Translating Separation Logic into
Dynamic Frames Using Fine-Grained Region Logic

Yuyan Bao, Gary T. Leavens, and Gidon Ernst

CS-TR-13-02a
March 2014

Keywords: Frame axiom, modifies clause, separation logic, dynamic frames, region logic, formal methods, Dafny language,
DafnyR language.

2013 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — Formal methods, programming by
contract; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about Programs — Assertions,
logics of programs, pre- and post-conditions, specification techniques;

Submitted for publication.

Computer Science
4000 Central Florida Blvd.
University of Central Florida
Orlando, Florida 32816, USA

Translating Separation Logic into
Dynamic Frames Using Fine-Grained Region Logic

Yuyan Bao Gary T. Leavens

Computer Science, University of Central Florida,
Orlando, FL 32816 USA

ybao@eecs.ucf.edu, leavens@eecs.ucf.edu

Abstract

Several techniques have been proposed for specification and
verification of frame conditions, making it difficult for spec-
ification language designers to know which to pick. Ideally
there would be a single mechanism that could be used to ex-
press specifications written in all techniques. In this paper
we provide a single mechanism that can be used to write
specifications in the style of both separation logic and dy-
namic frames. This mechanism shows common characters
between the two methodologies.

Categories and Subject Descriptors H.4 [Information Sys-
tems Applications]: Miscellaneous; D.2.4 [Software Engi-
neering]: Software/Program Verification—formal methods,
programming by contract

General Terms verification

Keywords Region logic, sequential programming, separa-
tion logic, dynamic frames, formal methods, frame axioms,
DafnyR language

1. Introduction

In Hoare-style reasoning about sequential, imperative pro-
grams, framing is important for verification. A method’s
frame describes the locations that the method may not
change [3]. Framing allows verification to carry properties
past statements such as method calls, since properties about
unchanged locations will remain valid.

Due to the importance of framing, many authors have
focused on methodologies for specification of frame condi-
tions and associated verification techniques

[Copyright notice will appear here once ’preprint’ option is removed.]

Gidon Ernst

Universitit Augsburg, D-86135 Augsburg,
Germany

ernst@informatik.uni-augsburg.de

1.1 Separation Logic

Separation logic [8, 18] extends Hoare’s logic with reason-
ing about locations on the heap. The separating conjunction,
P = () denotes that assertions P and Q hold in separate parts
of the heap. A binary tree could be defined in separation
logic as follows:

def

tree(t) = (t = null = emp) * (t # null = t.val — _

x tree(t.left) = tree(t.right)).

Separation logic is concise because its frame rule allows ig-
noring separated parts of the heap during reasoning; for ex-
ample one can ignore the right subtree when reasoning about
the left subtree. Therefore, separation logic simplifies rea-
soning about data structures that consist of isolated substruc-
tures, such as acyclic linked lists and binary trees.

On the other hand, one cannot use separation when there
is sharing, as in a directed acyclic graph (DAG), where the
left and right sides of a DAG may share nodes. Specifying
sharing and framing for shared parts of a data structure is
challenging and tricky [21], and may need the ramification
operator [7].

1.2 Dynamic Frames and Region Logic

Unlike separation logic, dynamic frames theory [9, 10] uses
regions that are (conceptually) stored in variables to specify
frame properties. It defines a region as a set of locations.
Regions are represented by specification-only variables that
vary as a program’s state changes. Dafny [13—15] and region
logic [1] are two approaches that apply dynamic frames
theory.

1.2.1 The idea of Dynamic Frames

Fig. 1 shows code snippets specifying a linked-list pro-
gram written in Dafny [13-15]. Dafny uses modifies and
reads clauses to specify frame properties. The dynamic
frame is specified by the ghost field footprint. It stores
a set of object references including this and its successors
in the list. This property is defined in the function valid.
Valid serves as an invariant that must be satisfied once a
Node object is created.

2014/3/25

class Node<T> {
var list: seq<T>;

var footprint: set<Node<T>>;
var data: T;
var next: Node<T>;

// constructor and other methods omitted
function Valid(): bool

reads this, footprint;
{

this in this.footprint && null !in this.footprint &&

(next == nul == [data]) &&
(next != null ==>
next in footprint &&

next.footprint <= footprint &&
this !in next.footprint &&
list == [data] + next.list &&
next.vValid())

method Prepend(d: T) returns (r: Node<T>)

requires Valid();

ensures r != null && r.Valid() &&

fresh (r.footprint - old(footprint));

ensures r.list == [d] + list;
{
r := new Node<T>;
r.data := d;
r.next := this;
r.footprint := {r} + this.footprint;
r.list := [r.data] + this.list;

Figure 1. A linked-list code snippet specifying in the
styling of dynamic frame. Code snippets are from the Dafny
repository [12].

Compared to separation logic’s assertions that couple lo-
cations and their content, the dynamic frames technique al-
lows one to specify heap locations independently. For ex-
ample, the Prepend method ensures that one adds the new
frame (new node) to the ghost variable footprint. Al-
though this increases coding tasks, properties can be freely
specified by set operations and first-order expressions. Set
membership and disjointness can specify isolated structures.
For example, line 16 in Fig. 1 requires that this can not
be in its successor’s footprint, which guarantees acyclic-
ity. Moreover, first-order expressions can easily describe
arbitrary sharing properties. In the example of specifying
Schorr-Waite algorithm shown in Fig. 2, line 11 to 13 spec-
ifies a graph with random sharing. This flexibility is conve-
nient for use in verifying a traversal algorithm, where the
exact shape is not of concern. Furthermore, in the example
of binary trees with sharing defined in Fig. 3, because each
subtree stores its own children, the frame of part of unvisited
right subtrees can be calculated by right.ftp — left.ftp,
which is non-trivial in separation logic.

1.3 Motivation

As we have shown, each approach has its own advantages
and disadvantages. A single mechanism that can be used to
write specification in the style of both approaches can make
best use of each one’s advantages.

Region logic [1] was conceived as a way to write specifi-
cations that mimic those in separation logic, but which only

NelieBEN e R R e O R

O 001NN B W

class Node {
var children: seqg<Node>;
var marked: bool;

var childrenVisited: int; // other fields omitted...
}
method RecursiveMark (root: Node, ghost S: set<Node>)
requires root in S;
// S is closed under ’children’:
requires (forall n n in S ==> n != null &¢&
(forall ch :: ch in n.children ==>
ch == null || ch in 9S));
requires (forall n n in S ==> ! n.marked &&
n.childrenvVisited == 0);

modifies S;
ensures root.marked;
// nodes reachable from

‘root’ are marked:

ensures (forall n n in S && n.marked ==>
(forall ch ch in n.children &&
ch != null ==> ch.marked));
ensures (forall n n in S ==>
n.childrenVisited==0ld(n.childrenVisited) &&
n.children == old(n.children));
{ /% ... %/}

Figure 2. Method specification of Schorr-Waite algorithm
in Dafny from its repository [12].

class Node {

var left: Node; var right: Node;
var marked: bool; wvar ftp: set<Node>;
predicate Dag() reads this, ftp;

{
null !in ftp && this in ftp &&
(this.left==null && this.right==null==>
ftp=={this}) &&
left!=null && this.right==null==>
this.left in ftp-{this} s&&
this.left.ftp==ftp-{this} &&
this.left.Dag()) &&
left==null && this.right!= null==>
this.right in ftp-{this} &s&
this.right.ftp == ftp-{this} &&
this.right.Dag()) &&
left!=null && this.right!=null ==>
(this.left!=this.right ==>
{this.left}+{this.right} == ftp-{this} &&
(this.left.ftp+this.right.ftp)==ftp-{this} &s&
this.left.Dag() && this.right.Dag()) &&
left == this.right ==>
{this.left}+{this.right}==ftp-{this} &s&
this.left.ftp==this.right.ftp &&
this.left.ftp==ftp-{this} &&
this.left.Dag() && this.right.Dag()))

(this.

(this.

(this.

(this.

Figure 3. A DAG code snippet written in Dafny.

require first-order theorem-proving. Since regions are also
used in the dynamic frames technique, we believe that re-
gions are a mechanism into which one can translate both sep-
aration logic and dynamic frame style specifications. This
idea largely works, but for simplicity and better algebraic
properties of the region logic operators, we changed the def-
inition of regions to match that used in the dynamic frames
theory: sets of locations. We call the result a “fine-grained”
region logic. Using sets of locations is also a good match for
specification languages such as JML [5, 11].

Separation logic [8, 18] eliminates frame conditions, but
requires one to implicitly request access to locations in a
method’s precondition. Intuitively, we could simply take

2014/3/25

these locations as the frame condition in dynamic frame
specifications. Thus it seems that Dafny [13—15] could be
used to simulate separation logic. However, consider the
separation logic assertion (z.f — v) = (2’.f — v'). The
locations named are {(z.f), (2’.f’)}, which are represented
by a set of pairs of an object and a field name. But Dafny
uses a set of object references to specify frame properties,
and those objects need to have a single type. Thus using
sets of objects in Dafny is not the best way to encode sep-
aration logic. Region logic [1] allows one to specify frame
properties at the granularity of an object’s fields. However,
its region type still represents a set of objects. Region union
on sets of locations is not defined. That is a hindrance for
computing locations for framing from separation logic as-
sertions.

We consider all allocated memories as a heap, H. Al-
though the frame condition in the dynamic frames technique
provides a set of locations that may be changed in a method,
the dynamic frames technique does not restrict the subset of
dom(H) that programs can access. In separation logic, rea-
soning about a method is restricted to the part of the heap
that is specified in its precondition. Our general approach is
to use the footprint of method preconditions from separa-
tion logic specifications to obtain a partial heap A such that
dom(h) < dom(H).

1.4 Contributions

The contributions of this paper are as follows:

e We introduce a fine-grained region logic. This fine-
grained region logic is used in a variant of Dafny,
DafnyR. It allows one to directly translate separation
logic’s points-to assertions into frame axioms. Our im-
plementation of DafnyR is available from http://
dafnyr.codeplex.com/.

e We introduce an if-then-else region expression that al-
lows region expressions to more precisely match the foot-
print of assertions.

e We show how to translate a restricted separation logic
into DafnyR in a way that preserves the meaning of
assertions.

e We show how to translate proofs of correctness in sepa-
ration logic into proofs in DafnyR’s logic, and show that
provability is preserved.

1.5 Overview of the results

In the next section, we present our language, DafnyR. Sec-
tion 3 introduces a restricted separation logic that we encode
into DafnyR. Section 4 shows the translation from the re-
stricted separation logic to DafnyR, and proves the seman-
tics meaning is preserved in the translation. Section 5 dis-
cusses the encoding of overlapping conjunction, which is an
extension of separation logic, and the backward translation,

from DafnyR to separation logic. Section 6 describes related
work. Section 7 gives conclusions and future work.

2. The DafnyR Language

DafnyR uses a version of region logic in a variant of Dafny
[13-15]. To simplify our presentation, we only use a subset
of DafnyR’s syntax. In particular, we do not allow recursive
predicates.

2.1 Syntax of DafnyR

DafnyR adds region expressions to Dafny. Fine-grained
regions not only allow us to define the built-in predicate
PointsToy as later explained, they also allow us to define
operations, such as union, on these fine-grained regions. In
particular, the conditional region expression (if) allows us to
syntactically represent regions that can only be determined
dynamically. An assertion of the form P(ins) invokes the
predicate P with argument list ins.

DEFINITION 2.1 (DafnyR Syntax). The syntax of DafnyR
assertions, expressions, and statements is as follows:

Assrt = Expry = Expry | Assrt;y && Assrty
| Assrty ‘| |7 Assrty | Assrty = Assriy
| 3 x.Assrt | P (ins) | REAssrt
Expr = x | null | n | x.f | RE
ins ::= Empty | ExprList
Empty ::=
ExprList ::= ExprList, Expr | Expr
RE := alloc | region{} | region{Expr.f}
| f£pt (Expr) | fpt (Assrt)
| RE, + RE» | RE; * RE
| if Assrt then RE; else RE,
REAssrt ::= RE, !'! RE> | RE, <= RE,
Stmt = x := Expr | x.f := Expr | xy
| x := new K
| if (Expr#0)then{Stmt, }else{Stmts}
| while (Expr#0) {Stmt} | Stmty; Stmty

L=)C2.f

where x € Id is an identifier, n is a numeric literal, and f is a
field name.

We define other logical operators and predicates as fol-
lows: true = (0 = 0), false = (0 = 1), ~Assrt =
(Assrt = false), e # € = —(e = ¢'), and Va.Assrt =
—(Jx.—Assrt).

For convenience in encoding separation logic’s points-to
assertions, we assume that, for each field f of type .S in each
class T, there is a built-in predicate PointsToy defined as:

predicate PointsTos(o: T, v: S)
reads region{o.f}; { o # null && o.f = v }

We define I as a type environment that maps variables to
types:
I'e TypeEnv = Id — Type

2014/3/25

I'~x:T where (I'z) =T I' - null : K where isClass(K) F'n:int

I'2:K whereisClass(K)

Ta.f:7T and (f : T) € fields(K) I'talloc: region 't region{} : region
L' Expr: K where isClass(K) ' Expr:T
I - region{Expr.f} : region and (f : 7)€ fields(K) I' - £pt(Expr) : region
I' = Expr, : region, I' = Expry : region I' - Assrt : bool
- where O € {+, %} :
T Expr, O Expr, : region ' £pt(Assrt) : region

I' - Assrt : bool, I' - RE; : region, I' - REs : region
'+ if Assrt then RE,| else RE : region

Figure 4. Typing rules for DafnyR expressions. The predicate :sClass returns true just when K is either object or a declared
class name in the program. The auxiliary function fields takes a class name and returns a list of its declared field names and
their types.

'+~ Expry : T, '+ Expry: T I' - Assrt; : bool, I' - Assrts : bool

where O € {&6&, ||, =}

I' - Expry = Expr, : bool T Assrt; O Assrty : bool

[,(z:T) Assrt: bool I' - RE; : region, I' - RE; : region
where O € {! !, <=}

'+ 3x.Assrt : bool I'~ RE; O RE5 : bool
U'vExpry :Tv, ..., D' Expr,:T, where (zy:Ty,...,2,:T,) = formalTypes(P), n = 0,
' - P(ins) : bool and (Expry,...,Expr,) =ins

Figure 5. Typing rules for DafnyR Assertions. The auxiliary function formalTypes takes a predicate name and returns the list
of its declared formal parameters and their types.

I'x:T, T+ Expr:T F'+a.f:T, T+ Expr:T F~z:T,T~2'.f:T I'2: K, I'newK : K

'z := Expr: ok(T) I+ x.f := Expr:ok(T) Mz := 2'.f:0k() 'z := newK;: ok(T)
T Expry # 0 :bool, I' - Stmty : ok(T'1), I' - Stmty : 0ok(I'3) [+ Expr # 0 : bool, T\ Stmt : ok(I'")
I if (Expr # 0) {Stmt; }else {Stmty} : ok(T) I' - while (Expr # 0) {Stmt} : ok(T)

[+ Stmty : ok(T"), T" + Stmts : ok(T")
[+ Stmty; Stmts : ok(T")

Figure 6. Typing rules for DafnyR statements.

