
Specifying Subtypes in SCJ Programs
Ghaith Haddad and Gary T. Leavens

CS-TR-11-04
July 2011

Keywords: safety-critical, real-time, WCET, timing analysis, timing constraints, timing behavior, formal specification, verification, oSCJ,
RapiTime, Safety Critical Java (SCJ), SafeJML specification language.

2011 CR Categories: D.2.1 [Software Engineering] Requirements/Specifications — languages, tools, JML; D.2.4 [Software Engineering]
Software/Program Verification — Formal methods, programming by contract, reliability, tools, JML; D.2.7 [Software Engineering] Distribu-
tion, Maintenance, and Enhancement — Documentation; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning
about Programs — Assertions, logics of programs, pre- and post-conditions, specification techniques;

Submitted for publication.

School of EECS
4000 Central Florida Blvd.

University of Central Florida
Orlando, Florida 32816, USA

Specifying Subtypes in SCJ Programs

Ghaith Haddad
University of Central Florida,

Orlando, FL, USA
haddad@ieee.org

Gary T. Leavens
University of Central Florida,

Orlando, FL, USA
leavens@eecs.ucf.edu

ABSTRACT
Modular reasoning about programs that use subtypes requires that
an overriding method in a subtype obeys the specifications of all
methods that it overrides. For example, if method m is specified in
a supertype T to take at most 42 nanoseconds to execute, then m
cannot take more than 42 nanoseconds to execute in any subtype
of T . Subtyping is an important aid to maintenance of programs,
since it allows one to write polymorphic code (reducing code size
and increasing reuse), and allows for convenient extension and en-
hancement of programs, all of which could be very useful in real-
time programming. In this paper we show how to specify timing
constraints for subtypes in a way that: permits modular reason-
ing about timing constraints, supports subtype polymorphism and
object-oriented design patterns, and still permits precise reason-
ing about execution times. This technique supports object-oriented
coding and design patterns based on subtype polymorphism, with
all their maintenance advantages, to be used in real-time software.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; C.4 [Performance of Systems]: Mea-
surement techniques, performance attributes; D.2.1 [Software En-
gineering]: Requirements/Specifications Languages, tools; D.2.4
[Software Engineering]: Software/Program Verification Assertion
checkers,formal methods, programming by contract, validation; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about ProgramsAssertions, specification techniques

Keywords
SafeJML, Safety Critical Java (SCJ), Java Modeling Language (JML),
timing behavior, duration, performance, WCET.

1. INTRODUCTION AND MOTIVATION
Subtyping is an important coding technique for programming in

OO languages. However, real-time programmers usually try to stay
away from subtyping, due to the perceived complications for tim-
ing analysis. Consider the example in Figures 1 and 2. This code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

is written in Safety Critical Java (SCJ) [34]. Figure 1 declares a
type Vector2d that represents two-dimensional vectors. Figure 2
shows another type, Vector3d, which is a subtype of Vector2d.
To save space, we only show a representative method in these types,
the scale method, which scales the dimensions of the vector by a
floating point number factor.

public class Vector2d {

protected /*@ spec_public @*/ float x, y;

/*@ public normal_behavior
@ requires !Float.isNaN(factor);
@ assignable x, y;
@ ensures x == \old(x) * factor
@ & y == \old(y) * factor;
@ duration 2 *
@ (ITimeConstants.MultiplyTime
@ + ITimeConstants.AssignTime); @*/
public void scale(float factor) {

this.x *= factor;
this.y *= factor;

}
}

Figure 1: An Example Supertype in SCJ with SafeJML speci-
fications. In SafeJML special comments that start with an at-
sign (of form //@ or /*@) and in which at-signs are ignored,
are parsed by the SafeJML checker.

The spec_public modifier makes the fields x and y public
for specification purposes. The specification of the scale method
precedes the header of that method. It includes a requires clause
which specifies the method’s precondition. The assignable
clause specifies that the method is only allowed to assign to the x
and y fields. The ensures clause specifies that the x and y fields
are scaled by the given factor. The duration clause specifies the
maximum time the method’s execution may take. The example’s
duration clause specifies the method’s maximum time using some
constants that depend on the platform that this code is written for.

