fi

ffi

ffi

fl

fi

ffi

ffi

fl

σ,H

“ xby semantic of Dafny (Def. 2.6)y

RE
„„

fptpTRrra1ss && TRrra2ss &&
fptpTRrra1ssq !! fptpTRrra2ssqq



σ,H

“ xby syntactic mapping (Def. 4.3)y
RErrfptpTRrra1 ˚ a2ssqssσ,H

Next we prove σ, h (RSL a1 ˚ a2 ðñ σ,H (DR

TRrra1 ˚ a2ss.
We first prove it from the left side to the right side. As-

sume σ, h (RSL a1 ˚ a2, by the semantic of separating con-
junction, h is divided into two sub-heaps, h1 and h2, where
F1 “ RErrfpHypa1qssσ,h1 and F2 “ RErrfpHypa2qssσ,h2 .
Since h1 Ď h and h2 Ď h, by definition of heap, F1 “

RErrfpHypa1qssσ,h and F2 “ RErrfpHypa2qssσ,h.We cal-
culate as follows:

σ, h (RSL a1 ˚ a2

ðñ

B

by the semantics of RSL (Def. 3.2), and Corol-
lary 4.7

F

exists h1, h2.ph1Kh2 and h “ h1 ¨ h2 and
if σ, h1 (RSL a1 then σ, h2 (RSL a2 else falseq
and F1 X F2 “ H

ñ

Cby inductive the hypothesis,
σ, hi (RSL ai ðñ σ,H (DR TRrraiss,

twice, and hi
Fi
” H

G

if σ,H (DR TRrra1ss then σ,H (DR TRrra2ss
else false and F1 X F2 “ H

ðñ

B

by F1 “ RErrfpHypa1qssσ,h and
F2 “ RErrfpHypa2qssσ,h

F

RErrfpHypa1qssσ,H X RErrfpHypa2qssσ,H “ H
and if σ,H (DR TRrra1ss then σ,H (DR TRrra2ss
else false

ðñ

B

by inductive hypothesis RErrfpHypaiqssσ,h “
RErrfptpTRrraissqssσ,H , twice

F

RErrfptpTRrra1ssqssσ,HX
RErrfptpTRrra2ssqssσ,H “ H and
if σ,H (DR TRrra1ss then σ,H (DR TRrra2ss
else false

ðñ xby semantics of DafnyR (Def. 2.6), twicey
σ,H (DR TRrra1ss && TRrra2ss &&
fptpTRrra1ssq!!fptpTRrra2ssq

ðñ xby syntactic mapping (Def. 4.3)y
σ,H (DR TRrra1 ˚ a2ss

Then we prove it from the right side to the left side.
Assume σ,H (DR TRrra1 ˚ a2ss, where the footprint of a1
is F1 “ RErrfptpTRrra1ssqssσ,H , and the footprint of a2 is
F2 “ RErrfptpTRrra1ssqssσ,H .We calculate as follows:

σ,H (DR TRrra1 ˚ a2ss
ðñ xby syntactic mapping (Def. 4.3)y

σ,H (DR TRrra1ss && TRrra2ss &&
fptpTRrra1ssq!!fptpTRrra2ssq

ðñ xby semantics of DafnyR (Def. 2.6), twice y
RErrfptpTRrra1ssqssσ,H X RErrfptpTRrra2ssqssσ,H
“ H and if σ,H (DR TRrra1ss then
σ,H (DR TRrra2ss else false

ñ

C

by definition of F1 and F2, we can construct
heaps h1 and h2, such that domph1q “ F1 and

domph2q “ F2 and h1
F1
” H and h2

F2
” H and

RErrfpHypaiqssσ,h “ RErrfptpTRrraissqssσ,H ,
twice

G

exists h1, h2. domph1q X domph2q “ H and
if σ, h1 (RSL a1 then σ, h2 (RSL a2
else false and if σ,H (DR TRrra1ss then
σ,H (DR TRrra2ss else false