6 2014/3/25

The typing rules for expressions are defined in Fig. 4, the
typing rules for assertions are defined in Fig. 5, the typing
rules for statements are defined in Fig. 6.

2.2 Semantics of DafnyR

We now present a semantics of DafnyR expressions and as-
sertions. We introduce a set Loc, which represents locations
in a heap as pairs of object references and field names. We
use a store o, which is a partial function that maps a variable
to its value, and a heap H, which maps from an object ref-
erence and a field name to that location’s value. A Value is
either a Boolean, an object reference (which may be null),
an integer, or a set of locations.

Value = Boolean + Object + Int + PowerSet(Loc)+
{Error}
Definition of heap

Heaps (H) are finite maps from Loc to values. Heaps are
manipulated using the following operations.

DEFINITION 2.2 (Heap Operations). Lookup in a heap,
written H|o, f], is defined when (o, f) € dom(H). H|o, f]
is the value that H associates to (o, f).

Hy extends Hy, written Hy < Ho, means:

V(o, f) € dom(Hy) : (o, f) € dom(Hs) : Hylo, f] =
H2 [O, f]

H, is disjoint from Ho, written Hy 1 Ho, means
dom(Hy) n dom(Hsy) = .

The combination of two partial heaps written Hy - Hs,
is defined when Hy1 Hy holds, and is the partial heap such
that: dom(Hy - Hy) = dom(Hy) u dom(Hs), and for all
(0, f) € dom(H; - Hs) :

_ Hl[ovf]a if(O,f)EdOm(Hl),

(Hy - Hy)lo, f] = { Hslo, f], if (o, f) € dom(Hs).

2.3 Footprints
2.3.1 Semantic Footprints

Semantically, a footprint is the smallest set of (heap) loca-
tions on which the value of an expression or assertion de-
pends. The notion of dependency is formalized by consider-
ing the evaluation in two heaps, and finding what locations
the heaps must agree on to result in the same value.

DEFINITION 2.3 (Agree on Locations). Let Hy, and Hy be
two heaps and let Loc be a set of locations (i.e., of pairs of
object references and fields). Two heaps, Hy and H,, agree

on Loc, written Hy hoe Hy when Vo, f) € Loc :: ((o, f) €
dom(Hy) ndom(Hs)) A Hilo, f] = HaJo, f].

A semantic footprint is the minimal set of locations nec-
essary to evaluate an expression or assertion in a given state.
That is, changing the value that the state associates to a lo-
cation outside the footprint will not change the value of the
expression or assertion.

DEFINITION 2.4 (Semantic Footprint of Expressions). Let
Expr be an expression, and (o, H) be a state. Let £ be the
expression evaluation function. Let F' be a set of locations.
Then F is the semantic footprint of Expr in the state (o, H)
if and only if:

LYH :HZ H = (ENExpr]lo.zr = EExpr]o,mr), and
2. (JF': F'cF:

(VH' = HZ H = (E[Exprlo.n = E[Epr]om))).

DEFINITION 2.5 (Semantic Footprint of Assertions). Let an
assertion Assrt, and a state (o, H) be given. Let F be a set
of locations. Then I is the semantic footprint of Assrt in
the state (o, H) if and only if:

I VH :HZH =

(0,H = Assrt < o,H' = Assrt)), and
2. (JF':F' cF:

(VH' = HEH =

(0,H &= Assrt < o, H' E Assrt))).

To illustrate this definition, consider an implication asser-
tion, Assrt; = Assrty. A program evaluates Assrty first
by accessing a set of locations, Locy. If it is true, Assrto
is evaluated by accessing a set of locations, Loce, otherwise
Assrty is skipped. Therefore, if the assertion is true in a
given state, then the semantic footprint of this implication
assertion in that state is Loc; U Locg, otherwise it is just
Loc;.

2.3.2 Syntactic representation for footprint

Now we consider a way to statically determine a syntactic
representation of the semantic footprint of an assertion.
Naive approaches to obtaining such a syntactic represen-
tation can be very imprecise and do not necessarily reflect
the meaning of separation logic assertions. For example,
consider the assertion: ((b # 0) = z.f — 0) = ((b =
0) = y.f — 0). According to the semantics of separat-
ing conjunction, there must be two disjoint heaps, h; and
ha, where (b # 0) = z.f — Oand (b = 0) = y.f — 0 are
valid, respectively. This assertion depends on the variable b,
and thus the assertion neither requires nor prohibits x and y
from being aliases. However, a naive syntactic computation
of footprints might prohibit x and y from being aliased (if it
required that dom(hy) = {(z, f)} and dom(hs) = {(y, f)}).
Therefore, we need a representation that respects the way as-
sertions (and expressions) are evaluated. For this reason, we
added the conditional region expression (if) to DafnyR.

2.3.3 Semantics of DanyR

We now show the semantics of DafnyR’s expressions and
assertions and show that DanfyR’s built-in function £pt
computes a footprint that is equal to the semantic footprint
in every state.

In the following semantics, Epg gives the denotation of
an expression, RE gives the denotation of a region expres-

2014/3/25

sion, and Ap g gives the Boolean denotation of an assertion.
The built-in footprint function £pt syntactically maps ex-
pressions and assertions to region expressions.

Region expressions, RE (Definition 2.1), are used to ma-
nipulate regions; they denote sets of locations. We consider
region expressions and the + operator to form a commuta-
tive monoid with unit element region{}, which denotes
the empty region. The region expression alloc denotes the
domain of the heap, which is all the allocated locations. The
region expression region{Expr.f} denotes a set contain-
ing the location of field f in the object that is the value of
Expr (if Expr is not null), and all locations needed to evalu-
ate Expr. Operators +, %, ! !, and <= are set notations, de-
noting union, intersection, disjointness and subset of regions
respectively. For example, RE; ! ! RE> is true just when the
regions RE; and RE» are disjoint.

The region expression, 1f Assrtthen RE| else RF,
denotes that when the Assrt is true, the region is the mean-
ing of RE, otherwise, it is the meaning of RFE5. Note that
the £pt function is not symmetric with respect to con-
junction, disjunction and separating conjunction. For in-
stance, £pt(Assrt) & & Assrts) does not necessarily equal
fpt(Assrta & & Assrty). Instead, the £pt function follows
Dafny’s left-to-right evaluation order [13]. For example,
when checking the assertion o # null && o.f = 5, the
sub-expression o # null is evaluated first.

DEFINITION 2.6 (Semantics of Expressions and Assertions).
Let a fixed set of predicate declarations for a program be
given. The meaning of expressions in DafnyR is given by
the following, where N is the standard meaning function for
numeric literals.

Epr : Expr — Store x Heap — Value

SDR[[z]]mH = J(m) EDR[[null]],,,H = null
Eprlnllo.n = N[n]] Epr[RE]s.u = RE[RE]s.u
Eprlz.fllo.n = H[Epr[x] 0,5, f]

The semantics of region expressions, RE[—|lo,u, is
shown in Fig. 8.
The semantics of assertions, Apgr||—||o.x is defined by:

Appr : Assrt — Store x Heap — Boolean
| true, ifo,H =pr Assrt
Apr[[Assrt]o.n = { false, ifo,H ¥:pr Assrt

The validity of assertions in DafnyR is defined in Fig. 7.

We now present a denotational semantics for DafnyR’s
statements. A program state .S of the form (o, H) contains
a store and a heap: State = (Store x Heap) + {Error}.
The allocate function takes the heap and the class name
as parameters, and returns a location and a new heap. Also
fieldNames is a function that takes a class name and returns
a list of the names of its declared fields.

RE[—1 = RE — Store x Heap — PowerSet(Loc)
RE&[[alloc]s,x = dom(H)
RE[region{}]lo.n = &
RE|[[region{Expr.f}]lo.n = RE[£pt(Expr)]s,u

v {(o, f) | o = Epr[Exprile,m,0 # null}
RE[[REl +RE2]]07H = Rg[[REl]]g,H U REI]:REQ:[IO-7H
RE[RE: # REs||o.st = RE[RE: ot A RE[RE:]o.11
RE[Lf Assrt then RE| else REz|o,n =

if Apr[[Assrt]lo,n = true then RE[RE o, u

else RE[RE: 0,1
RE[£pt ()]0, = RE[[region{} o u
RE[£pt (null)]o,n = RE[[region{}]s, u
RE[£pt (n)]lo,a = RE[[region{}]s a
RE[£pt(z.f)]lo,a = RE[region{z.f}]o.H
RE[fpt (RE)|lou =

if RE = if Assrt then

RE[£pt(Assrt)]|o,a,
RFE; else RE>

RE[region{}lo,z, otherwise
RE|£pt (Expr, = Expry)]o,m =
RE[£pt (Expri) o,z v RE[Ept(Expry)]o,u
RE[£pt(Assrt1 & & Assrta) o, =
RE[£pt(Assrti)]|o,ug U if Assrt; then
RE[£pt(Assrta)]o,u else RE[region{}]o.u
RE[£pt(Assrty || Assrta)]o,un =
RE|fpt(Assrt1)]o,a v if Assrt; then
RE[region{}]o,n else RE[£pt(Assrta)]o,u
RE[£pt(Assrty = Assrta)|lo,u =
RE| £pt(Assrt1)]o,um U if Assrt; then
RE[£fpt(Assrta)]o,u else RE[region{}]s, u
RE[£pt (3. Assrt)]o,u = RE[[alloc]s,u
RE[£pt (P(ins))lo,u =
REFrm(P)[ins/formals(P)]+£pt(ins)]o a
where F'rm(P) is the frame of predicate P given
in its declaration, and formals(P) is the list of P’s
formal parameter names.
Rg[[fpt(REl ! !RE2)]][LH =
RE[£pt(RE))lo,u v RE[£t (RE?)]o,u
RE[£pt(RE1<=RE2)]o,n =
Rgﬂfpt(REl)]]ng V)] Rg[[fpt(REg)Ilg,H

Figure 8. Semantics of region expressions

DEFINITION 2.7 (The semantics of DafnyR Statements).
The meaning of statements in DafnyR is given by the fol-
lowing, where K is a class name.

2014/3/25

1 Epr Assrt < true
Error =pr Assrt <= true

o,H =pr Expr; = Expry < Epr[Exprille,u = Eprl[Expry)lo.n

o,H =pgr P(ins) <= Arsr|[Assrt], u

where o’ is o[params — Epr|[ins]|o,m] and P has body Expr and params are its formals.
o,H Epr Assrt; & & Assrty < if 0, H Epr Assrt; then o, H =pr Assrts else false
o,H Epr Assrty H Assrty < if 0, H Epr Assrt: then trueelse o, H =Epr Assris
0,H =pr Assrty = Assrty < if 0, H =pgr Assrti then o, H =pgr Assrts else true
o,H =pr Jz.Assrt < existsv.(o[x — v], H Epr Assrt)
0,H =pr RE1!'RE; < (RE[RE:]o,a " RE[RE:205) = &
O’,H Epr RE1 <= RE>; <— RE[[REI]]J’H < Rg[[RE2]]g‘H

Figure 7. Validity of assertions in DafnyR

S : State, — State|
Sl[(z := Expr)]lo,u = (o[z — Epr[[Expr]e,u], H)
Sl(z.f := Expr)]lo,u = if Eprl[z]o,n # null
then (0’, H[((SDR[[Z']]G,H, f) — EDR[[Expr]]UyH])
else Error
Sz :=2'.f)]lo.a = if Epr[[T] o,r # null
then (o[z — H[Epr|'|lo.u, f)], H) else Error
Sl[(z := new K)]|o,n =
let (I, H') = allocate(K, H) in
let (f1,...,fn) = fieldNames(K) in
let o' = o[z —1]in
(J/v H/[(O/(i), fl) —0,..., (J/(l‘)v fn) = O])
S[(if(Expr # 0){Stmt: }else{Stmt2})]o.u =
l:fSDR[[Expr]]J,H # Othen S[[Stmtl]]a,H
else S[[Stmtz]|o, 1

S[[(while(Expr # 0) {Stmt}]lo.u =
fiz(A\g . As .
if EprlExprllom # 0
then let s' = S| Stmt], g in gs'
else s)(o, H)
S[[(Stmty; Stmta)] o1 =
let (O'/7H/) = S[[Stmtl]]mH in S[[Stmtg]]o-/7H/

Next we show that the denotation of the syntactic foot-
print is the semantic footprint.

LEMMA 2.8. Let (o, H) be a state. For all assertions Assrt
and expressions Expr, the semantic footprint of Assrt
equals RE| £pt(Assrt)||o.u and the semantic footprint of
Expr equals RE| £pt(Expr)]o.u-

Proof: We prove it by simultaneous induction on the struc-
ture of expressions and assertions.

The first base cases are expressions, where Expr is of the
form x, null, n, or the region expressions region{}. In
each of these cases R = RE[[fpt(Expr)|lo.u = O, by
Def. 2.6. For these cases, by the definition (2.5) the semantic
footprint is also .

The second base case is region expression alloc. In this
case, R = RE[£pt(Expr)]lo.u = dom(H), by Def. 2.6. By
definition of semantic footprint is also dom(H).

The inductive hypothesis is that for all subexpressions
Expr;, all subassertions Assrt;, for each subexpression, its
semantic footprint, F;, equals either RE[[£pt (Expr;)]|o. o
(for a subexpression) or RE[[£pt (Assrt;)]» u (for an sub-
assertion).

The first inductive case is when Expr is of the form
Expr;.f.Inthis case, Ry = RE[£pt(Expry)]o, m and thus

Ry = RE[£pt(Expr)]o.u
v {(o, f) | 0o = EprllExprillo,u, 0 # null},

by Def. 2.6. By the inductive hypothesis, the semantic foot-
print of Expr; is also R;. There are two subcases; for both
of these let o be Epr[[Expry]ls m. One case is if o # null,
in which case the semantic footprint includes the location
(o, f), because (o, f) is in the value of the expression. The
other case is if o = nwull, in which case the semantic foot-
print does not include (o, f), and is thus just R;. Thus in
both cases the result follows.

The second inductive case is when Assrt is of the form
Expr; = Expr,. By the inductive hypothesis, Expr;’s se-
mantic footprintis Fy = RE[[£pt (Expry)]o.u, and Expry’s
semantic footprint is Fy = RE[£pt(Expry)], u. By the
semantics of DafnyR (Def. 2.6), RE[£pt(Assrt)]o,m is
Fy U F. Since the validity of Expr, = Expr, depends on
the value of both Expr; and Expr,, its semantic footprint is
also F1) FQ.

Another inductive case is when Assrt is of the form
RFE Assrt. By the inductive hypothesis, let F} be RFE;’s se-
mantic footprint, such that F; = RE[E£pt(REAssrt1)||o.u,
and let F, be RE5’s semantic footprint, such that Fy =
RE[£fpt(REAssrts)]lo. . By the semantics of DafnyR
(Def. 2.6), let R = F} U F5. And the validity of RE Assrt
depends on RF; and RE5. Therefore its semantic footprint
is also Fy U F5.

Another inductive case is when Exzpr is 1f Assrt then
RE; else RE,. By definition RE[£pt(Expr)], u is
RE[£pt(Assrt)] ., u. By the inductive hypothesis, Assrt’s
semantic footprint is RE[[£pt (Assrt)]|,. m, which is the se-
mantic footprint of the entire expression.