The subtype, Vector3d shown in Figure 2 has an extra field z
that records the additional dimension. This is typical of OO pro-
grams, as subtype objects often hold more information than objects
of the corresponding supertypes. The specifications in this sub-
type Vector3d are similar to the ones that are in the supertype,
and further restrict the specifications inherited from the supertype,
Vector2d.

A standard methodology, supertype abstraction, for modular rea-
soning in the presence of subtype polymorphism, uses the specifi-
cations associated with each receiver’s static type [19, 24] to reason

1

public class Vector3d extends Vector2d {

protected /*@ spec_public @*/ float z;

/*@ also
@ public normal_behavior
@ requires !Float.isNaN(factor);
@ assignable z;
@ ensures z == \old(z) * factor; @*/
public void scale(float factor) {

super.scale(factor);
this.z *= factor;

}
}

Figure 2: Vector3d, a subtype of Vector2d. The specifi-
cation of its scale method adds to the specification inherited
from its supertype, Vector2d.

about method calls. Validity of supertype abstraction is guaran-
teed by behavioral subtyping, which requires that each subtype’s
overriding methods to obey the specification of each method that
they override [19, 21, 22, 26]. In JML, as in our example, the sub-
type Vector3d is a behavioral subtype of its supertype, Vector2d,
since JML uses specification inheritance [19] to force the subtype
to obey the supertype’s specification for the scale method. That
is, whenever a call to Vector3d’s scale method satisfies the pre-
condition of its supertype’s scale method, then the implementa-
tion in Vector3d must also satisfy the frame condition and post
condition specified in the supertype Vector2d. (This ensures that
client reasoning about calls made on receiver objects of static type
Vector2d, which use Vector2d’s specification, are valid even if
the receiver’s dynamic type is the subtype, Vector3d.)

However, applying behavioral subtyping to timing constraints
poses a practical problem. As in our example, it is often the case
that the subtype’s instances contain more information than those of
its supertypes. Now consider the timing constraints on the scale

method of both types. This method has a very tight specification in
Vector2d. That specification only permits just enough time for a
reasonable implementation. However, the override of this method
in the subtype Vector3d will not be able to scale the vector within
the specified time, because the duration clause only accounts for
two multiplication operations and two assignments, while the over-
ridden method in Vector3d needs a third multiplication and as-
signment.1

One can try to avoid such problems with behavioral subtyping by
using several techniques. One technique is to not override methods
in subtypes, for example, by giving them a different name [25].
(This is equivalent to declaring all methods to be final.) However,
this technique precludes the use of subtype polymorphism, which
obviates all the maintenance advantages of typical OO design (such
as standard OO design patterns).

Another technique for avoiding overly strict constraints on sub-
type methods is to use underspecification; that is, one weakens the
supertype’s specification enough to allow the subtype’s implemen-
tation to satisfy the supertype’s specification. For example, if we
changed the specification in Figure 1 such that the duration expres-
sion was multiplied by 3 instead of 2, then this would allow the im-
plementation in Vector3d to be correct. However, this technique
will make reasoning about timing constraints imprecise, since each

1 Thus as specified so far, Vector3d cannot be correctly imple-
mented. This is the way that problems with behavioral subtyping
manifest themselves in JML, due to specification inheritance.

supertype’s specification will necessarily have to be loose enough
to allow the slowest subtype’s implementation. Further, this tech-
nique causes maintenance problems, as adding a new, slower, sub-
type will require changing the specifications of all the methods it
overrides (as we imagined doing for Vector2d). That might re-
quire reverification of client code that was previously verified, to
take this new, weaker specification, into account.

Finally, neither of these techniques can be applied to programs
that use some standard OO libraries, which already use subtyping
and method overriding extensively.