“

B

by inductive hypothesis, σ, h (RSL ai ðñ

σ,H (DR TRrraiss, twice

F

exists h1, h2. domph1q X domph2q “ H and
if σ, h1 (RSL a1 then σ, h2 (RSL a2 else
false and if σ, h11 (RSL a1 then σ, h12 (RSL a2
else false

ñ

Cby inductive hypothesis RErrfpHypaiqssσ,h “
RErrfptpTRrraissqssσ,H , twice. And h1

F1
” h11

and h2
F2
” h12

G

exists h1, h2. domph1q X domph2q “ H and
if σ, h1 (RSL a1 then σ, h2 (RSL a2 else false

ñ xby construction h “ h1 ¨ h2y
exists h1, h2. domph1q X domph2q “ H and
if σ, h1 (RSL a1 else σ, h2 (RSL a2 then false
and h “ h1 ¨ h2

ðñ xby definition of heap (Def. 2.2)y
exists h1, h2. h1Kh2 and
if σ, h1 (RSL a1 else σ, h2 (RSL a2 then false
and h “ h1 ¨ h2

ðñ xby semantics of RSL (Def. 3.2)y
σ, h (a1 ˚ a2

The second inductive case is when a is of the form
a1 ^ a2. We first prove RErrfptpTRrra1 ^ a2ssqssσ,H “

RErrfpHypa1 ^ a2qssσ,h as follows:

RErrfpHypa1 ^ a2qssσ,h
“ xby hypothetical footprint of RSL (Def. 4.4)y

RE
„„

fpHypa1q ` if a1 then
fpHypa1q else regiontu



σ,h

“ xby the presumed semantics (formula (1)), twicey
RErrfpHypa1qssσ,h Y
ifARSLrra1ssσ,h “ true then
RErrfpHypa1qssσ,h elseH

“

B

by inductive hypothesis, σ, h (RSL ai ðñ

σ,H (DR TRrraiss, and Lemma 4.8

F

RErrfpHypa1qssσ,h Y
ifADRrrTRrra1ssssσ,H “ true then
RErrfpHypa1qssσ,h elseH

“

C

by inductive hypothesis,
RErrfpHypaiqssσ,h “ RErrfptpTRrraissqssσ,H ,
twice

G

25 2014/3/25

RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrra1ssssσ,H “ true then
RErrfptpTRrra2ssqssσ,H elseH

“ xby semantics of DafnyR (Def. 2.6), twicey

RE
„„

fptpTRrra1ssq ` pif TRrra1ss then
fptpTRrra2ssq else regiontuq



σ,H

“ xby semantics of DafnyR (Def. 2.6)y
RErrfptpTRrra1ss&&TRrra2ssqssσ,H

“ xby syntactic mapping (Def. 4.3)y
RErrfptpTRrra1 ^ a2ssqssσ,H

Next we prove σ, h (RSL a1 ^ a2 ðñ σ,H (DR

TRrra1 ^ a2ss as follows:

σ, h (RSL a1 ^ a2
ðñ xby semantics of RSL (Def. 3.2)y

if σ, h (RSL a1 then σ, h (RSL a2 else false
ðñ xby inductive hypothesisy

if σ,H (DR TRrra1ss then σ,H (DR TRrra2ss
else false

ðñ xby semantics of DafnyR (Def. 2.6)y
σ,H (DR TRrra1ss&&TRrra2ss

The third inductive case is when a is of the form a1_ a2.
We first prove RErrfptpTRrra1 _ a2ssqssσ,H “
RErrfpHypa1 _ a2qssσ,h as follows:

RErrfpHypa1 _ a2qssσ,h
“ xby hypothetical footprint of RSL (Def. 4.4)y

RE
„„

fpHypa1q ` pif a1 then
regiontu else fpHypa2qq



σ,h

“ xby semantics of region expressions (Def: 2.6)y
RErrfpHypa1qssσ,h Y
ifARSLrra1ssσ,h “ true thenH
elseRErrfpHypa2qssσ,h