Another inductive case is when Assrt is of the form
Assrty & & Assrta, where F,; = RE[£pt(Assrtr)]o.n

2014/3/25

and F,,o = RE[£pt(Assrts)]o,m We prove it by two cases
according to whether Assrt; is valid or invalid.

Case 1. Assrty is valid in the state (o, H). By the def-
inition of DafnyR’s footprint and semantics (Def.2.6), let
R = RE[fpt(Assrt1& & Assrta)|lo.n = Fu1 U Fuo. By

definition of semantic footprint (Def. 2.5), VH;.H; Ha

H{ = o0,H; Epr Assrty <= o,H| Epr Assrty,

Fa2

and VH,.Hy = H) = o0,Hy Epr Assrty <=
o, Hy =pr Assrts. By assumption, Assrt; is valid in the

state (o, H), whether Assrty & & Assrt, is valid or not de-
Fa2 .o

pends on Assrts. By our analysis above, VH'.H = H' =
(0,H =pr Assrty < o,H' Epgr Assrts). Moreover,

by inductive hypothesis, there does not exists F.,, such that

F!, © Fyo and Hy F%Q H) = (0,Hy Epr Assrty <
o,Hy =pr Assrts). So F,1 U Fuo is minimal. Hence
F,1 u Fyo is the semantic footprint of Assrt; & & Assrts.
Therefore R = F,1 U Fjyo.

Case 2. Assrty is invalid in the state (o, H). By the se-

mantics of DafnyR (Def. 2.6), let R = RE[£pt(Assrty)||o.a-

By inductive hypothesis, R = Fj,;. By the semantics of
DafnyR and Assrt is invalid, we have Assrt; & & Assrts
is invalid in the given state no matter what locations that
Assrty asserts. Therefore F,; is the semantic footprint of
Assrty & & Assrty. Therefore R = F;.

Another inductive case is when Assrt is of the form
Assrt; = Assrts. We prove it by two cases according to
whether Assrt; is valid or invalid.

Case 1. Assrty is valid in state (o, H). Let

R = RE[fpt(Assrty) + £pt(Assrta)]o.u-

By the inductive hypothesis, R = Fj,; U F,2, where each
F,; is the semantic footprint of the corresponding Assrt;.

By definition of semantic footprint (Def. 2.5), VH'.H Tat
H = o0,H E=pr Assrty, < o,H E=ppr Assrt, and
VH'H 2 H = 0,H £pp Assrts < o,H' Epr
Assrty. Therefore, VH'. H Fadlo o,H =pr
Assrty <= o,H' Eppr Assrt; and o,H Epgr
Assrta <= o,H' Epgr Assrt. By assumption,
Assrty is valid in the state (o, H), whether Assrt; =
Assrtg is valid or not depends on Assrts. By our analysis
above, VH'.H "2 o' — (0,H =pr Assrty <
o,H Epr Assrts). Moreover, by inductive hypothe-
sis, there does not exists F| and F3, such that F| < Fy,

F/
Fjc FoandVH'.H 2 H' = (0,H =pg Assrt; <

2

o,H Epr Assrt;), and H = H' = (0,H Epr
Assrts <= o,H' E=pr Assrts). So Fy u Fy is min-
imal. Hence I} U F5 is the semantic footprint of Assrt; =
Assrtsg. Therefore R = Fy u Iy,

Case 2. Assrt is invalid in the state (o, H). By the se-

mantics of DafnyR (Def. 2.6),let R = RE[£pt(Assrti)]o.a-

By inductive hypothesis, R = Fj. By the semantics of

DafnyR and Assrt; is invalid, we have Assrt; = Assrts
is invalid in the given state no matter what locations that
Assrty asserts. Therefore Fj is the semantic footprint of
Assrt; = Assrty. Therefore R = F.

Another inductive case is when Assrt is of the form
3 x. Assrt. By the semantics of DafnyR (Def. 2.6), let
R = RE[fpt(Ix. Assrt)|lo.u = dom(H). It is trivial
true.

Another inductive case is when Assrt is of the form
P(ins). By the semantics of DafnyR (Def. 2.6),let R =
RE[Frm(P)[ins/formals(P)]]lo,.u VRE[Ept (ins)]|o.u-
By assumption, RE[Frm(P)[ins/formals(P)]]» i equals
the semantic footprint of P’s body. By the inductive hy-
pothesis RE[£pt (ins)]|»,z equals ins’s semantic footprint.
Therefore R equals its semantic footprint.

The inductive case of disjunction is similar. B

2.4 Verification Logic

The validity of a Hoare-formula {—}Stmt{—}[—] means
that it is partially correct and respects the specified frame
(given by the region expression after the postcondition).

DEFINITION 2.9 (Valid Hoare-formula). Let Stmt be a state-
ment, let P and QQ be assertions, let € be a region expression,
and let (o, H) be a state. Then {P} Stmt {Q}[£] is valid in
(0, H), written o, H Epr {P} Stmt {Q}[e], if and only if
whenever o, H =pr P and (o', H') = S[[Stmt]| 1, then
o', H =pgr Q and for all (o, f) € dom(H),

Hl[oaf:l 7> H[Oaf] = (Oa f) € Rg[[g]]a,H~

A Hoare-formula {P}Stmt{Q}[e] is valid, written =ppg
{P}Stmt{Q}[e], if and only if for all states (o, H), 0, H Epr
{P} Stmt {Q}[e].

The proof axioms and rules for DafnyR are adapted from
various papers [1, 6].

DEFINITION 2.10 (Proof rules and axioms for DafnyR). The
axioms and inference rules for the partial correctness of
DanfyR statements are shown in Fig. 9.

3. Restricted Separation Logic

In this section we introduce a slightly restricted version
of separation logic, which we call RSL, and show how to
translate it into DafnyR.

3.1 Syntax of RSL

Our syntax for RSL follows Parkinson and Summers [17] in
restricting existential assertions so that they can only quan-
tify over values stored in the heap. Without such a restriction
separation logic tools are not complete [17]. In addition, we
exclude the emp predicate and separating implication, for
reasons that we will explain in the discussion.

DEFINITION 3.1 (Restricted Separation Logic). The syntax
of restricted separation logic has assertions (a) and expres-
sions (e) defined as follows:

2014/3/25

(ALLOCDR) Fpr {true} « := new K {&&;_, PointsToy,(z,0)} [region{}] where (fi,...

) Fpr {true} x := Expr {x = Expr} [region{}] where x ¢ FV(Expr)

(UPDpRr) Fpr {x # null} z.f := Expr {z.f = Expr} [region{z.f}]| where = ¢ FV(Expr)
)

(ASGNDR

, fn) = fieldNames(K)

(ACCpR) Fpr {z' # null && &'.f = Expr} z := x'.f {x = Expr]} [region{}] where x # x’ and = ¢ FV(Expr)

(IFpr)
For {P && Expr # 0} Stmt1{Q} [e],
For {P && Expr = 0} Stmt2{Q} [¢]

(WHILEpR)
Fpr {I && Expr # 0} Stmt{I} [e]

Fpr {P} if(Expr # 0){Stmt1 }else{Smit2}{Q} [£]
(SEQpR)
Fpr {P} St {Q'} [e1], Fpr {Q'} Stmt2{Q} [e2]

Fpr {I} while(Expr # 0) {Stmt} {I && Expr = 0} [¢]
(SubEffDR)
For {P}Smi{Q} [e],

Pre<=¢

bR {P} Stmt1;Stmtg{Q} [61 + 62]
(CONpR)

FP=P,~Q =Q, pr{P}Sm{Q'}[c]

Fpr {P}Smt{Q} [¢]

(FRMDR)
DR {P} Stmt {Q}

For {P}Smt{Q} [¢]

Fpr {P && R} Smi {Q && R} [e]

and ¢ = fpt(R) = region{}

Modify(—) computes the set of (stack) variables that may be updated by a statement. It is defined as follows:

Modify(x := Expr) = {z}
Modify(z.f := Expr) = {}
Modify(z := a'.f) = {x}

Modify(if(Expr # 0){Stmt: }else{Stmtz}) = Modify(Stmt;) U Modi fy(Stmtz)

(
(

Modifygz := newK) = {z}
(

Modify(while(Expr # 0){Stmt}) = Modify(Stmt)
Modify(Stmti; Stmtz) = Modify(Stmty) U Modify(Stmtz)

Let € and 7 be frames (region expressions). We define sub-frame rules as follows:

Fe<=e¢ | region{} <=¢

Fet+tn<=n+e

- e1 <= ¢€2 - e1 <= ¢€9 -9 <= €3

Feitn<=e2+n

-e1 <=-¢€3

Figure 9. Proof rules and axioms in DafnyR

a = e = e | x.froe | a1 *x ax | a1 A az
| a1 v as | a1 = as | Ix’.x.f — X" * a
e = x | null | n

We use the same abbreviations in RSL as in DafnyR for
true, false, —, and V. In addition, we write 3z’.z.f — 2’
as an abbreviation for 3z’.xz. f — 2’ * true.

3.2 Semantics of RSL

The semantics of RSL is given using states that consist of a
pair, (o, h), of a store and a heap, as in DafnyR’s semantics.
Stores (o), heaps (h), and Values are also as in DafnyR.

We adapt the Reynolds’s classical semantics for Separa-
tion Logic [18], because it is more expressive than the intu-
itionistic semantics [8].

DEFINITION 3.2 (RSL Semantics). Assuming that N is the
standard meaning function for numeric literals and o is a
store, then the semantics of expressions in separation logic
is:

Erst : e — Store — Value
Erselzllo = o(x) Ersclnlle = Nn]
Ersr[null]l, = null

The semantics of assertions, Arsr[[—||o.n is defined by:

ARrsr : a — Store x Heap — Boolean

| true, ifo,hERrsra
Agsclallon = { false, ifo,ht¥rsy a

The validity of assertions in RSL is defined in Fig. 10.

3.3

To allow comparison with DafnyR’s logic, we use DafnyR
statements in a verification logic that uses RSL assertions.
The meaning of Hoare triples {—}Stmt{—} is defined as
follows

Verification Logic

DEFINITION 3.3 (Validity of Hoare Triples). Let Stmt be
a DafnyR statement, a1 and as be RSL assertions, and let
(0, h) be a program state. Then the Hoare triple {a, }Stmt{as}
is valid in (o, h), written o, h =prsr {a1} Stmt {az}, if and
only if whenever o, h =gsy, a1 and (o', 1) = S[[Stmt]|,.p,
then o', h' =rsr, as.

{ay} Stmt {as} is valid, written =gsy, {a1} Stmt {as2}, if
and only if, for all states (o, h), o,h =gsy, {a1} Stmt {as}.

3.3.1 Provability Relation

Our proof axioms and rules for DafnyR statements, using
RSL, are adapted from various papers [6, 18]. Note that con-

2014/3/25

where (Modify(Stmt) n FV(R)) = &

o,hErsp e =¢ < Ersilello = Ersele]s

o,hErsy x.f — e < dom(h) = {(Ersrlz]o, f)} and Ersr[z]s # null and h[Ersrl[x]o, f]1 = Ersciells
o,h ERsr a1 % ay <= exists hy, ha.(hy1Lhy and h = hy - hy andif o, hy Egrsy a1 then o, hs Ersy as else false)
o,h Ersr a1 A ay < if 0,h Egsy, a1 then o, h Egrgsy, as else false

o,h Egsr a1 v ay < if o,h ERrsy a1 then trueelse o,h Ergy, as

o,hiERrsr a1 = ao < if 0,h =gy, a1 then o, h =gy, as else true

o,hErsy 3. x.f — 2/ xa < existsv. (o[z' — v],h Egsy z.f — 2/ *a)

Figure 10. Validity of assertions in RSL

ventionally, predicate emp is used to specify the precondi-
tion of allocation. However, since RSL does not have emp,
we use true instead.

DEFINITION 3.4 (Proof rules and axioms in RSL). Let P
and Q) be assertions in RSL. Let Stmt be a well-formed state-
ment in DafnyR. Then the form \grsi, {P}Stmt{Q} is a
partial correctness judgment for DafnyR programs in RSL.
It is defined in Fig. 11.

Modify(—) computes the set of (stack) variables that
may be updated by a statement. It is defined in Fig. 9.

4. Translation from RSL to DafnyR

The translation from RSL assertions to DafnyR assertions is
syntactic and local.

The syntactic mapping TR[[—] is overloaded. It operates
on both RSL expressions and assertions.

4.1 Translation of Expressions

The translation for expressions is trivial.

DEFINITION 4.1. The syntactic mapping from RSL expres-
sions to DafnyR expressions is defined as follows:

TR[z]] =« TR[null]] = null TR[n] =n

This preserves the meaning of RSL expressions.

LEMMA 4.2. Let e be an RSL expression, o be a store and
H be a heap. Then Ersyellc = EprlTRIelllo,a-

Proof: By the semantics of RSL, the meaning of an expres-
sion solely depends on o. Therefore, the heap H is irrele-
vant, and thus the values of the expression in both semantics
are equal. il

4.2 Translation of Assertions

The translation for assertions is more interesting.

DEFINITION 4.3. The syntactic mapping from RSL asser-
tions to DafnyR assertions is defined in Fig. 12

4.3 Footprint of assertions in RSL and results about
the translation

To show that the syntactic mapping in Definition 4.3 pre-
serves their meanings, we must show that (1) the transla-
tion preserves the semantic footprints of assertions in each

state, and (2) the translation preserves validity of assertions.
Therefore we first give a hypothetical footprints of asser-
tions in terms of RSL’s syntax and region expressions, and
prove that it is the semantic footprint. Then we prove that
the meaning of both hypothetical footprints and assertions
are preserved by the translation. Finally we define the syn-
tactical footprint of assertions of RSL in terms of region ex-
pressions in DafnyR’s syntax.

4.3.1 Hypothetical footprint of assertions in RSL

We want to give a syntactical definition of assertions’ se-
mantic footprint in RSL in terms of region expressions in
DafnyR’s syntax. However, some assertions’ semantic foot-
prints need to be expressed with conditional region expres-
sions (1 £ Assrt then RF, else REs). For example, the
semantic footprint of a; * a9 is the union of the semantic
footprint of a; and the semantic footprint of as if a; is true,
otherwise, it is just the semantic footprint of a;. However,
we cannot use TR[[a;]| in defining its semantic footprint, be-
cause we do not know if TR[[a;]] semantically equals a;;
indeed, that is what we want to prove.

Therefore, we temporarily presume that region expres-
sions support the syntax if a then RF; else RFs. Its
semantics is defined in formula (1) below:

RE[if athen RE; else REs[, 5 =
if Arsy, [[a]] o,h = true then Rg[[REl]]mh
else RE[REz2]o.1

(1

Using these presumed region expressions, we define a hypo-
thetical footprint of assertions in RSL, and prove our trans-
lation of assertions of RSL preserves their meanings.

DEFINITION 4.4 (Hypothetical footprint for RSL). The hy-
pothetical footprint function for expressions maps all expres-
sions to the empty region: £py,(e) = region{}.