In this work, we try to solve the problem that the constraints of
behavioral subtyping impose on real-time software by designing a
solution that both maintains the flexibility of OO programming and
still makes supertype abstraction a valid reasoning principle, so that
reasoning about timing constraints is modular. We also introduce a
tool that we implemented to experiment with our ideas and demon-
strate that our approach is feasible.

1.1 SafeJML
The Java Modeling Language (JML) [2, 3, 20, 19, 23] is a

behavioral interface specification language [35] that boasts many
state-of-the-art features for functional specification. Previously, we
introduced SafeJML [8], an extension to JML for Safety-Critical
Java (SCJ) programs. SafeJML is implemented as an extension to
JAJML [9].

Besides allowing specification of functional behavior, SafeJML
allows SCJ users to specify and check timing constraints for meth-
ods. SafeJML’s duration clause is based on the clause with the
same name found in JML, but revised to specify time in absolute
time units (nanoseconds). SafeJML also has several other features
that were added to enable the use of various tools to check timing
constraints.

In SafeJML one can specify timing constraints for each method
using the duration clause. We understand that real-time program-
mers do not typically specify timing constraints for each method.
However, even if programmers do not wish to divide the time bud-
get for a task so finely, the ability to specify timing constraints for
each method will allow programmers to swiftly find which methods
are causing timing problems. For example, method timing speci-
fications can be added after the code is written and some timing
measurements have been made, with the goal of discovering which
methods are responsible for a task going over an expected end-to-
end timing budget for a task or response. Furthermore, just as with
functional specifications, timing specifications can serve as con-
tracts, and thus can support division of labor and allow modular
reasoning about timing constraints. As real-time systems become
more complex, such aids to modularity will be more valuable.

SafeJML was originally designed [8] to be used with both static
analysis tools such as AbsInt’s aiT [6, 12, 11] and dynamic analysis
tools such as RapiTime [14]. Static analysis is conservative and
sound, which guarantees accuracy but may give less precise results
than dynamic analysis. Dynamic analysis, on the other hand, is
more precise, but requires test cases and provides no guarantees
about all possible executions. Ernst has emphasized the importance
of applying a combination of both static and dynamic analysis [5].
Thus SafeJML is designed to support both kinds of analysis.

Currently we are focusing on dynamic analysis (runtime check-
ing) for timing constraints. However, when we initially tried to use
RapiTime for dynamic analysis, we discovered its limitations (as
of this writing) on the size of C files it can process in a given run.
This limitation caused problems for us, because of the way we are
compiling SCJ to C code.

Compilation of SCJ code takes place in a SCJ implementation.

2

Such an implementation is provided by our partners at Purdue Uni-
versity (Jan Vitek and his group). This implementation is called
oSCJ [4, 30]. It is an open-source SCJ implementation based on
OVM [31]. Currently oSCJ implements all of Level 0 of SCJ [34].
oSCJ compiles SCJ code and the virtual machine, together, into C
and then uses a standard C compiler. Lately, oSCJ has another im-
plementation based on the Fiji VM [29]. However, both of these
VMs produce large C source files, and that caused RapiTime to
stop functioning. The Fiji VM is a Java virtual machine dedicated
to embedded, hard real-time devices, and just like OVM, it com-
piles Java byte code to C. It also allows users to combine Java code
with C code. Such C code is often used for device drivers and other
low-level parts of safety critical systems.

To overcome the problems with RapiTime, we implemented a
simplified analysis procedure that calculates an estimation of the
worst case execution times for the specified methods, then com-
pares the calculated values with the specifications of these methods.
This procedure has enabled us to do simple dynamic checking.

1.2 Syntax and semantics of SafeJML
SafeJML, like JML, specifies methods using contracts (“spec-

ification cases”) [23]. The clauses in such a contract are used
to specify the method’s behavior. These include the requires,
assignable, and ensures clauses, which specify (respectively)
the precondition, frame condition, and post condition of a method.
For SafeJML, we are particularly interested in the duration-clause.

duration-clause ::= duration spec-expression ;

The semantics of JML’s duration clause is based on the work of
Krone et al. [15, 16]. It specifies the maximum execution time
needed for a method to execute in absolute time units.2 We assume
that the built-in SafeJML package named org.jmlspecs.lang

contains definitions of constants such as MS, SEC, etc. to allow ex-
pression of timing constraints in units that are more convenient for
the specifier.