“

B

by inductive hypothesis, σ, h (RSL ai ðñ

σ,H (DR TRrraiss, and Lemma 4.8

F

RErrfpHypa1qssσ,h Y
ifADRrrTRrra1ssssσ,H “ true thenH
elseRErrfpHypa2qssσ,h

“

C

by inductive hypothesis,
RErrfpHypaiqssσ,h “ RErrfptpTRrraissqssσ,H ,
twice

G

RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrra1ssssσ,H “ true thenH
elseRErrfptpTRrra2ssqssσ,H

“ xby semantics of DafnyR (Def. 2.6), twicey

RE
„„

fptpTRrra1ssq ` pif TRrra1ss then
regiontu else fptpTRrra2ssqq



σ,H

“ xby semantics of DafnyR (Def. 2.6)y
RErrfpHypTRrra1ss ||TRrra2ssqssσ,H

“ xby syntactic mapping (Def. 4.3)y
RErrfptpTRrra1 _ a2ssqssσ,H

Next we prove σ, h (RSL a1 _ a2 ðñ σ,H (DR

TRrra1ss ||TRrra2ss as follows:

σ, h (RSL a1 _ a2

ðñ xby semantics of RSL (Def. 3.2)y
if σ, h (RSL a1 then true else σ, h (RSL a2

ðñ xby inductive hypothesisy
if σ,H (DR TRrra1ss then true else
σ,H (DR TRrra2ss

ðñ xby semantics of DafnyR (Def. 2.6)y
σ,H (DR TRrra1ss ||TRrra2ss

The fourth inductive case is when a is of the form
a1 ñ a2. We first prove RErrfptpTRrra1 ñ a2ssqssσ,H “

RErrfpHypa1 ñ a2qssσ,H as follows:

RErrfpHypa1 ñ a2qssσ,h
“ xby hypothetical footprint of RSL (Def. 4.4)y

RE
„„

fpHypa1q ` pif a1 then
fpHypa2q else regiontuq



σ,h

“ xby semantics of region expression (Def. 2.6)y
RErrfpHypa1qssσ,h Y
ifARSLrra1ssσ,h “ true then
RErrfpHypa2qssσ,h elseH

“

B

by inductive hypothesis, σ, h (RSL ai ðñ

σ,H (DR TRrraiss, and Lemma 4.8

F

RErrfpHypa1qssσ,h Y
ifADRrrTRrra1ssssσ,H “ true then
RErrfpHypa2qssσ,h elseH

“

C

by inductive hypothesis,
RErrfpHypaiqssσ,h “ RErrfptpTRrraissqssσ,H ,
twice

G

RErrfptpTRrra1ssqssσ,H Y
ifADRrrTRrra1ssssσ,H “ true then
RErrfptpTRrra2ssqssσ,H elseH

“ xby semantics of DafnyR (Def. 2.6), twicey

RE
„„

fptpTRrra1ssq ` pif TRrra1ss then
fptpTRrra2ssq else regiontuq



σ,H

“ xby semantics of DafnyR (Def. 2.6)y
RErrfptpTRrra1ss ñ TRrra2ssqssσ,H

“ xby syntactic mapping (Def. 4.3)y
RErrfptpTRrra1 ñ a2ssqssσ,H

Next we prove σ, h (RSL a1 ñ a2 ðñ σ,H (DR

TRrra1ss ñ TRrra2ss as follows:

σ, h (RSL a1 ñ a2
ðñ xby semantics of RSL (Def. 3.2)y

if σ, h (RSL a1 then σ, h (RSL a2 else true
ðñ xby inductive hypothesisy

if σ,H (DR TRrra1ss then σ,H (DR TRrra2ss
else true

ðñ xby semantics of DafnyR (Def. 2.6)y
σ,H (DR TRrra1ss ñ TRrra2ss

The fifth inductive case is when a is of the form Dx1.x.f ÞÑ
x1 ˚ a. By the definition of the hypothetical footprint, the
footprint of existential assertions do not depend on the ex-
istential variables. Therefore it is just a form of separating
conjunction case. .