The hypothetical footprint function for assertions maps
assertions to region expressions as follows:

2014/3/25

(ALLOCgsy) Frst {true} « := new K {@ x.fi — 0} where (f1,..., fn) = fields(K)

i=1

(ASGNrgsL) Frst {true} x := Expr {x = Expr} where x ¢ FV(Expr)

)

)
(UPDgrst) Frst {Fv.a.f — v} x.f := Expr {z.f — Expr}

)

(ACCrsr) Frst {x'.f = Exprix := z’.f{x = Expr A @'.f — Expr} where z # x’ and = ¢ FV(Expr)

(IFRrstL)
Frsr {P A Expr # 0} Stmt1 {Q},

Frst {P A Expr = 0} Stmt2 {Q}

RSL {P} if(Expr # O){Stmtl}else{Stmtg} {Q}
(SEQRsL)
Frse {P} Stmt {Q'},

(WHILERsL)
Frst {I A Expr # 0} Stmt {1}

Frst {Q'} Stz {Q}

Frsr {I} while(Expr # 0){Stmt} {I A Expr = 0}
(CONgsL)

—P=P, Frsr {P'} Stmt {Q'}, FQ =Q

Frsr {P} Stmtq; Stmtz {Q}
(FRMRgstL)

—RsL {P} Stmt {Q}

RrsL {P} Stmt {Q}

FRrRsL {P * R} Stmt {Q * R}

where (Modify(Stmt) N FV(R)) = &

Figure 11. Axioms and inference rules for verification of statements using RSL.

TR[z.f — e]| = PointsTos(TR[x], TR[e]])

TR[a1 v a2]] = TR[[a1]]||TR[az]]

TR[[e1 = es]] = TR[e1] = TR[ez]]

TR[[a1 * as]] = TR[a1 [& & TR[a2]|& & (Ept(TR[a1])! ! £pt(TR[asz]]))
TR%al A az]] = TR[[a1 [& & TR[az]]

TR|[a1

= as]] = TR[[a1]] = TR[az]] TR[Iz .z.f — ' % a]] = F2'.TR[[z.f — 2’ = a]

Figure 12. Syntactic mapping from RSL assertions to DafnyR assertions

fpuy(e1 = e2) = regionf}
fpyy(v.f — e) = region{z.f}
pry(al * a‘2) = fPHy(al) +
ifa, then fpy,(az) else region{}
£pyy(a1 A az) = £ppy(a1) +
ifa, then fpy,(az) else region{}
fpuy(ar v az) = £pgy(ar) +
ifa) then region{} else fpy,(az)
oy (a1 = a2) = £py,(a1) + ifa; then
fpy,(a2) else region{}
oy, (32w f — 2’ xa) =
region{z.f} + fpy,(a)[z.f/z'].

Next we show our semantic evaluation function RE of the
built-in syntactic footprint function £p g, gives the semantic
footprint.

LEMMA 4.5. Let (o,h) be a state. Let a be an assertion
in RSL. Let F be the semantic footprint in state (o, h). Let
R = RE(£fpuy(a)]on. Then R = F.

Proof: We prove the theorem by the induction on the
assertion’s structure. One base case is when a is of
the form e; = ey. By definition of hypothetical foot-
print (Def. 4.4) and semantics of DafnyR (Def. 2.6), R =
RE[fpuy(e1 = e2)]lo,n = RE[region{}],n = . By
definition of semantic footprint (Def. 2.5), F' = . There-
fore R = F.

The second base case is when a is of the form z.f — e.
By definition of hypothetical footprint (Def. 4.4) and seman-
tics of DafnyR (Def. 2.6), R = RE([£ppuy(x.f — €)]on =
Rgﬂregion{x'f}]]o,h = {(gRSL [[x]]a,h, f)} By defini-
tion of semantic footprint (Def. 2.5), (Ersrl[x]|o.n, f) is the
only location whose value can affect the assertion’s validity.
Therefore R = F.

The inductive hypothesis is that for each subassertion
a;, if its semantic footprint in (o, h) is F;, and if R; =
RE[£Pmy(ai)]on, then R; = Fj.

The first inductive case is when a is of the form a; * as.
By semantics of RSL, the current heap h can be divided into
two disjoint sub-heaps, iy and hs, where a; and as hold
separately. We prove R = F' by two cases according to
whether a; is valid or invalid.

Case 1. ap is valid in the state (o,h). By the defini-
tion of hypothetical footprint (Def. 4.4), we have R =
RE[fpuy(ar) + £Ppy(az2)]o,n. By the inductive hypoth-
esis, R = F) u Iy, where each F; is the semantic foot-
print of the corresponding a;. By definition of seman-

tic footprint (Def. 2.5), VA\.h1 = R = o,hy Frsr
Fo

aq U,hll Ersr a1, and Vhéhg = hIQ =
o,hys Ersr a3 > O',h/2 ERrsr ao. By set the-
ory, F} € (Fy u Fy) and F, < (F; u F3). By defini-
tion of heap (Def. 2.2), YA, hb.hy - by 2 B - bl =

o, hi - hl2 ERsL a1 — O’Jlll . h/2 Ersr a1, and
FiUFo
VR, o 1 T R B = 0k - B Ersy az =

o, hly - b} ERrsr as. Therefore, since h = hy - hy, we con-

=

2014/3/25

clude YA'.h "2 W = (0,h psr a1 <= o, b Erst,

a1) and (o,h Egsr aa <= o,k Egrsr a2). By as-
sumption, a; is valid in the state (o, h), whether a1 * ag
is valid or not depends on ay. By our analysis above,

Yh'.h FléF2 h = (J,h ERsL G2 < O, h =rsr ag).
Moreover, by inductive hypothesis, there does not exist F}
and FY, such that F| < Fy, F) < Fy and VYh!, hf.hy o
hll = (thl ErsL a1 < U,hll ERSL al), and
ho FEQ h'2 = (0,hy ERsL a4 < o, hé ERrsL a2).
So F} u Fy is minimal. Hence F; u F5 is the semantic
footprint of a; * ay. Therefore R = Fy U Fb.

Case 2. a; is invalid in the state (o, k). By the definition
of hypothetical footprint, R = RE[£pp,(a1)]s,n By the
inductive hypothesis, the semantic footprint of a; is F}. By
the semantics of RSL and a; is invalid, we have a; * as is
invalid in the given state no matter what locations that as
asserts. Therefore F} is the semantic footprint of a; * as.
Therefore R = F3.

The second inductive case is when a is of the form a; =
as. We prove it by two cases according to whether a4 is valid
or invalid.

Case 1. a; is valid in state (o, h). By the definition of hy-
pothetical footprint, R = RE[£p g, (a1) + £Puy(a2)]o,n-
By the inductive hypothesis, R = F} u F5, where each F;
is the semantic footprint of the corresponding a;. By def-

inition of semantic footprint (Def. 2.5), Vh'.h Doy

o, b Egrsy ai, and YA.h 2
<= o, =pgrsr as. Therefore,

o,h Ersy a1 <

h = o,h Ersr as
F,UF

V. h =7 R = o,h Ersr a1 <— O',h/ ERSL

a1 and o, h Egsy aa < o,h Egrsp as. By assump-

tion, a; is valid in the state (o, h), whether a; = as is valid
. F,UF
or not depends on ay. By our analysis above, Vh'.h =2

W = (0,h ErsL as < 0, ERsL as). Moreover, by
inductive hypothesis, there does not exist F| and F}, such

’

Fl
that F{ < Iy, F) < Fy and Vh'.h = 1/ = (0,h ERrsL

a; < o, h Enrsr al), and h FE h = (0’, h ERrsrL
a; <= o,h' Egrsr a2). So Fy u F» is minimal. Hence
F1 U Fjs is the semantic footprint of a; = ao. Therefore
R = F1) F2.

Case 2. a; is invalid in the state (o, k). By the definition
of hypothetical footprint, R = RE[£pp,(a1)]s,n- By the
inductive hypothesis, the semantic footprint of a; is Fj.
By the semantics of RSL, since a; is invalid, a; = as is
invalid in the given state no matter what locations ay asserts.
Therefore F; is the semantic footprint of a; = ag, and thus
R = F.

The third inductive case is when « is of the form 3a’.z. f —
2’ * a. By the definition of hypothetical footprint, the foot-
print of existential assertions do not depend on the existen-
tial variables. Therefore this case is the same as the case of
separating conjunction.

The other inductive cases, conjunction and disjunction,
are similar. 1

We have shown that the hypothetical footprint is the se-
mantic footprint of assertions of RSL. So, from now on, we
use hypothetical footprint as a synonym for the semantic
footprint of RSL assertions. Using Lemma 4.2, we can show
that the hypothetical footprint of each assertion of RSL is al-
ways a subset of the domain of the current heap correspond-
ing to the definition of RSL’s semantics in Definition 3.2.

LEMMA 4.6. Let (0, h) be a state. Let a be an assertion of
RSL, and F be its hypothetical footprint in state (o, h). Then
o,h=rsy a = F < dom(h).

Proof: By induction on the structure of assertions.

Let @ and (o,h) be given. Let F' be a’s hypothetical
footprint in (o, h). Assume o,h Egrsr a. We proceed by
induction on the structure of a.

One base case is when a is e; = e;. By the semantics of
RSL (Def. 4.4), each expression’s footprint is an empty set,
. By set theory, & < dom(h).

The second base case is when a is z.f — e. By the
semantics of RSL (Def. 4.4), dom(h) = {(Ersr[z]n, f)}-
And by definition, this is also the hypothetical footprint of a.

The inductive hypothesis is that for all subassertions a;,
the heap h, for each subassertion a;, its hypothetical foot-
print, F;, is a subset of dom(h).

The first inductive case is when a is of the form a; * as.
By the semantics of RSL (Def. 3.2), there exists h; and ho,
such that hy - ho = h. Let a;’s footprint be F}, and as’s
footprint be F». Let us consider the set, F; U F5. By inductive
hypothesis, Fi © dom(hy) and F> < dom(hs). Thus by set
theory, (Fy U Fy) < (dom(hy) U dom(hs)). By definition of
heap (Def. 2.2), dom(hy) U dom(hs) = dom(h). Therefore
(F1 v F3) < dom(h).

The second case is when a is of the form a; = as.
Let a;’s footprint be Fi, and ao’s footprint be F5. Let us
consider the set, 1 U F5. By inductive hypothesis, F; <
dom(h) and F < dom(h). By set theory, F} u Fy <
dom(h).

The third inductive case is when a is of the form 3z".z. f —
2’ * a. By the definition of hypothetical footprint, the foot-
print of existential assertions do not depend on the existential
variables. So the result follows by the same reasoning as in
the separating conjunction case.

The cases for conjunction and disjunction of assertions
are similar.

COROLLARY 4.7. Let a1 and as be assertions in RSL, then
V(U7 h) o,h Ersy a1 * ay = Rg[[pry<a1>]]o-,h N
Rg[[pry(a2)]]U>h = .

Proof: Let o and h be given. Assume o,h kEgrgy a1 *
as. Then by semantics of RSL (Def. 3.2), there exists

hy and ho, such that hy L hy. Thus by definition of heap
(Def. 2.2), dom(h1) n dom(hy) = &. By lemma 4.6, we

2014/3/25

have that RE[£py,(a1)]lo,n S dom(hy) and also that
RE[fpuy(az)]o,n S dom(hs). Therefore, by set theory,
they are disjoint. B

4.3.2 Results about the assertion translation

Now we prove the semantic meaning of RSL assertions is
preserved by the syntactic mapping function, TR. The key to
this proof is showing that in a given state, the hypothetical
footprint of a RSL assertion, a, is also the semantic footprint
of its translated assertion, TR[[a]]. Then a’s validity can be
preserved in the translation by the definition of footprints.
The proof also uses the following technical lemma.

LEMMA 4.8. Let o be a store, and h and H be heaps. Let
a be a RSL assertion and Assrt be a DafnyR assertion. If
o,h =rsy ¢ < o0,H Epg Assrt, then Agsplallon =
ADR[[ASSTﬁ]]mH.

Proof: For a given state (o, h) and RSL assertion a, by the
semantics of RSL, Agsrlallen is true, if o,h Egsr a,
otherwise it is false. Similarly, for a given state (o, H)
and DafnyR assertion Assrt, by the semantics of DafnyR,
Aprl[Assrt]lo,n is true, if o,H Epr Assrt, other-
wise it is false. Therefore, by assumption o,h kEgsy
a < o,H Epr Assrt, we can achieve the conclu-
sion Agsr[allo.n = Aprl[Assrt]s m.1

THEOREM 4.9. Let a be an assertion in RSL. Let o be a
store, h and H be heaps, and F' = RE[£pp,(a)]lon. If

hZ H, then F = RE[fpt(TR[a])]o.a, and o, h =grst
a < o0,H E=pr TR[a].

Proof: We prove this theorem by induction on the structure
of the assertion a. The proof is found in Appendix A. I
According to this theorem, a valid assertion in RSL is
translated to the corresponding assertion in DanfyR that is
also valid. Conversely, an invalid assertion in RSL is trans-
lated to the corresponding assertion in DafnyR that is also
invalid. Thus, the translation preserves assertion validity.

4.3.3 Footprint of RSL

By Theorem 4.9, RSL assertions @ and the translated asser-
tions TR[[a]] are semantically equivalent on the states (o, h)
and (o, H), where h and H agree on a’s hypothetical foot-
print. Therefore we can replace a with TR[[a]] in the defini-
tion of the hypothetical footprint function for RSL.

DEFINITION 4.10 (Footprint of RSL). The footprint func-
tion for expressions maps all expressions to the empty re-
gion: fprsr(e) = region{}. The footprint function for
assertions maps assertions to regions, as shown in Fig. 13.

4.4 Translation of Proofs

In this section, we explore a syntactical mapping on proof
rules and show that it also preserves proofs.

4.4.1 Results about the proof translation

We consider mapping assertions and Hoare-tripes in RSL
to those in DafnyR by syntactically translating assertions.
The trouble is that the mapping for the field-update, field-
acc and frame rules do not seem obvious. For example,
according to definition 4.3, Jv. z.f — v in RSL maps
to the predicate Jv. PointsToy(x,v) in DafnyR. How-
ever, UPDRgy, requires a precondition, Jv. z.f — wv, but
UPD p R requires a precondition, x # null, not the predicate
Jv. PointsTog(z,v). Recall that PointsTog(x, Expr') is
defined as © # null & & z.f = Expr’. That entails z # null.
Therefore we derive a new rule, DUPD p i, shown in Fig. 14.
Similarly, we relax the precondition for ACCpr. But we
encounter another trouble that ACCpgr seems to miss a
corresponding postcondition, =’.f — Expr of ACCgrsy.
Actually, this is entailed by DafnyR’s frame condition,
[region{}], which means the heap is not changed by the
statement, and the value of . f is preserved before and af-
ter executing it. Therefore we can derive a relaxed proof
rule DACCpg shown in Fig. 15. Note that in the last step,
we change the frame to region{z’.f}, this is justified be-
cause the postcondition specifies the desired value at loca-
tion region{z’.f}.

Finally we derive a relaxed frame rule DFRM pgr shown
in Fig. 16. Note that we put € * £pt(R) = region{} as
a side condition. Therefore, if the side condition appears
in a proof translated form RSL, then it will hold in the
translation.