2. SUBTYPING AND WCET ANALYSIS
SCJ allows for subtype polymorphism, also known as dynamic

dispatch, which determines the code to run for a method call such as
o.m(x) based on the dynamic class of the receiver object, o. But
due to the problems with reasoning about subtype polymorphism
that we described in the introduction, some researchers in real-time
systems suggest that this feature should be disallowed [7]. How-
ever, we will show how to solve these reasoning problems by using
standard techniques for modular reasoning in the presence of sub-
type polymorphism, and show how these techniques can be applied
to reasoning about timing constraints in SCJ programs. Allowing
the use of subtype polymorphism should also have benefits in terms
of programmer efficiency and ease of maintenance, since it allows
code reuse and the use of object-oriented design patterns.

A standard methodology for modular reasoning in the presence
of subtype polymorphism, called supertype abstraction [19, 24], is
to use the static types of each call’s receiver to find the specifica-
tions for reasoning about the effect of a method call. For exam-
ple, to verify {P}o.m();{Q} (that starting in a state that satisfies
property P , the call o.m() necessarily achieves a state that satis-
fies Q) one uses the specification of m associated with the static
type of o. (In particular, one checks that P implies the precondi-
tion specified for m in the static type of o, and that this method’s
post condition, taken from the static type of o, implies Q.)
2 However, such a specification only applies when the precondition
of the specification case in which it appears is satisfied [23, 19].

Soundness of supertype abstraction requires types to be behav-
ioral subtypes of their supertypes [22]. If S is a subtype of T , then
S is a behavioral subtype of T only if all overriding methods in S
obeys their specification in T [18, 17, 19, 21, 22, 24, 26].

However, applying behavioral subtyping to timing constraints
poses a practical problem for timing constraints. This problem
arises because methods in a subtype are often required to do more
elaborate information processing than the methods they override
in their supertype(s). This often occurs because a subtype’s in-
stances often contain more information than those of its supertypes.
For example, consider again the type Vector2d and its subtype
Vector3d. Since the scale method of Vector2d has a very
tight timing constraint, which permits just enough time for a rea-
sonable implementation, that specification does not allow enough
time to perform the calculations needed in a Vector3d object.3

As we explained in the introduction, one can try to avoid such
problems by either not overriding methods, or by underspecifica-
tion. Those ways of avoiding the problem are orthogonal to Safe-
JML; that is, SafeJML’s analysis will still work correctly if these
techniques are used. However, because these approaches either
give up on method overriding or use imprecise specifications, they
either give up some of the flexibility of OO programming or result
in an imprecise analysis.

2.1 A Solution for Subtyping
The key to solving this problem is to recognize that the problem

lies in seeking an a priori fixed limit on the method’s time bound.
That is, timing constraints for methods cannot simply be constants.
This is not a new observation, as others have already noted that tim-
ing constraints in general must depend on data such as arguments to
a method [10, 15, 16]. As our examples illustrate, the runtime type
(i.e., class) of a method’s receiver object is also data that is input
to that method. Thus the timing constraint of a method in general
may need to depend on the dynamic type of the receiver.

This insight dovetails with an elegant way to express the de-
pendency of a method’s specification on the dynamic type of the
method’s receiver, first published by Matthew Parkinson [28, 27].
The essence of Parkinson’s technique is to write specifications of
methods using “abstract predicate families” [27, p. 78], which can
have differing definitions in various types. The value of an abstract
predicate depends on the runtime type of a method’s receiver. In
SafeJML an abstract predicate family is declared as a non-static
pure model method; such a model method can only be used in
specifications, and yet can be overridden in different types, and
thus can have a different meaning for each subtype. Thus, during
checking (which takes place after running the program), one must
know something about the runtime type of the receiver in order to
use a particular member of the abstract predicate family to interpret
a specification.