26 2014/3/25

B. Soundness of DafnyR’s logic
THEOREM B.1 (Soundness of inference rules). Let P , Q
and I be type correct assertions, and let Stmt be a type
correct DafnyR statement. Let ε be a type correct region ex-
pression. The axioms and rules for DafnyR are valid. That
is:
if $DR tP uStmt tQu rεs, then (DR tP uStmt tQu rεs.

Proof: We prove this by induction on the structure of the
proof of tP u Stmt tQu rεs. Let pσ,Hq be an arbitrary state,
and without loss of generality, let pσ1, H 1q “ SrrStmtssσ,H .
We assume $DR tP u Stmt tQu rεs, and σ,H (DR P . Then
we must prove σ1, H 1 (DR Q, and that all the changed
locations are in ε.

1. (ALLOCDR) In this case, Stmt is x :“ new K, P is
true,Q is t&&ni“1PointsTofipx, 0qu and ε “ regiontu.
We derive Q as below:
By the semantics, pσ1, H 1q “ plet pσ2, H2q “ allocpHq
in pσ2, H2rpσ2rxs, fiq ÞÑ 0sqq, which entails Q.
For the frame condition, Stmt only updates newly allo-
cated locations, therefore ε “ regiontu is a correct
frame.

2. (ASGNDR) In this case, Stmt is x :“ Expr, P is true,Q
is tx “ Expru and ε “ regiontu, wherex R FVpExprq.
We derive Q as below:
By the semantics, pσ1, H 1q “ pσrx ÞÑ EDRrrExprssσ,H s, Hq,
which entails Q.
For the frame condition, this statement only updates vari-
able x in the store. So nothing is changed in the heap.
Therefore ε “ regiontu is a correct frame.

3. (UPDDR) In this case, Stmt is x.f :“ Expr, P is x ‰
null, Q is x.f “ Expr and ε “ regiontx.fu. We
derive Q as below:
By the semantics, pσ1, H 1q “ pσ,HrpEDRrrxssσ,H , fq ÞÑ
EDRrrExprssσ,H sq, which entails Q.
For the frame condition, this statement changes the sin-
gleton heap location px, fq. Therefore ε “ regiontx.fu
is a correct frame.

4. (ACCDR) In this case, Stmt is x :“ x1.f , P is x1 ‰
null && x1.f “ Expr, Q is x “ Expr, and ε “

regiontu. We derive Q as below:
By the semantics,
pσ1, H 1q “ pσrx ÞÑ HrpEDRrrx1ssσ,H , fqss, Hq, which
entails Q.
For the frame condition, this statement only updates vari-
able x in the store. So nothing is changed in the heap.
Therefore ε “ regiontu is a correct frame.

5. (SEQDR) In this case, Stmt is Stmt; Stmt. By the in-
ductive hypothesis for Stmt1 and Stmt2, pσ2, H2q “
SrrStmt1ssσ,H , and σ2, H2 (DR Q2.

By the second premise and the semantics, pσ1, H 1q “
SrrStmt2ssσ2,H2 . Hence σ1, H 1 (DR Q.
For the frame condition, by the two premises, let ε1 and
ε2 be the frame conditions of Stmt1 and Stmt2. Then
the frame condition of the sequential statements is ε “
ε1 ` ε2.

6. (IFDR) In this case, Stmt is ifpExpr ‰ 0qtStmt1uelse
tStmt2u.
There are two cases:
Case1: Expr ‰ 0. By the inductive hypothesis, pσ1, H 1q “
SrrStmt1ssσ,H , which entails Q.
Case2: Expr “ 0. By the inductive hypothesis, pσ1, H 1q “
SrrStmt2ssσ,H , which entails Q.
For the frame condition, by the induction hypothesis, ε is
a correct frame.