Now we use the derived rules to define a syntactic map-
ping between RSL and DafnyR.

DEFINITION 4.11 (Syntactic Mapping from RSL to DafnyR).
Let P and Q) be assertions in RSL. We define a syntac-
tic mapping TRrsr[[—] from RSL’s assertions and Hoare-
triples to DafnyR’s as:

TRRsL [[P]] =P
TRrsL[{P} Stmt {Q}] =
{TRrsLP]} Stmt { TRrsL[Q]l} [£PE(TR[P])]-
Let hy,..., h, be hypothesis and c be conclusion in
RSL’s inference rules and axioms. The syntactic mapping
Jfrom them to DafnyR’s rules and axioms are defined as:

b, ..., hn]] _

TRrsr[[l], ---, TResr[hn]
TRRSL[[C]]

TRrsL[

Preservation of Provability

Now we prove that proofs are preserved by the syntactic
mapping TRrsr[—]., i-e., proofs done in RSL can be con-
verted into DafnyR proofs. This result gives in practice the
ability to use existing approaches or decision procedures for
RSL and apply them to the more general world of dynamic
frames.

2014/3/25

fprsr(er = e2) = region{} fprsr(v.f — e) = region{z.f}

fprsr(a1 * az) = £prsr(a1) + if TR[a1]] then fprgy(az) else region{}
fprsr(a1 A a2) = £PRrgr(a1) + if TR[a;] then £prgy(a2) else region{}
fPrsr(a1 v a2) = £Pgrsr(a1) + if TR[a;] then region{} else fpprgy(a2)
fprsr(a1 = az2) = £prgr(a1) + 1 TR[a;] then £prg; (a2) else region{}
fprsy (32’ .x.f — 2’ + a) = region{z.f} + fprgr(a)[x.f/z].

Figure 13. Footprint function for RSL assertions

(UPDpRr)
x.f = Expr = {z # null}
x.f = Expr = z.f := Expr
PointsToy(z, Expr') DR (p f = Expr}
CONp) = x # null [region{z.f}]
(bR {PointsToy(x, Expr')} I * nyll& §a.f = Expr
- o.f = Expr = PointsToy(x, Expr)
{z.f = Expr} [region{z.[}] [@.f = Expr =
(CONDR) x.f = Expr
b {PointsToys (x, Expr')}
DR x.f := Expr
{PointsToys(x, Expr)} [region{z.f}]
Figure 14. Derivation of the DUPD p R rule
PointsToy (!, Expr) <— (ACpr) | S
o # null && 7 .f = Expr {2’ # null && 2'.f = Expr}

Fpr z:=af

x = Expr = {x = Expr} [region{}]

x = Expr
(CONpR) -
{PointsToy(x', Expr)}
~DR ri=a.f
{z = Expr} [region{}]
(FRMpR) -
{PointsToy(z', Expr)}
z:=12.f PointsToy(z', Expr) -pRr
FDR {x = Expr && PointsToy(x', Expr)} region{} <= region{xz’.f}
(SubEf o) [region{}]
“ pr {PointsToy(z', Expr)}
z:=a.f
DR {x = Expr && PointsTog(z’, Expr)}
[region{z’.f}]
where x ¢ FV(Expr) and {x} n FV(PointsTos(x', Expr)) = &
Figure 15. Derivation of the DACCppg rule
= P} Stmt
(FRMpRr) Fpr {ngf&{Ri StZt Eg}g[j@]c R}[e] P e<=c¢+fpt(R)
(SubEffpR)

Fpr {P && R} Stmt {Q && R}[e + £pt(R)]
where (Modify(Smmt) n FV(R)) = &
and ¢ * fpt(R) = region{}

Figure 16. Derivation of the DFRM p g rule

16 2014/3/25

In the theorem below, the assumption - = # null =
Jv.PointsToys(x,v) is implicit in DafnyR, since DafnyR
assumes arbitrary values for un-initialized variables.

THEOREM 4.12. Assume that for all variables x and fields
fofz’s type, = & # null = Fv.PointsTos(x,v). Let x be
a triple in RSL, then if - rsr, @, then -pr TRrsr[z].

Proof: The proof strategy is to syntactically translate the
proof of z into DafnyR, using TRps[[—] (Definition 4.11).
Then we show in each case that the translated proof is a proof
in DafnyR by induction.

Assume gz, . We prove it by induction on the struc-
ture of the RSL proof.

1. (ALLOC) One base case is when x has the form of

{true}x := newK{®,_, x.f; — 0}, where {f1,..., fn}
= fields(K).

TRpsi[[{true} z := new K {®)._, z.f; — 0}]
= (by rule mapping (Def. 4.11))
TR[{true}]
T :=new K
TR[{@L, 2. /s — O}][Ept (TR truc])]
= (by assertion mapping (Def. 4.3))
{true}
r:=newK
{&&;_ PointsToy, (z,0)&&
N £pt(PointsToy, (x,0))}[Ept (true)]
= (by semantics of RSL (Def. 2.6))
{true}
z:=new K
{&& ", PointsToy,(z,0)& &
N £pt(PointsToy,(z,0))}[region{}]

cri=

The translated form is a derived rule DALLOCpr
shown in Fig. 17.

2. (ASGN) The second base case is when z has the form
{true} x := Expr {x = Expr}

TRpsp[[{true} « := Expr {x = Expr}]|
= (by rule mapping (Def. 4.11))
{TR[true]}
r = Expr
{TR[[x = Expr]}[£pt (TR[true]])]
= ({by assertion mapping (Def. 4.3)>
{true}
x := Expr
{x = Expr} [£pt(true)]
= (by semantics of DafnyR (Def. 2.6))
{true}
x = Expr
{x = Expr} [region{}]

The form above is the ASGNpp rule in DafnyR.
3. (UPD) The third base case is when z has the form

{Fv.z.f — v} x.f := Expr{z.f — Expr}

{Fu.a.f — v}
TRpspl[=.f := Expr]
{z.f — Expr}
= (by rule mapping (Def. 4.11))
{TR[[Fv.z.f — v]}
x.f := Expr
{TR[z.f — Expr]}
[£pt (TR[[z.f — Expr']])]
= (by assertion mapping 4.3)
{Fv.PointsToy(z,v)}
z.f := Expr
{PointsTos(x,Expr)}
[£pt (PointsToy(x, Expr'))]
= (by semantics of DafnyR (Def. 2.6))
{Fv.PointsTos(x,v)}
x.f := Expr
{PointsTos(x,Expr)}
[region{z.f}]

This form is the derived rule DUPD p shown in Fig. 14.

. (ACC) The fourth base case is when x has the form

{o/.f — Expr} oz :=2'.f {x = Expr n @'.f — Expr}

TResL[T i=a. 1
{x = Expr A 2'.f — Expr}
= (by rule mapping (Def. 4.11))
{TR[[2'.f — Expr]|}
x:=a'.f
{TR[[z = Expr A a'.f — Expr]}
[£pt(TR[2".f — Expr])]
= ({by assertion mapping (Def. 4.3))
{PointsTos(x', Expr)}
x:=a.f
{x = Expr && PointsTos(z', Expr)}
[£pt(PointsTos(z', Expr))]
= (by semantics of DafnyR (Def. 2.6))
{PointsTos(x', Expr)}
x:=a.f
{x = Expr && PointsTos(z', Expr)}
[region{z’.f}]

The formula the derived rule D ACCp r shown in Fig. 15.

Now we have proven all the base cases. Next we prove
inductive cases. The inductive hypothesis is that for all
hypothesis rules z, if -gsr @, then -pr TResL[z]).

. (I F) In this case, x has the form

{P A Expr # 0} Stmt; {Q},
{P A Expr = 0} Stmt {Q}

{P} 1£(Expr # 0){Stmt,} else{Smmit>} {Q}
By the inductive hypothesis, this is derivable in DafnyR.

2014/3/25

(&&;_ PointsToy, (x,0)& &
1 £pt(PointsToy, (x,0)))
= &&;_, PointsToy, (z,0),

— true = true,
CONpr

(ALLOC'p r)

{true}
T := new K

Fpr {&& ", PointsToy,(z,0)

n

&&(!,_ £pt(PointsToy,(2,0)))} [region{}]

Fpr {true} x := new K {&&
, frn) = fieldNames(K)

where (f1,...

n
1=

1PointsToy,(z,0)} [region{}]

Figure 17. DALLOCpg rule

6. (W HILFE) In this case, x is
Fsr {I A Expr # 0} Stmt {I}

Fsr {I} while(Expr # 0){Stmt} {I A Expr = 0}

By the inductive hypothesis, this is derivable in DafnyR.
7. (SEQ) In this case x is

Fsr {P} Stmt; {Q/} FsL {Ql} Stmts {Q}

Fsr {P} Stmty; Stmts {Q}

By the inductive hypothesis, this is derivable in DafnyR.
8. (CONSEQ) In this case, x is

FP=P g {P/}Stml‘ {Q/}

Fsi {P} Stmt {Q}

By the inductive hypothesis, this is derivable in DafnyR.

9. (FRM) In this case, x is
oL {P} Stmt {Q}

Fsio {P = R} Stmt {Q = R}

The calculation is shown in Fig. 18, where the condition

fpt (TR P])!'Ept (TR[[Q])) satisfies the side-condition

of DafnyR’s frame rule, therefore, the rule above can be

simplified as:

{TRIP]} Simt {TR[Q]}[£pt (TR[P])]

{TR[P]&&TR[R]}
Stmt
{TRIQN&&TR[R]
[£pt(TR[P]) + £pt(TR[R])]
This formula is the derived rule, DFRM ppr, shown in
Fig. 16.

FQ' =Q

Conservatism of the Translation

According to Theorem 4.12, an axiom or provable Hoare-
triple in RSL is translated to the corresponding axiom, prov-
able Hoare-formula or provable derived Hoare-formula in
DafnyR.

For the converse, we can combine theorem 4.9 with the
soundness of DafnyR’s verification logic to show that the
translation cannot translate invalid Hoare triples in RSL into
provable Hoare-formula in DafnyR.

THEOREM 4.13. Suppose a; and ay are RSL assertions and
{a1} Stmt {az2} is an invalid Hoare triple. Then its transla-

tion, TRrsp[[{a1} Stmt {as}], is not provable in DafnyR’s
verification logic.

Proof: Let a; and as be RSL assertions. Suppose that
{a1} Stmt {as} is invalid. By the semantics of partial cor-
rectness Hoare-triples (Def. 3.3) this means that there is
some state o, h such that o,h Egrsy a1 and (o/,h') =
S[[Stmt]](,,h, but O'I7 I K rsr as. We will show that -ppr
TRrsr[[{a1} Stmt {a2}] is a contradiction to the soundness
of DafnyR’s verification logic (see Appendix B). By defini-
tion, the translation is

{TR[la1]]} Stmz {TR[az]}[£Pt(TR[[a1])]-

Let [y = RE[[£puy(a1)]ls,n. By definition A o h, thus by
Theorem 4.9, Fy = RE[[£pt(TR[a1])]o.n and o,k =pr
TR[a1]. Let F» = RE[£ppy(az)]o n. Since by defini-

tion ' =2 b/, and we are assuming that o', h/ Hgrsp ao,
by Theorem 4.9 again it follows that o/, h’ ¥pr TR[az].
Thus the translation is invalid as a Hoare-formula. However,
the DafnyR verification logic is sound [2], so this is a con-
tradiction to the provability of the translation in DafnyR’s
verification logic. i

Therefore, our translation makes DafnyR’s logic a con-
servative extension of RSL.

5. Discussion

In this section we discuss issues related to separation logic
features.

5.1 Other Assertions in Standard Separation Logic

In section 3, we introduced a restricted separation logic
(RSL) that excludes the emp predicate and separating im-
plication. We discuss these excluded assertion forms in this
section.

5.1.1 The emp predicate

The semantics of the emp predicate given by Reynolds [18]
is: o,h = emp <= dom(h) = . This asserts that the
heap, h, is empty. It is used in specifying memory allocation

2014/3/25

(P} St {Q}
TRRSL[[{P x R} Stmt {Q R}]]
= (by rule mapping (Def. 4.11))
{TRIP]} Stme {TR[Q]} [£pt (TR[L])]
{TR[P * R]} Stmt {TR[Q * R]|}
= (by assertion translation (Def. 4.3))

{TR[P]} Stmt {TRIQ]} [£pE (TR P])]

{TR[P]&&TR[[R] & & (£pt (TR P])!'Ept(TR[Q]))} Stmt

{TR[Q]& & TR[R] & & (Ept (TR[Q])!'Ept (TR[R]))}

[£pt(TR[[P]|& & TR[R] & & (Ept (TR[P!ERt(TRIR])))]

= (by semantics of DafnyR (Def. 2.6))

{TR[P]} Some {TRIQ]}[£pt (TR[P])]

{TR[P]&&TR[[R] & & (£Ept (TR P])!Ept(TR[Q]))} Stmt

{TR[Q]& & TR[R] & & (£pt (TRIQ) Pt (TR[[R]))}

[£pt (TR[P]&&TR[R])]

= (by semantics of DafnyR (Def. 2.6))

{TR[P]} Some {TRIQ}[£pt(TR[P])]

{TR[[P]|& & TR[R] & & (Ept (TR P])!'Ept (TR[Q]))} Stmt

{TR[Q]& & TR[R] & & (£pt (TRIQ)EPt(TR[[R]))}

[£pt(TR[P])) + £pt(TRIR])]

Figure 18. Calculation on Frame formulas

and deallocation as in the following axioms:

{emp} x := new K {(;)xfl — 0}

2
i=1
{é z.f; — 0} free x {emp} (3)
i=1
In definition 3.4, we defined the ALLOCRggy, rule as
{true} © := new K {é x.f; — 0} 4)

i=1
When specifying heap allocation, the precondition of (2) is
stronger than that of (4). However, this is not problematic,
since in practice, emp will be applied to an empty heap, and
both emp and true will hold for an empty heap.
However, the story is different for deallocation, which in
the verification logic of DafnyR could be specified as:

n
{C®) x.fi — 0} free (z) {true}
i=1
Note that the postcondition of (3) is stronger than the post-
condition of (5). This shows an advantage of separation logic
over dynamic frames. Consider a method, dispose(lst) that
disposes a linked-list, [st, by iteratively freeing each node in
Ist. The postcondition of (5) does not have any proof obliga-
tion. That means it is always satisfied even if a statement in
the implementation of dispose does not free some nodes in
lst. But such an incorrect implementation could not be veri-
fied in RSL using (3), which specifies that the storage must
be deallocated.
Because of the semantics of DafnyR, which works with
the entire heap, not just the part requested by a precondition,
DafnyR lacks the expressiveness to encode emp.

®)

5.1.2 Separating implication

The separating implication (or “magic wand”) operator
poses problems for our translation, because we are unable
to determine a suitable footprint for it. The semantics of
separating implication assertions is [18]:

o,hEa) —xay < V. (WLlhando,h' = ay)
implies o,h - h' = as)

The trouble with creating a definition of the footprint of
such an assertion is that the footprint of the antecedent (a;)
is not necessarily a subset of the domain of the current heap.
But that would contradict Lemma 4.6, which says that in any
state, the footprint should be a subset of the current heap’s
domain.