One may also specify various properties of abstract predicate
families that allow reasoning with inexact type information (upper
bounds). Parkinson’s work gives sound rules for reasoning about
specifications that are written using abstract predicates, which ap-
ply to SafeJML’s use of model methods.

Consider the example we introduced earlier, the timing constraint
for Vector2d’s scale method can be rewritten in JML by intro-
ducing a specification like the following, where scaleTime is a
pure model method.

//@ duration scaleTime();

3 If one thinks about subtypes that are for higher dimensional vec-
tor spaces in general, then one realizes the truly fundamental nature
of this specification problem.

3

The method scaleTime would be overridden in each concrete
type. To reason about the time taken by calls to scale either re-
quires knowledge of the exact runtime type of the receiver, or some
separate specification of how the scaleTime method depends on
the dynamic type of the receiver (this). This dependency can be
captured in the specification of the scaleTime method for a spe-
cific type, which would then apply to all its subtypes. For example,
if one uses the above as the specification for scale and addition-
ally specifies that the result of scaleTime is no greater than the
number of dimensions in that vector object times the time it takes
for the platform to compute one floating point multiplication and
one floating point assignment, then this specification would have to
be obeyed by all subtypes of the class Vector2d. Thus, one can
reason using static type information (supertype abstraction [24, 19,
22]) if desired. However, if one needs more precision, and if during
reasoning one can prove something about the exact dynamic type
of a collection, then one can instead use the specification for that
more exact type’s scaleTime method.

2.2 Implementation of Our Solution
For runtime checking of timing constraints, it is important that

the implementation consumes minimal (and constant) time. Our
implementation does this by outputting an execution trace, during
the program’s execution, with enough timing information to enable
later check of timing constraints. When the program is not execut-
ing, the tool checks the program’s execution trace and compares
the duration of methods with that the program’s specified duration
clauses.

Our implementation’s design is shown in Figure 3. The analy-
sis process consists of four stages. The first stage is the SafeJML
compiler stage. The SafeJML compiler is a Java compiler with the
ability to process JML specification. The input for this stage is the
SCJ code that needs to be analyzed along with the SafeJML speci-
fications. The duration specifications are usually embedded inside
the SCJ code itself. Alternatively, the SafeJML compiler, allows
for specifications to be stored in separate (.jml) files. The output
for this stage is the compiled class files (bytecode), which in turn is
the input for the next stage, the Fiji compiler.

Figure 3: Design diagram

The Fiji compiler compiles class files into C code which in turn
is compiled into machine code. The Fiji compiler takes care of this
process internally. Then the generated machine code moves to the
third stage, the host microcontroller. This microcontroller could
be the actual target hardware or a simulator. Running the code
will result in producing execution traces. These execution traces
are processed by the SafeJML checker stage, which also takes the
original code and specifications as an input. This stage analyzes

the trace files and compares them to the specifications. The output
of this stage contains warnings regarding any potential violation of
the specifications.

The novel feature of our implementation is that execution traces
are designed to contain enough information about the program’s
state to enable checking duration clauses that use abstract predi-
cates (model methods), which depend on the dynamic type of the
receiver.

To record execution traces, the SafeJML compiler injects en-
try and exit method calls into code of each SafeJML-annotated
method. The calls to the entry and exit methods are passed a pa-
rameter value that represents the SafeJML-annotated method’s ID,
and another parameter that represents the receiver’s dynamic type.
This information is encoded in the execution traces in a way that
minimizes space and makes recovery of the information fairly easy.

Several methods to collect traces are supported. For example, if
the code is going to be simulated on a PC, the programmer then
will choose to collect traces in the memory then dump these traces
in files to be analyzed later. Similarly, if the programmer is running
the trace collection algorithm on the host hardware, the traces can
be directed into a serial port and collected on different hardware.
The net result must be a trace file to be used in the next step of the
process. Both of these methods are supported by the implemen-
tation. Furthermore, a collection of “static native” trace handlers
are available in FijiVM, which gives one the freedom to change the
trace collection implementation as desired.