7. (WHILEDR) In this case, Stmt is whilepExpr ‰

0qtStmtu. P “ I , Q “ I && Expr ‰ 0 and the frame
conditions is ε. The premise is (DR tI && Expr ‰
0u Stmt tIurεs.
By the semantics of this statement, let g be a recursive
point function, such that

g “ λs . if ERSLrrExpr ‰ 0ssσ then let s1 “
SrrStmtssσ,H in gs1 else s.
By definition, fix is a fixed point function, so fixpgq “
g. Then we prove
fixpgqpσ,Hq (DR I by fixed-point induction.
Base Case: K (DR I holds vacuously. It requires to
prove all members in K implies I , but there is nothing
in K. Hence it is vacuously true.
Inductive Case: Let σ2, H2 (DR I hold for an arbitrary
iteration of g, and ε is the frame condition. Then we prove
that fixpgqpσ2, H2q (DR I holds, and the changed
locations on the heap is ε.
There are two cases:
Case 1: Expr ‰ 0. By the semantics, fixpgqpσ2, H2q “
gpSrrStmtssσ2,H2q. By the inductive hypothesis,
gpSrrStmtssσ2,H2q (DR I holds. Hence
fixpgqpσ2, H2q (DR I holds. For the frame condition,
since the fixed point function always returns the same
function g, which is framed by ε by the induction hypoth-
esis, therefore ε is the frame condition for an arbitrary
iteration.
Case 2: Expr “ 0. By the semantics, fixpgqpσ2, H2q “
pσ2, H2q. Therefore by the inductive hypothesis,
fixpgqpσ2, H2q (DR I holds. For the frame condition,
since the state does not change, the frame is regiontu,
which is the subset of ε.

27 2014/3/25

Now we conclude that if the loop exits, which means that
Expr “ 0 holds, the loop invariant I holds. Therefore, Q
holds and ε is its frame condition.

8. (SubEffDR) In this case, by the inductive hypothesis,
(DR tP uStmttQurεs. Hence when applying the frame
condition ε1 ě ε, the locations that may be changed are
also contained in ε1. Therefore ε1 is a correct frame.

9. (CONDR) In this case, by the inductive hypothesis,
tP 1uStmttQ1urεs (DR. By the premise, P ñ P 1 and
Q1 ñ Q. Hence (DR tP uStmttQurεs is valid.

10. (FRMDR) In this case, the premise is
tP uStmttQurεs (DR.
By the inductive hypothesis of DafyR, the side condition
ε!!fptpRq means R’s footprint is disjoint with the loca-
tions where side effects take place. That means the values
in fptpRq, which are outside ε, are not changed. Thus,
by definition of semantic footprint 2.5, the validity of R
is preserved after executing Stmt.
For the frame condition, since R is unchanged, locations
that may be changed must be in ε.

LEMMA B.2 (Soundness of sub-frame rules). Let ε and η
be frames. if $ ε ă“ η, then σ,H (ε ă“ η for
all heaps H and stores σ.

Proof: By induction on the derivation of $ ε ă“ η. The
semantics of ă“ and ˚ maps to the operations Ď and X on
sets, which have the required properties.

Acknowledgments
The work of both authors is supported in part by US NSF
under grant CCF-0916715. Thanks to David Naumann for
discussions about region logic and comments on an earlier
work. Thanks to Rustan Leino for discussions about Dafny
and Boogie and help with their implementation.

References
[1] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional

logic for local reasoning about global invariants. In J. Vitek,
editor, European Conference on Object-Oriented Program-
ming (ECOOP), volume 5142 of Lecture Notes in Computer
Science, pages 387–411, New York, NY, 2008. Springer-
Verlag.

[2] Y. Bao, G. T. Leavens, and G. Ernst. Translating separa-
tion logic into dynamic frames using fine-grained region logic.
Technical Report CS-TR-13-02a, Computer Science, Univer-
sity of Central Florida, Orlando, Florida, Mar. 2014.

[3] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame
problem in procedure specifications. IEEE Transactions on
Software Engineering, 21(10):785–798, Oct. 1995.