5.2 Intuitionistic semantics of SL

We defined the semantics of RSL classically [18]. Separation
logic can also be given an intuitionistic semantics [8]. In
the intuitionistic semantics, emp is omitted, and there is a
monotonicity condition: which says thatif V ', h : h € A’ :
o,h = a = o,h = a. Furthermore, the semantics of point-
to assertions and implication are defined as follows:

o,hEsp w.f —e < {(Ersclz]o,)} € dom(h)
and Ersrz]ls # null and

h[ErsLz]o, f]1 = Ersilz]s
o,hi=s, a1 = ay = YW :h 2h:
o, b & arimplies o, h' = as

Since semantic footprints are minimal sets of locations,
the points-to assertions cause no problems in this semantics.

19 2014/3/25

However, the intuitionistic semantics of implication asser-
tions is similar to the semantics of magic wand discussed in
section 5.1.2. Thus we are unable to extend our result to this
semantics.

5.3 Encoding Ramifications

Hobor and Villard [7] extend separation logic with overlap-
ping conjunctions, of the form a; w ao, which are use the
“ramification” (w) operator. They define the semantics of
such assertions as follows:

O',h EsL a1 Way < exists hl,hg,hg.hththg
and hy - hy - hg = hand o, hy - hes E a1 and
o,hs - hs = as.

Overlapping conjunction can be used to express assertions
about shared data structures.

Ramifications can be added to RSL without causing prob-
lems with our results. This can be done by extending the def-
inition of hypothetical footprint as follows.

DEFINITION 5.1. The hypothetical footprint for a ramifica-
tion assertion is given by:

pry(al) + ifa; then
fppy(az) else regioni}.

ey (a1 wag) =

The translation into DafnyR assertions would also be
simple:

DEFINITION 5.2.
TR[a1 waz]] = TR[[a1]| & & TR[az]).

We can then adapt our proofs and show that the semantics
of assertions is preserved by this translation.

LEMMA 5.3. Let a1 and as be an assertions in RSL, and
(0,h) and (o, H) be states. Let F' be a1 ® az’s hypothetical

footprint F = RE(£ppy(a1 w a2)]o.m. If h Z H, then
F = RE[£pt(TR[ar w az])]o,n and o, h Ersp a1 »
ay < o0,H =pgr TR[a1 ® as].

Proof: We consider it as another inductive case in the proof
of Theorem 4.9 . The inductive hypothesis is that for all
subassertions a;, heaps h; and H’, for each subassertion a;,
the footprint is F; = RE[£ppy(ai)]o,mr. If b S 1, then
F, = Rg[[fpt(TR[[ai]])]]ng/, and o, h; =g a; <
o, H Epr TR[a:].
We first prove RE[[£pt(TR[[a1 ® az]))]lon =

RE[£puy (a1 ® az)]s, u as follows:

R(S"prHy ((11 & G,Q)]]J,h
= (by the hypothetical footprint (Def. 5.4))

RE || £pmy(a1) + ifa; then f£py,(az)

else region{} oh

= (by the presumed semantics (formula (1)), twice)

20

RENfPmy(ar)]on v if Arsilai]le,n = true
then RE[fpy,(a2)]snelse &
by inductive hypothesis, o,h Egrsy a; <
- o, H =pr TR[a;], and Lemma 4.8
RE[EPuy(a1)]on v
if Apr[TR[a1]lo,# = true then
RE[£fpmy(a1)]on else I
by inductive hypothesis,
= RE[fpmy(ai)]on = Rg[[fpt(TR[[ai]])]]a,H’>
twice
RENEpt(TR[a1]) o5 v
if Apg[[TR[a1]]lo.z = true then
RE[£pt(TR[az]) |0, else &
= (by semantics of DafnyR (Def. 2.6), twice)
RE || £pt(TR[a1]]) + (if TR[a;1] then
fpt(TR[az2]]) else region{})
= (by semantics of DafnyR (Def. 2.6))
RE[£pt(TR[a1]&& TR [ao])]lo.a
= (by syntactic mapping (Def. 5.2))
RE[[fpt(TR[[al & ag]])]]U’H

o,H

Next we prove o,h Ersy a1 was <= o,H Eppg
TR[[a1 & CLQ]].

We first prove it from the left side to the right side. As-
sume o, h =rsy, a1 w as. By the semantics of ramification,
there exists three disjoint sub-heaps hq, hs, hs, such that a;
asserts hqy - ho, and ay asserts on hs - hz. Therefore F, =
Rg[l:pry<a1)]]o-}hl.h2 and F2 = Rg[[pry(ag)]]a’hQ.h3.
We calculate as follows:

o,h ERsL a1 W as
<= (by semantics of ramification)
exists hl, hg, hg.hlJ_hQJ_hg and h1 . hg . h3 = hand
o,h1-hy Esp ayand o, hs - hy Eg1, as
(by Theorem 4.9)
o,H =pgr TR[[a1]| and o, H Epr TR[az]
<= (by semantics of DafnyR (Def: 2.6))
0, H Epr TR[a1] && TR[az]]
<= (by syntactical mapping (Def. 5.2))
0, H Epr TR[[a1 was]

=

Next we prove it from the right side to the left side.
Assume o, H Epr TR[a; waz]], where the footprints of
a1 is F1 = RE[£pt(TR[la1]) [, a, and the footprint of a,
is Fo = RE[£pt(TR[[az])]|, z- We calculate it as follows:

0, H Epr TR[[a1 was]
<= (by syntactical mapping (Def. 5.2))
o, H Epr TR[a1] && TR[az]]
<= (by semantics of DafnyR (Def: 2.6))
0,H =pgr TR[[a1]] and 0, H Epr TR[az]
by definition of F} and F5, we construct heaps
hi, ho and hs, such that dom(hs) = Fy n F2,>

=

dom(hy) = F; — dom(hs) and dom(hs) =
FQ —dom(hg) and h1 'h2 1;1 H and hQ 'h3 1;2 H

2014/3/25

exists hl, hQ, h3. Fl = dom(hl) v dom(hg) and

Fy = dom(hs2) v dom(hs) and o, H =pgr TR[a1]|

ando, H Epgr TR[[(IQ]] ando,hy - hes Epr TR[[al]]

and o, hs - hs =pr TR[az]]
<= (by set theory)

exists hy, ha, hs. dom(hy) N dom(he) = & and

dom(hs2) ndom(hs) = & and

dom(hy) n dom(hs) = & and

Fy = dom(hy) v dom(hy) and

Fy = dom(hs) U dom(hs) and

o,H =pgr TR[a1]] and 0, H Epr TR[az]] and

o,h1 -hs Epr TR[[al]] ando,hs - hs Epr TR[[(ZQ]]
<= (by definition of heap (Def. 2.2))

exists hl, hg, h3. hllhglhg and

Fy = dom(hy) v dom(hy) and

Fy = dom(hs) v dom(hs) and o, H =pr TR[a1]

and o, H Epr TR[[az]] and

o,h1-hs Epr TR[[al]] ando,hs - hs Epr TR[[QQ]]
<= (by Theorem 4.9, twice)

exists hl, hg, h3. hllhglhg

Fy = dom(hy) U dom(hs) and
Fy = dom(hsz) v dom(hs) and
o,h1 -hs Epr TR[al]] and
o,hs - hs ERrsrL TR[[GQ]] and o, h/l Ersr a1 and
o, hy =Rrsr as
by Theorem 4.9, twice. And hy - ho o h and>
ho - hy 2 B,
exists hl, hg, h3. hlJ_th_hg and
o,hy - ha Ersr a1 and o, hy - h3 FRrsL a2
= (by construction h = hq - hs - hg)
exists hl, hg, h3 hlj_hgj_hd and h = h1 . hg . h3
and o, hy - ho Ersr a1 and o, hs - hg ErsL a2
<= (by semantics of ramification)
o,h =Rsr a1 was

|

By the result of Theorem 4.9 and Lemma 5.3, we can con-
clude RSL assertions a and the translated assertions TR[a]
are semantically equivalent on the states (o, h) and (o, H),
where h and H agree on a’s footprint. Thus, following our
earlier development, we can replace a with TR[[a]] in defini-
tion 5.1, and redefine the footprint of ramification assertion
in terms of region expressions in DafnyR’s syntax.

DEFINITION 5.4. The definition for ramification assertions’
footprints is:

fprsr(ai) + if TR[[a;]| then
fprsr(az) else region{}

fprsr(ar waz) =

5.4 Translation of DafnyR to RSL

In this section, we show our attempt to encode dynamic
frames by translating DafnyR to the restricted separation
logic.

21

DafnyR uses specification-only or ghost variables with
type region to dynamically calculate frames as a program
proceeds. This calculation can also be achieved by a pure
method, such as in Smans’ work [20], which returns a set of
locations. Such a method is analogous to a DafnyR function
that returns a region.

In the translation, we assume RSL also has predicates. We
translate predicate invocations and declarations separately.

DEFINITION 5.5. (Syntactic Mapping DafnyR to Separation
Logic). Let DafnyR expressions and assertions be given in
definition 2.1. We define a syntactic mapping TRs[[—] from
DafnyR expressions and assertions to separation logic ex-
pressions and assertions shown in Fig. 19.

Note that the translation of region expression, alloe, is
not clear. And a region union expression could also be trans-
lated as: TRs[RE1 + REz]| = TRs[RE:1] w TRs[RE=],
using ramification.

However, as mentioned in the background, the region ex-
pressions given in definition 2.1 are only subset of DafnyR’s
region expressions. We omit some region expressions that
allow one to manipulate a region in a first class way.

RE = ...
| £ilter{RE, K} | filter{RE, K, f}
Assrt = ...

| 3x € RE.Assrt | fresh{RE} | old{Expr}

It is not clear how to translate these other expressions and
assertions to separation logic, since separation logic asser-
tions couples locations and their contents, and do not provide
a way to extract locations or to express types. Moreover, the
dynamic frames technique commonly declares region vari-
ables as ghost fields or ghost variables. These seem difficult
to translate into separation logic.

In a SMT based verifier, such as Dafny, DafnyR and
VERL [19], method calls are verified with respect to the
called method’s specification. At the method call site, the
method’s precondition is checked, and the locations spec-
ified in the frame condition are allowed to take on arbi-
trary values (with havoc), then its postcondition is assumed.
Therefore one must always gives desirable values to those
havoced locations in its postcondition. If the frame condition
is precise, which means it specifies a minimal set of locations
that may be changed, then one mentions fewer locations in
the postcondition, compared to less precise frame condition,
which make one specify post-state properties of a bigger
set of locations. In other words, if the frame contains more
than the necessary locations, one needs to specify that val-
ues in those unnecessary locations are preserved. That could
be done by old expression in Dafny, DafnyR and VERL or
by logical variables in VeriFast. Therefore although these
additional expressions provide a way to minimize the loca-
tions in the frame condition, they do not necessarily increase
DafnyR’s expressiveness.

2014/3/25

TRs[[z]] = TRs[[null]] = null TR¢[[n] =n

TRs[[z].f — TRs[[Expre if Expry = x.f
TR [Expr = Expra] = { TRs %lg]xprl]] = TES[[Exp]}"g]] otherwilse
TRs[[Assrt1&& Assria]] = TRs[Assrti]] A TRs[[Assrta]] TRs[Assrtq||Assrta]] = TRs[[Assrt1]] v TR[Assrta]
TRs[Assrty = Assrta]| = TRs[Assrt1]] = TR[Assrta]] TRs[[3z.a]] = Jx. TRs[a] * true, where x is not a region variable.
TR;[[P(ins)]] = P(TRs[[ins])), where we overload TR, [[—]] for lists of actual arguments,ins.
TRs[[P(decls){ Assrt}]| = P(TRs[[decls[[{TR[[Assrt]}), where we overload TR;[[—]] for lists of declarations, decls.

TRs[[region{x.f}]| = 3z'.(TRs[[x]].f — 2’ * true)

TRs[[RE; + REs]| = TRs[[REL] * (TRs[RE1] —* TRs[RE:])

TRs[[RE; * REs]| = (TR[REz2]] — TR[[RE:]]) — TR[[RE1]] TRs[[RE1!RE:] = TR4[RE:] * TRs[RE:]

Figure 19. Syntactic mapping from DafnyR expressions and assertions to RSL’s

6. Related Work

In this section, we discuss related work.

6.1 Dynamic Frames

The theory of dynamic frames is due to Kassios [9, 10].
The theory is based on sets of locations, as in DafnyR, so
our translation from separation logic could perhaps also be
adapted to target other verification systems that use dynamic
frames [20]. These works do not show how to translate
separation logic into the dynamic frames technique.

6.2 Dafny

Leino’s Dafny system [13, 14] adopts the dynamic frames
technique, but uses variables that store sets of objects. In
Dafny it is not easy to specify frame properties at the level
of locations (fields), instead one must strengthen postcon-
ditions, by using old expressions to specify which fields
of threatened objects must not change. DafnyR can specify
frames at the level of locations directly.

Because in Dafny one writes frame conditions using sets
of objects, it would be difficult to precisely translate sepa-
ration logic’s points-to assertions into a predicate. By con-
trast, since DafnyR has regions that are sets of locations, it
is easy to specify the frame conditions of DafnyR’s built-in
PointsToy predicates.

6.3 Region Logic and VERL

The region logic of Banerjee, Naumann, and Rosenberg [1]
is the source of DafnyR’s region expressions. Region logic
defines regions as sets of objects. But region logic can use
wr (writes) and rd (reads) clauses to specify frame prop-
erties at the granularity of individual fields. Hence, as in
DafnyR a points-to assertion could be translated using pred-
icates with precise frames. However, it would be more dif-
ficult to deal with the translation of separating conjunction,
because in region logic one cannot directly express disjoint-
ness of regions that contain locations. Expressing such tests
directly on fine-grained regions is an advantage of DafnyR.

Rosenberg also defined a tool based on Dafny, VERL
[19], that adds region logic to Dafny. Like Dafny and region
logic, VERL uses sets of objects for regions. Furthermore,

22

that work did not address the connection between region
logic and separation logic.

6.4 Parkinson and Summers

Recently Parkinson and Summers [17], have shown a rela-
tionship between separation logic and the methodology of
implicit dynamic frames as used in concurrent languages
such as Chalice [16]. The methodology of implicit dynamic
frames for such languages uses permissions [4]. Parkinson
and Summers used “permission masks” to derive the par-
tial heaps used in the semantics of separation logic from the
permissions specified in the implicit dynamic frames tech-
nique. They use a Total Heaps Permission Logic to bridge
the gap between the two logics. Our work was inspired by
their approach. Instead of using permissions, DafnyR uses
fine-grained regions containing locations, but these regions
also can be thought of as determining partial heaps. The
work of Parkinson and Summers is based on the intuition-
istic semantics of separation logic [8], while ours is based
on the more expressive classical semantics [18]. Moreover,
their work did not present the connection between separation
logic and the dynamic frames technique.

For the connection between implicit dynamic frames and
dynamic frames, one can consider a location (o, f) with a
positive permission in Parkinson and Summers’ work as a
singleton region {(o, f)}. In general a partial heap obtained
by a permission mask can be obtained by the corresponding
region. In this way one can draw many connections between
their work and our work on DafnyR. On the other hand, their
work does not use conditional permissions, which would be
the analogue of DafnyR’s conditional region expressions,
and they did not show that their translation preserves proofs
of correctness, as we have done.