The SafeJML checker stage checks execution traces against the
specifications in the program by calculating differences in times-
tamps between the entry and exit traces of each method call. The
checker must also use the dynamic receiver type information in the
traces to figure out which overridden method was actually executed
during runtime.

public class Vector2d {

protected /*@ spec_public @*/ float x, y;

/*@ public normal_behavior
@ requires !Float.isNaN(factor);
@ assignable x, y;
@ ensures x == \old(x) * factor
@ & y == \old(y) * factor;
@ duration scaleTime(); @*/
public void scale(float factor) {

this.x *= factor;
this.y *= factor;

}

/*@
public pure model long scaleTime() {

return this.getDimensions()
* (ITimeConstants.MultiplyTime

+ ITimeConstants.AssignTime);
}

@*/

/*@ ensures \result >= 2;
public pure model int getDimensions() {

return 2;
}
@*/

}

Figure 4: Specifications for Vector2d, modified from those
in Figure 1 to use the proposed approach with model methods
(following Parkinson et al.).

4

public class Vector3d extends Vector2d {

protected /*@ spec_public @*/ float z;

/*@ also
@ public normal_behavior
@ requires !Float.isNaN(factor);
@ assignable z;
@ ensures z == \old(z) * factor; @*/
public void scale(float factor) {

super.scale(factor);
this.z *= factor;

}

/*@
public pure model int getDimensions() {

return 3;
}

@*/

}

Figure 5: Specifications for Vector3d, modified from those in
Figure 2 to use the proposed approach.

We show our proposed solution in Figures 4 and 5. The pure
model methods scaleTime and getDimensions are introduced
in Vector2d and used in the duration specification rewritten for
Vector2d and inherited by Vector3d.

This approach introduces a practical problem related to the extra
processing required during execution time to be able to collect all
needed information for the checker to be able to do its job correctly.
Clearly, evaluating these methods at execution time is a process that
takes time, and might affect the overall timing analysis of the pro-
gram. A practical and precise solution remains an open topic for re-
search and future work. For instance, partial evaluation techniques
can be used to eliminate the need for many time-demanding calcu-
lations at runtime, by doing some calculations during the program’s
compilation. Another possibility is to postpone many calculations
to checking time, by putting the information needed to do such cal-
culations into the execution traces.

3. DISCUSSION
In this section, we introduce one more example inspired by one

of the SCJ examples. Figure 6 declares a type ListHandler (it-
self a subtype of PeriodicEventHandler) that inverts a list when
a specific event occurs. In Figure 7, we introduce another type,
SortedListHandler, which is a subtype of ListHandler. When
the event occurs a SortedListHandler object sorts the list in-
stead of inverting it. The specifications for both types show how the
suggested methodology can be used to specify timing constraints.
For the subtype SortedListHandler, since it is a behavioral sub-
type of its super type ListHandler, specifications from both types
must be satisfied. However, following our proposed approach, the
duration clause is only specified in the super type, and only the
pure model method, handleAsyncEventTime, used by the dura-
tion clause, is overridden in the subtype in order for the duration
clause to be satisfied.

4. RELATED WORK
We know of no other solutions to the problem of subtyping in for

timing specification and verification.
Our solution for the subtyping problem was based on the work

of Parkinson and his coauthors [28, 27]. In his work, Parkinson

public class ListHandler extends
PeriodicEventHandler {

//@ public model instance int count;
//@ public initially count == 0;
//@ public invariant count >= 0;

protected /*@ spec_public @*/ int count_;
//@ in count;
//@ public represents count = count_;
protected /*@ spec_public @*/ List list;

/ / .. .