[4] J. Boyland. Checking interference with fractional permis-
sions. In R. Cousot, editor, Static Analysis (SAS), volume 2694
of Lecture Notes in Computer Science, pages 55–72, Berlin,
2003. Springer-Verlag.

[5] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond
assertions: Advanced specification and verification with JML
and ESC/Java2. In Formal Methods for Components and
Objects (FMCO) 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 342–363, Berlin,
2006. Springer-Verlag.

[6] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580,583, Oct. 1969.

[7] A. Hobor and J. Villard. The ramifications of sharing in data
structures. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
POPL ’13, pages 523–536, New York, NY, USA, 2013. ACM.

[8] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. In Proceedings of the 28th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’01, pages 14–26, New York, NY, USA,
2001. ACM.

[9] I. T. Kassios. Dynamic frames: Support for framing, depen-
dencies and sharing without restrictions. In E. S. J. Misra,
T. Nipkow, editor, Formal Methods (FM), volume 4085 of
Lecture Notes in Computer Science, pages 268–283, Berlin,
2006. Springer-Verlag.

[10] I. T. Kassios. The dynamic frames theory. Formal Aspects of
Computing, 23(3):267–288, May 2011.

[11] G. T. Leavens. JML’s rich, inherited specifications for behav-
ioral subtypes. In Z. Liu and H. Jifeng, editors, Formal Meth-
ods and Software Engineering: 8th International Conference
on Formal Engineering Methods (ICFEM), volume 4260 of
Lecture Notes in Computer Science, pages 2–34, New York,
NY, Nov. 2006. Springer-Verlag.

[12] K. R. M. Leino. Dafny: An automatic program
verifier for functional correctness. Web page at
https://dafny.codeplex.com/.

[13] K. R. M. Leino. Specification and verification of
object-oriented software. Lecture notes from Mark-
toberdorf Internation Summer School, available at
http://research.microsoft.com/en-us/um/
people/leino/papers/krml190.pdf, 2008.

[14] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Logic for Programming, Artificial
Intelligence, and Reasoning, 16th International Conference,
LPAR-16, volume 6355 of Lecture Notes in Computer Science,
pages 348–370. Springer-Verlag, 2010.

[15] K. R. M. Leino and R. Monahan. Dafny meets the verification
benchmarks challenge. In Proceedings of the Third interna-
tional conference on Verified software: theories, tools, exper-
iments, volume 6217 of Lecture Notes in Computer Science,
pages 112–126, Berlin, 2010. Springer-Verlag.

[16] K. R. M. Leino and P. Müller. A basis for verifying multi-
threaded programs. In G. Castagna, editor, Programming Lan-
guages and Systems, 18th European Symposium on Program-
ming, ESOP 2009, volume 5502 of Lecture Notes in Computer
Science, pages 378–393, Berlin, Mar. 2009. Springer-Verlag.

[17] M. J. Parkinson and A. J. Summers. The relationship between
separation logic and implicit dynamic frames. In Proceedings
of the 20th European conference on Programming languages

28 2014/3/25

and systems: part of the joint European conferences on theory
and practice of software, ESOP’11/ETAPS’11, pages 439–
458, Berlin, Heidelberg, 2011. Springer-Verlag.

[18] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proceedings of the Seventeenth Annual
IEEE Symposium on Logic in Computer Science, pages 55–
74, Los Alamitos, California, 2002. IEEE Computer Society
Press.

[19] S. Rosenberg. Verifier for region logic. Web page at
http://www.cs.stevens.edu/ naumann/pub/VERL/., 2011.

[20] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An au-
tomatic verifier for Java-like programs based on dynamic
frames. In Fundamental Approaches to Software Engineering,
volume 4961 of Lecture Notes in Computer Science, pages
261–275, Berlin, Apr. 2008. Springer-Verlag.

[21] H. Yang. Local reasoning for stateful programs. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 2001. AAI3023240.

29 2014/3/25