7. Conclusion

We have shown that a restricted form of separation logic can
be translated into a fine-grained region logic in a way that
preserves the validity of assertions and proofs of partial cor-
rectness. The translation is precise in the sense that it trans-
lates invalid separation logic assertions into invalid region
logic assertions. The translation is based on a semantic no-

2014/3/25

tion of footprint, which we have shown can be computed
statically, due to the use of conditional region expressions.
Thus DafnyR’s fine-grained region logic can be used to write
specifications both the style of separation logic and in the
style of the dynamic frames technique.

Future work includes relaxing the restrictions on the form
of separation logic used in the technical results. In particu-
lar we would like to treat separating implication (or equiva-
lently, separation logic’s intitionistic semantics).

Future work includes incorporating these ideas into JML.

A prototype DafnyR system can be obtained from http:
//dafnyr.codeplex.com.

23

Appendix
A. Proof of Theorem 4.9

Theorem 4.9 is as follows.
Theorem 4.9: Let a be an assertion in RSL. Let o be a
store, h and H be heaps, and F' = RE[£pyy,(a)]on. If

h £ H, then F = RE[£pt(TR[a])]o.zr. and o, h st
a < o,H Epp TR[a]].

Proof: Assume h Ly . We prove the theorem by induc-
tion on the structure of the assertion a.

One base case is when a is e; = es.

We first prove RE[[£pt (TR[[e1 = e2])) o =
RE[£puy(e1 = e2)]o,n as follows:

RE[£pt(TR[er = ex])]lom

= (by syntactic mapping (Def. 4.3))
Rg[[fpt(TRllel]] = TR[[@Q]])]]O-7H

= (by semantics of DafnyR (Def. 2.6))
RE[£pt(TR[e1]]) + £pt(TR[e2])]lo,m

= (by semantics of DafnyR (Def. 2.6), twice)
RE[region{}], u

= (by semantics of DafnyR (Def. 2.6))
1G]

= (by semantics of DafnyR (Def. 2.6))
RE[region{}],r

= (by footprint in RSL (Def. 4.4))
RE[[pry(el = 62)]]a,h

Next we prove o,h E=rsr, €1 = e2
TR[[e1 = ez]) as follows:

<~ o0,H Epr

o,h ERrsL €1 = €2
<= (by semantics of RSL in Definition 3.2)
Ersileillc = Ersilells
<= (by lemma 4.2)
Eprlleills,nr = Eprlleallo,n
<= (by syntactic mapping (Def. 4.1), twice)
EprlTR[e1]llo. = EprlTRIe2]lo,a
<= (by semantics of DafnyR (Def. 2.6))
o,H =pr TR[e1]] = TR[ez]]
<= (by syntactic mapping (Def 4.3))
o,H =pr TR[[e1 = es]

The second base case is when « is of the form z.f — e,
and F' = RE[£ppy(x.f — €)]lo.n-

We first prove RE[[£pt (TR[z.f — e])]o.n =
RE[Epuy(x.f — €)]o,m as follows:

RE[Epuy(z.f — €)]lon
= (by hypothetical footprint (Def. 4.4))

RE[region{z.f}],n
= (by semantics of region expression (Def. 2.6))

{(Eprlzlon, f)}
= (by Lemma 4.2, twice)

{(Eprllzllo,n,)}

= (by semantics of region expression (Def. 2.6))
RE[region{z.f}]o.u

2014/3/25

= (by semantics of DafnyR (Def. 2.6))
RE[£pt(PointsTog(z,€))||o.u

= (by syntactic mapping (Def. 4.3))
RE[Ept(IR[z.f — e)lo.u

Next we prove o0, h Ersy «.f — e < o0,H Eppr

TR[z.f + e]] under the assumption that h Ly

We first prove it from the left side to the right side. As-
sume 0, h Egrsy ©.f — e, where F = {(Ersrlz]s, f)}-
We calculate it as follows:

o,hEgrsr z.f—e
<= (by semantics of RSL (Def. 3.2))
dom(h) = {(Ersrlz]o, f)} and
Ersilz]le # null and h[Ersrlx]o, f1 = Ersciells
(by assumption: h Ly >
H[ERSL[[JJ]]U, f] = gRSLIIe]]a and
SRSL[[fE]]a # null

s (Y Ersillells = Eprlello,nr (Lemma: 4-2)7>
three times

H[épr(*]ou, f]1 = Eprlle]o,m and
Eprllzllo,u # null
<= (by syntactic mapping (Def. 4.1), three times)
H[SDR[[TR[[LL']]]]U’H, f] = gDR[[TR[[e:I]]]o"H and
Epr TRz Moz # null
<= (by semantics of DafnyR (Def. 2.6))
o,H =pgr TR[z]] # null &&
TR[z].f = TR[€]
<= (by definition of PointsT oy predicate)
o,H =pgr PointsTos(TR[[z]], TR[e])
<= (by syntactic mapping (Def. 4.3))
o,H =pr TRII.Z‘.f — 6]]

Then we prove it from the right side to the left side. As-
sume o, H =pgr TR[z.f — e], where its hypothetical foot-
printis F' = {(Epr[]lo.n, f)}. We calculate it as follows:

o,H =pr TR[x.f — 6]]
<= (by syntactic mapping (Def. 4.3))
o, H E=pgr PointsTo;(TR[z], TR[e])
<= (by definition of PointsTo; predicate)
o, H =pr TR[[z] # null && TR[z].f = TR[e]|
<= (by semantics of DafnyR (Def. 2.6))
H[EDR[[TR[[SC]]]]U’H, f] = SDR[[TR[[e]]]]U,H and
Epr(TR[x Mo, m # null
<= (by syntactic mapping (Def. 4.1), three times)
H[Epr[z]lo,u, f1 = Eprllello,n and
Eprllxllo.n # null
by definition of F', we can construct heap h,
<such that dom(h) = F and h Ly >
dom(h) = {(Eprlz]sm, f)} and
Eprlzllo.m # null and
hEprlzlo,m, f1 = Eprllelo.n
by Ersclells = Eprle]o.n (Lemma: 4.2),>
four times
dom(h) = {(Ersclz]s, f)} and Ersrlz]s # null
and h[Ersr[x]s, f] = Ersilels

—

24

<= (by semantics of DafnyR (Def. 2.6))
o,hErsp v.f e

The inductive hypothesis is that for all subassertions
a;, heaps h; and H’, for each subassertion a;, the foot-
print is F; = RE[€psy(ai)lom,. If h = H', then F; —
RE[£pt(TR[a;i])]|o,a-and o, h; Ersr a; <= o, H =pr
TR[[a;]-

The first inductive case is when a is of the form a; * as.
we first prove RE[£pt(TR[a1 * az])lo.a =
RE[£Pmy(ar * az)]o,n as follows:

RE[EpPmy(ar * az)]lon
= (by hypothetical footprint (Def. 4.4))

fpuy(a1) + if a; then £py, (as)
RE
o,h

else region{}
= (by the presumed semantics (formula (1)), twice)
RE([fpuy(a1)]on U i€ Arsrllar]on = true
then RE[fpy,(az)]snelse &
_ by inductive hypothesis, o,h Egrsy, a; <
N 0,H Epr TR[a;]], and Lemma 4.8
Rg[[pry(al)]]U,h Y
if Apr[[TR[a1]]lo,n = true
then RE[£py,(az)]on else I
by inductive hypothesis, RE[£pp, (a:)]on =
RE[£pt(TR[a:]) o, m, twice
RE[£pt(TR[a1]) o v
if Apr[[TR[a1]]lo.n = true
then RE[[£pt(TR[az])]o.n else &
= (by set theory)
RENEpt(TR[a1]) o, m v
if Apr[[TR[a1]]lo.z = true
then RE[[fpt(TR[az]) oz v Telse &
(by semantics of DafnyR (Def. 2.6))
RE[£pt (TR a1)i
if Apr[TR[a]llo,n = true
thenRE[£pt (TR[[ae]) oz v
(if TR[[az]] then region{}
RE .
else region{})
else J
= (by semantics of Dafny (Def. 2.6))
RE[£pt(TR[a1]) o v
if Apr[TR[a]llo.u = true
thenRE[£pt(TR[az])]o.m v
(if TR[az]] then region{}
RE .
| elseregion{})
else J
= (by semantics of Dafny (Def. 2.6))
fpt(TR[aq]) +
if TR[a;]| then £pt(TR[az]]) +
if TR[az]| then
£t (£pt (TR [0,) £pt (TR [as)
| elseregion{}else region{}
= (by semantics of Dafny (Def. 2.6))

l..

)

o, H

RE

o,H

2014/3/25

fpt(TR[a1])) + (1 £ TR[a1]]
then £pt(TR[az]&&
(ept(TR[]) ! £pt(TR]a2])))
|| elseregion{})
= (by semantic of Dafny (Def. 2.6))
RE fpt(TR[a1]) && TR[az] &&]]
| ot (tr]ai]) ! fpt(tR]aa]) ||,
= (by syntactic mapping (Def. 4.3))
RE[£pt (TR [0 * as]) i

Next we prove o0,h Egrsr a1 *ay <= o,H Epg
TR[a; * as].

We first prove it from the left side to the right side. As-
sume o, h ERgy a1 * as, by the semantic of separating con-
junction, A is divided into two sub-heaps, h; and ho, where

= RE[£Pmy(a1)]on, and Fr = RE[EPmy(a2)]o.n,-
Since hy € h and hy S h, by definition of heap, F} =
RE[fpuy(a1)]lon and Fy = RE[Eppy(az)]s,n-We cal-
culate as follows:

RE

o,h Ersr a1 * az
by the semantics of RSL (Def. 3.2), and Corol-
<1ary 4.7 >
exists hy, ha.(h1Lhe and h = hy - ho and
if 0,h1 ERrsr a1 then o, hy ERsy, as else false)
and Fy n Fy =
by inductive the hypothesis,
<O’,hi Ersry a; <— o,H Epgr TRIIai]],
twice, and h; & H
if o, H Epr TR[[CLl]] then o, H =ppgr TR[[GQ]]
else falseand F1 n Fr = &
<by Fy = RE[fpmy(ai)]on and
Fy = RE(fpry(az)]lon
RE[fpuy(a)]on N RE[EPmy(az)]lon = O
andif o, H Epr TR[[a1] then o, H Epgr TR[az]
else false
— <by inductive hypothesis RE[£pry(asi)]o.n —>
RE[£pt(TR[a;:]) o m, twice
RE[Ept(TR[a1]) o0
RE[fpt(TR[az]) o = & and
if o, H Epr TR[[al]] then o, H =ppgr TR[[GQ]]
else false
<= (by semantics of DafnyR (Def. 2.6), twice)
o, H Epr TR[a1]] && TR[Jaz] & &
£pt (TR a1] £t (TR a2])
<= (by syntactic mapping (Def. 4.3))
o, H Epr TR[a; * as]]

Then we prove it from the right side to the left side.
Assume o, H Epr TR[a; * az]], where the footprint of a4
is F1 = RE[£pt(TR[a1]))]o.a, and the footprint of as is

= RE[£pt(TR[a1])) [0,z - We calculate as follows:

o,H =pr TR[al * CLQ]]
<= (by syntactic mapping (Def. 4.3))
o, H Epr TR[a1]] && TR[Jaz] & &
£pt (TR[a:])!!£pt (TR [as])

<= (by semantics of DafnyR (Def. 2.6), twice)
RE[Ept(TR[a1]) oz N RE[EPt(TR[a2])]lo.a
= Jandif o, H =pgr TR[a1]| then
o,H =pgr TR[az] else false

by definition of F) and F,, we can construct
<heaps hy and hs, such that dom(h,) = F; and

dom(hs) = Fy and hy = H and hy = H and

RE[£Pmy(ai)llon = RE[EPL(TR[ail)]o,m
twice
exists hi, ho. dom(hy1) N dom(hs) = & and

if 0,h1 ERrsy a1 then o, ho ERrsy ao
else false and if o, H Epr TR[[a:] then
o, H =pr TR[az] else false
B by inductive hypothesis, o,h Egrsy a; <
<a, H =pr TR[a;]), twice
exists hy, ha. dom(hy) ndom(hs) = & and
if 0,h1 Ersr a1 then o, hy ERsy, as else
false and if o, h}| ERrsr a1 then o, hl, Ersy, as
else false
by inductive hypothesis RE[£pyy(ai)]on =
<Rg[[fpt(TR[[ai]])]]o,H, twice. And f; = h’1>
and ho 2 h}
exists hy, ho. dom(hy) N dom(hs) = & and
if 0,h1 ERrsr a1 then o, ho ERrsy, as else false
= (by construction b = hq - ho)
exists hy, ho. dom(hy) N dom(hs) = & and
if 0,h1 ERsy a1 else o, ho =Rsy, as then false
and h = h1 . hg
<= (by definition of heap (Def. 2.2))
exists hi, ha. h1 Lho and
if 0,h1 ERrsy a1 else o, ho ERsy, as then false
and h = h1 . h2
<= (by semantics of RSL (Def. 3.2))
o, h Eay xas

The second inductive case is when a is of the form
a; A ag. We first prove RE[E£pt(TR[a1 A az])[o.r =
RE[£Pmy(ar A a2)]ls.n as follows:

RE[EPmy(ar A a2)]lon
= (by hypothetical footprint of RSL (Def. 4.4))
fpuy(a1) + if a; then
RE .
fpuy(a1) else region{} ok
= (by the presumed semantics (formula (1)), twice)
RE[€p1, (a1) o
if Agsraiflo,n = true then
RE(fPuy(a1)]on else I
by inductive hypothesis, o,h Egrsy a; <
o,H =pr TR[a;], and Lemma 4.8
Rg[[pry(a’l)]]O’,h o
if Apr[TR[a1]lo,# = true then
RE[fpuy(a1)]on else I
by inductive hypothesis,

= <R5|prHy(ai)]]<T7h = Rfﬂfpt(TR[[ai]])]]o,H,>

twice

2014/3/25

RE[£pt(TR[a1]) o, v
if Apr[[TR[a1]]lo,# = true then
RE[fpt(TR[az]) |0, else &
= (by semantics of DafnyR (Def. 2.6), twice)
RE [[fpt(TR[[a1])) + (1£ TR[a;] then
fpt(TR[az]]) else region{})
= (by semantics of DafnyR (Def. 2.6))
RE[fpt(TR[a1]&& TR az])]o.a
= ({by syntactic mapping (Def. 4.3))
Rf[[fpt(TR[[al A CLQ]])]]J,H

Next we prove o,h Egrsr a1 A ag
TR[[a; A az] as follows:

:|:|0‘,H

— o0,H Epr

o,h ERsL a1 A ag
<= (by semantics of RSL (Def. 3.2))
if 0,h =Rsy a1 then o,h =Eggy as else false
<= (by inductive hypothesis)
if o, H =pgr TR[a1] then o, H =pgr TR[as]|
else false
<= (by semantics of DafnyR (Def. 2.6))
o, H Epr TR[a1] & & TR[[az]]