/*@ public normal_behavior
@ requires count >= 0 && list != null;
@ assignable count, theMission;
@ ensures count == \old(count) - 1;
@ ensures list.size()
@ == \old(list.size());
@ duration handleAsyncEventTime();

@*/
public void handleAsyncEvent() {

/ / .. .
list.invert();
if (--count_ == 0) {

getCurrentMission().
requestSequenceTermination();

}
/ / .. .

}
/*@
public pure model long handleAsyncEventTime()

{
return (long)

(0.5 * ITimeConstants.ObjectSwapTime);
}

@*/
/ / .. .

}

Figure 6: Specifications for ListHandler.

developed a formal semantics for a subset of Java, and introduced
the concept of abstract predicate families to modular reasoning of
specifications to address the modularity of reasoning in the pres-
ence of inheritance and subtyping. The use of abstract predicate
families allows subclasses to have what seem like strikingly differ-
ent behaviors, and allows for “reuse subtypes” that exploit inheri-
tance even though they have what may seem like somewhat differ-
ent functional behavior. Parkinson and his coauthors do not extend
their work to timing specifications, which is our application of the
concept in the present paper.

The design and implementation of the duration clause in Safe-
JML (and in JML) is based on the work of Krone et al. [15, 16].
Much of SafeJML’s design is built to accommodate the RapiTime
tool [1, 14], a hybrid analysis tool used to perform hybrid WCET
analysis for C programs.

Formal verification of timing specifications is also introduced in
Hehner’s work [13]. Hehner used refinement calculus to formalize
the verification of timing specifications, but he does not discuss OO
issues such as subtyping.

Many researchers have worked on the problem of WCET anal-
ysis. One early work in this area is Shaw’s book [33]. Shaw in-
troduces a method for precise analysis using path expressions to
perform measurements. Shaw does not consider subtyping. Fur-
thermore, this analysis is not modular, since it does not use specifi-
cations.

5

public class SortedListHandler extends
ListHandler {

//@ public model instance int n;
//@ public initially n == 0;
//@ public invariant n >= 0;
//@ protected represents n = list.size();

/*@ also
@ public normal_behavior
@ requires n >= 1;
@ assignable count, theMission;
@ ensures list.isSorted();
@*/
public void handleAsyncEvent() {

/ / .. .
list.sort();
if (--count_ == 0) {

getCurrentMission().
requestSequenceTermination();

}
/ / .. .

}
/*@
public pure model long handleAsyncEventTime()

{
return ITimeConstants.ObjectSwapTime

* n * (long)(Math.log(n));
}

@*/
/ / .. .

}

Figure 7: Specifications for SortedListHandler, a subtype
of ListHandler.

Schoeberl and Pedersen [32] describe a precise WCET for Java
Systems based on the Java Optimized Processor (JOP). This is also
a whole-program static analysis, which makes it non-modular. This
analysis hides the problem of subtyping because it depends on the
duration for execution of byte codes, which requires prior knowl-
edge about the type at compile time.

5. CONCLUSION
In this work, we have described a solution to the problem of spec-

ification and checking of timing constraints in SCJ programs that
use subtyping. Our solution is embodied in SafeJML, an extension
to JML for specification of SCJ programs. We showed how the
duration clause can be used to check SCJ programs that use sub-
typing by writing specifications that make use of model methods
(Parkinson’s abstract predicates).

Future work includes a full implementation and evaluation of
the proposed solution based on real life examples. We also plan
to investigate and introduce more issues regarding the use of other
techniques and features of object-oriented languages in real-time
systems.

Acknowledgment
The work of all the authors was supported in part by NSF grant
CCF-0916350 titled “SHF: Specification and Verification of Safety
Critical Java.” The authors also thank Ales Plesk and Purdue team
for their support and help.

APPENDIX
A. INSTALLATION INSTRUCTIONS

We provide a wiki page for SafeJML at
http://tinyurl.com/28zllux. The page contains docu-
mentation on how to build and test SafeJML.