The third inductive case is when a is of the form a; v as.
We first prove RE[£pt(TR[a1 v az]) 0.z =
RE[£Pmy(ar v a2)]ls.n as follows:

RE[£Pmy(a1 v a2)]lon
= (by hypothetical footprint of RSL (Def. 4.4))

RE pry(al) + (lf a1 then
region{} else fpy,(az)) oh
= (by semantics of region expressions (Def: 2.6))
Rg[[pry (al)]]o',h Y
if ARSL[[al]]n,h = true then J
else RE[fppy(az)]o.n
by inductive hypothesis, o,h Egrsy a; <
- o,H =pgr TR[a;], and Lemma 4.8
Rg[[pry(al)]]U,h v
if Apr[TR[a1]lo,# = true then
else RE[fppy(az)]on
by inductive hypothesis,
= { Relfpuy(alon - RE[£RE(TRIa:])]o.nr
twice
RENEpt(TR[a1]) o5 v
if Apg[TR[a1]]lo.zr = true then ¢F
else RE[fpt(TR[az])lo.u
= (by semantics of DafnyR (Def. 2.6), twice)
RE fpt(TR[a1])) + (1 £ TR[a1] then
region{} else £pt(TR[az]))
(by semantics of DafnyR (Def. 2.6))
RE[£y (TRa1] || TR a2])) lo. 1
(by syntactic mapping (Def. 4.3))
RE[[fpt(TR[[al \% CLQ:I])]]O-,H

Next we prove o, h Egrsr a1 Vv as
TR[a1] || TR[[a2] as follows:

:|:|0',H

— UvH ':DR

o,h Ersr a1 Vv as

26

<= (by semantics of RSL (Def. 3.2))
if 0, h ERrsy a1 then trueelse o,h Ersy, as
<= (by inductive hypothesis)
if 0, H =pgr TR[a1] then true else
o,H =pgr TR[[U,Q]]
<= (by semantics of DafnyR (Def. 2.6)>
o, H =pr TR[a1] || TR[az]

The fourth inductive case is when a is of the form
a; = ag. We first prove RE[£pt(TR[[a1 = a2])]o =
RE[£puy (a1 = a2)]o,m as follows:

RE[£puy (a1 = a2)]o.n
= (by hypothetical footprint of RSL (Def. 4.4)>

RE fpPuy(a1) + (i a; then
fpu,(a2) else region{}) oh
= (by semantics of region expression (Def. 2.6)»
RE[EPuy(a1)]on
if Agsrlai]lo,n = true then
RE[fpuy(a2)]on else
by inductive hypothesis, o,h Egrsp a; <
- o,H =pgr TR[a;], and Lemma 4.8
RE[£Pmy(a1)]on v
if Apr[TR[a1]lo,.z = true then
RE[£pPuy(az)]on else I
by inductive hypothesis,
= RE[fpmy(ai)lon = RE[Ept(TR[a:])]o,m.
twice
RE[£pt (TRIa1])lo.r v
if Apr[TR[a1]lo,.z = true then
RE[£pt(TR[az]) [0, else &
= (by semantics of DafnyR (Def. 2.6), twice)
RE fpt(IR[a1])) + (1 £ TR[a1] then
fpt(TR[az]]) else region{})
= (by semantics of DafnyR (Def. 2.6))
RE[£pt(TR[a1]] = TR[a2])]o. o
= {by syntactic mapping (Def. 4.3))
RE[£pt(TR[a1 = az|)lo,u

:|:|0',H

Next we prove o, h =grsy a1 = a2 < o,H Epg

TR[[a1]] = TR[az] as follows:

o,h=rsr a1 = a
<= (by semantics of RSL (Def. 3.2))
if 0,h ERrsr a1 then o, h Egrsy as else true
<= (by inductive hypothesis)
if o,H Epgr TR[[U,l]] then o, H =ppg TRIICLQ]]
else true
<= (by semantics of DafnyR (Def. 2.6))
o,H =pr TR[a1]] = TR[az]

The fifth inductive case is when a is of the form 3z’ .z. f —
2’ * a. By the definition of the hypothetical footprint, the
footprint of existential assertions do not depend on the ex-
istential variables. Therefore it is just a form of separating
conjunction case. I

2014/3/25

B. Soundness of DafnyR’s logic

THEOREM B.1 (Soundness of inference rules). Let P, Q
and I be type correct assertions, and let Stmt be a type
correct DafnyR statement. Let € be a type correct region ex-

pression. The axioms and rules for DafnyR are valid. That

if g (P Smt{QY[£], then =pr {PYSmit{Q} [¢].

Proof: We prove this by induction on the structure of the

proof of {P} Stmt {Q} [¢]. Let (o, H) be an arbitrary state,
and without loss of generality, let (o/, H') = S[[Stmt]|y,u.
We assume +ppr {P} Stmt {Q} [¢], and 0, H Epr P. Then
we must prove o', H =pr @, and that all the changed
locations are in €.

1. (ALLOCpR) In this case, Stmt is x := new K, P is
true, Qis {&&;_, PointsToys,(x,0)} ande = region{}.
We derive () as below:

By the semantics, (¢, H') = (let (¢, H") = alloc(H)
in (o”, H"[(c"[z], f;) — 0])), which entails Q.

For the frame condition, Stmt only updates newly allo-
cated locations, therefore ¢ = region{} is a correct
frame.

. (ASGNpRg) In this case, Stmt is © := Expr, P is true, Q
is {z = Expr} and ¢ = region{}, wherex ¢ FV(Expr).
We derive @ as below:

By the semantics, (o/, H') = (o[x — EprlExpr]s.u], H),

which entails Q.

For the frame condition, this statement only updates vari-
able x in the store. So nothing is changed in the heap.
Therefore ¢ = region{} is a correct frame.

. (UPDppR) In this case, Stmt is x.f := Expr, Pis x #
null, Q is z.f = Expr and ¢ = region{z.f}. We
derive @ as below:

By the semantics, (o/, H') = (o, H[(Eprl[z]o.a,) —
Epr([Expr]ls,m]), which entails Q.

For the frame condition, this statement changes the sin-
gleton heap location (z, f). Therefore ¢ = region{x.f}
is a correct frame.

. (ACCppR) In this case, Stmt is x := z'.f, Pis 2’ #
null && z'.f = Expr, Q is x = Expr, and ¢ =
region{}. We derive Q) as below:

By the semantics,

(o', H") = (o[z — H[(Eprla'lo.n, f)]], H), which
entails Q.

For the frame condition, this statement only updates vari-
able z in the store. So nothing is changed in the heap.
Therefore ¢ = region{} is a correct frame.

. (SEQpr) In this case, Stmt is Stmt; Stmt. By the in-
ductive hypothesis for Stm#; and Stmtz, (0", H") =
S[[Stmtl]]g7H, and (T”, H" EDR Q”.

27

By the second premise and the semantics, (¢/, H') =
S[[Stml‘g]]o.//’Hu, Hence 0'/’ H/ ':DR Q

For the frame condition, by the two premises, let €; and
€9 be the frame conditions of Stmty and Stmto. Then
the frame condition of the sequential statements is € =
g1 + €2.

. (IFpR) In this case, Stmt is 1 £(Expr # 0){Stmt, }else

{Stmta}.

There are two cases:

Casel: Expr # 0. By the inductive hypothesis, (¢, H') =
S[[Stmt1]|o, i, which entails Q.

Case2: Expr = 0. By the inductive hypothesis, (¢, H') =
S[[Stmt2]| o, 1, which entails Q.

For the frame condition, by the induction hypothesis, € is
a correct frame.

7. (WHILEpg) In this case, Stmt is while(Expr #

0){Stmt}. P = I, Q = I && Expr # 0 and the frame
conditions is e. The premise is =pr {I && Expr #
0} Stmr {1}[e].
By the semantics of this statement, let g be a recursive
point function, such that

g = As . if Ersp[[Expr # 0], then let s =
S[Stmt]|,,m in g5’ else s.
By definition, fiz is a fixed point function, so fiz(g) =
g. Then we prove
fiz(g)(o, H) Epr I by fixed-point induction.
Base Case: | E=ppr [holds vacuously. It requires to
prove all members in L implies I, but there is nothing
in L. Hence it is vacuously true.
Inductive Case: Let 0", H” =ppg I hold for an arbitrary
iteration of g, and ¢ is the frame condition. Then we prove

that fiz(g)(c”,H") =pr I holds, and the changed
locations on the heap is €.

There are two cases:

Case 1: Expr # 0. By the semantics, fixz(g)(c”, H") =
g(S[[Stmt]| 5 m+). By the inductive hypothesis,
9(S[[Stmt]|,» m») Epr I holds. Hence

fixz(g)(o”, H") =pr I holds. For the frame condition,
since the fixed point function always returns the same
function g, which is framed by ¢ by the induction hypoth-
esis, therefore ¢ is the frame condition for an arbitrary
iteration.

Case 2: Expr = 0. By the semantics, fixz(g)(c”, H") =
(¢”, H"). Therefore by the inductive hypothesis,
fiz(g)(c”, H") Epr I holds. For the frame condition,

since the state does not change, the frame is region{},
which is the subset of ¢.

2014/3/25

10.

Now we conclude that if the loop exits, which means that
Expr = 0 holds, the loop invariant I holds. Therefore,)
holds and ¢ is its frame condition.

. (SubE f fpr) In this case, by the inductive hypothesis,

Epr {P}Stmt{Q}[c]. Hence when applying the frame
condition &’ > ¢, the locations that may be changed are
also contained in &’. Therefore ¢’ is a correct frame.

. (CONpgR) In this case, by the inductive hypothesis,

{P"}Stmt{Q'}[¢] Epr. By the premise, P = P’ and
Q' = Q. Hence Epg {P}Smt{Q}[e] is valid.

(FRMppr) In this case, the premise is

{P}Stmt{Q}|e] EDR.

By the inductive hypothesis of DafyR, the side condition
ellfpt (R) means R’s footprint is disjoint with the loca-
tions where side effects take place. That means the values
in £pt(R), which are outside ¢, are not changed. Thus,
by definition of semantic footprint 2.5, the validity of R
is preserved after executing Stm¢.

For the frame condition, since R is unchanged, locations
that may be changed must be ine. il

LEMMA B.2 (Soundness of sub-frame rules). Let € and 7

be frames. if e <= n,

then o,H = ¢ <= 7 for

all heaps H and stores o.

Proof: By induction on the derivation of - € <= 7. The

semantics of <= and * maps to the operations < and N on
sets, which have the required properties.

Acknowledgments

The work of both authors is supported in part by US NSF
under grant CCF-0916715. Thanks to David Naumann for
discussions about region logic and comments on an earlier
work. Thanks to Rustan Leino for discussions about Dafny
and Boogie and help with their implementation.

References

[1] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional

[2] Y. Bao, G. T. Leavens, and G. Ernst.

[3] A. Borgida, J. Mylopoulos, and R. Reiter.

logic for local reasoning about global invariants. In J. Vitek,
editor, European Conference on Object-Oriented Program-
ming (ECOOP), volume 5142 of Lecture Notes in Computer
Science, pages 387—411, New York, NY, 2008. Springer-
Verlag.

Translating separa-
tion logic into dynamic frames using fine-grained region logic.
Technical Report CS-TR-13-02a, Computer Science, Univer-
sity of Central Florida, Orlando, Florida, Mar. 2014.

On the frame
problem in procedure specifications. IEEE Transactions on
Software Engineering, 21(10):785-798, Oct. 1995.

[4] J. Boyland. Checking interference with fractional permis-

sions. In R. Cousot, editor, Static Analysis (SAS), volume 2694
of Lecture Notes in Computer Science, pages 55-72, Berlin,
2003. Springer-Verlag.

28

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond
assertions: Advanced specification and verification with JML
and ESC/Java2. In Formal Methods for Components and
Objects (FMCO) 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 342-363, Berlin,
2006. Springer-Verlag.

C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576-580,583, Oct. 1969.

A. Hobor and J. Villard. The ramifications of sharing in data
structures. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
POPL 13, pages 523-536, New York, NY, USA, 2013. ACM.

S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language
for mutable data structures. In Proceedings of the 28th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL °01, pages 14-26, New York, NY, USA,
2001. ACM.

I. T. Kassios. Dynamic frames: Support for framing, depen-
dencies and sharing without restrictions. In E. S. J. Misra,
T. Nipkow, editor, Formal Methods (FM), volume 4085 of
Lecture Notes in Computer Science, pages 268-283, Berlin,
2006. Springer-Verlag.

I. T. Kassios. The dynamic frames theory. Formal Aspects of
Computing, 23(3):267-288, May 2011.

G. T. Leavens. JML’s rich, inherited specifications for behav-
ioral subtypes. In Z. Liu and H. Jifeng, editors, Formal Meth-
ods and Software Engineering: 8th International Conference
on Formal Engineering Methods (ICFEM), volume 4260 of
Lecture Notes in Computer Science, pages 2-34, New York,
NY, Nov. 2006. Springer-Verlag.

K. R. M. Leino. Dafny: An automatic program
verifier for functional correctness. Web page at
https://dafny.codeplex.com/.

K. R. M. Leino. Specification and verification of
object-oriented software. Lecture notes from Mark-
toberdorf Internation Summer School, available at
http://research.microsoft.com/en-us/um/
people/leino/papers/krml190.pdf, 2008.

K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Logic for Programming, Artificial
Intelligence, and Reasoning, 16th International Conference,
LPAR-16, volume 6355 of Lecture Notes in Computer Science,
pages 348-370. Springer-Verlag, 2010.

K. R. M. Leino and R. Monahan. Dafny meets the verification
benchmarks challenge. In Proceedings of the Third interna-
tional conference on Verified software: theories, tools, exper-
iments, volume 6217 of Lecture Notes in Computer Science,
pages 112-126, Berlin, 2010. Springer-Verlag.

K. R. M. Leino and P. Miiller. A basis for verifying multi-
threaded programs. In G. Castagna, editor, Programming Lan-
guages and Systems, 18th European Symposium on Program-
ming, ESOP 2009, volume 5502 of Lecture Notes in Computer
Science, pages 378-393, Berlin, Mar. 2009. Springer-Verlag.

M. J. Parkinson and A. J. Summers. The relationship between
separation logic and implicit dynamic frames. In Proceedings
of the 20th European conference on Programming languages

2014/3/25

and systems: part of the joint European conferences on theory
and practice of software, ESOP’11/ETAPS’11, pages 439-
458, Berlin, Heidelberg, 2011. Springer-Verlag.

[18] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proceedings of the Seventeenth Annual
IEEE Symposium on Logic in Computer Science, pages 55—
74, Los Alamitos, California, 2002. IEEE Computer Society
Press.

[19] S. Rosenberg. Verifier for region logic. =~ Web page at
http://www.cs.stevens.edu/ naumann/pub/VERL/., 2011.

[20] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An au-
tomatic verifier for Java-like programs based on dynamic
frames. In Fundamental Approaches to Software Engineering,
volume 4961 of Lecture Notes in Computer Science, pages
261-275, Berlin, Apr. 2008. Springer-Verlag.

[21] H. Yang. Local reasoning for stateful programs. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 2001. AAI3023240.

29

2014/3/25