B. REFERENCES
[1] G. Bernat, A. Colin, and S. Petters. pwcet: A tool for

probabilistic worst-case execution time analysis of real-time
systems. In Proc. 3rd Int. Workshop on WCET Analysis,
Satellite Workshop of the Euromicro Conference on
Real-Time Systems, Porto, Portugal, July 2003.

[2] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June
2005.

[3] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond
assertions: Advanced specification and verification with JML
and ESC/Java2. In Formal Methods for Components and
Objects (FMCO) 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 342–363.
Springer-Verlag, 2006.

[4] Computer-Science Department Annual Report, Purdue
University. oSCJ: Open Safety-Critical Java Project, White
Paper, January 2010.

[5] M. D. Ernst. Static and dynamic analysis: Synergy and
duality. In WODA 2003: ICSE Workshop on Dynamic
Analysis, Portland, OR, pages 24–27, New Mexico State
University, May 2003. Jonathan Cook.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm.
Reliable and precise WCET determination for a real-life
processor. In Proc. First International Workshop on
Embedded Software (EMSOFT 2001), volume 2211 of
Lecture Notes in Computer Science, pages 469–485.
Springer-Verlag, 2001.

[7] J. Gustafsson. Worst case execution time analysis of
object-oriented programs. Object-Oriented Real-Time
Dependable Systems, IEEE International Workshop on,
0:0071, 2002.

[8] G. Haddad, F. Hussain, and G. T. Leavens. The design of
safejml, a specification language for scj with support for
wcet specification. In Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES ’10, pages 155–163, New York,
NY, USA, 2010. ACM.

[9] G. Haddad and G. T. Leavens. Extensible dynamic analysis
for jml: A case study with loop annotations. Technical
Report CS-TR-08-05, School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando,
Florida, April 2008.

[10] I. J. Hayes and M. Utting. A sequential real-time refinement
calculus. Acta Informatica, 37(6):385–448, 2001.

[11] R. Heckmann and C. Ferdinand. Worst-case execution time
prediction by static program analysis.
http://www.absint.com/aiT_WCET.pdf, 2006.

[12] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and the
results of WCET tools. Proceedings of the IEEE,
91(7):1038–1054, July 2003.

[13] E. C. R. Hehner. Formalization of time and space. Formal
Aspects of Computing, 10:290–306, 1998.

6

http://tinyurl.com/28zllux
http://www.absint.com/aiT_WCET.pdf

[14] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based
worst-case execution time analysis using automatic test-data
generation. In Proc. 4th Euromicro International Workshop
on WCET Analysis, pages 67–70, June 2004.

[15] J. Krone, W. F. Ogden, and M. Sitaraman. Modular
verification of performance correctness. In ACM OOPSLA
Workshop on Specification and Verification of
Component-Based Systems (SAVCBS), pages 60–67, 2001.

[16] J. Krone, W. F. Ogden, and M. Sitaraman. Profiles: A
compositional mechanism for performance specification.
Technical Report RSRG-04-03, Department of Computer
Science, Clemson University, Clemson, SC 29634-0974,
June 2004. Invited as one of the best papers from the
SAVCBS Workshop series and under consideration for
Formal Aspects of Computing, Springer-Verlag.

[17] G. T. Leavens. Verifying object-oriented programs that use
subtypes. Technical Report 439, Massachusetts Institute of
Technology, Laboratory for Computer Science, Feb. 1989.
The author’s Ph.D. thesis.

[18] G. T. Leavens. Modular verification of object-oriented
programs with subtypes. Technical Report 90-09,
Department of Computer Science, Iowa State University,
Ames, Iowa, 50011, July 1990. Available by anonymous ftp
from ftp.cs.iastate.edu, and by e-mail from
almanac@cs.iastate.edu.

[19] G. T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Z. Liu and H. Jifeng, editors, Formal
Methods and Software Engineering: 8th International
Conference on Formal Engineering Methods (ICFEM),
volume 4260 of Lecture Notes in Computer Science, pages
2–34, New York, NY, Nov. 2006. Springer-Verlag.

[20] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, Mar. 2006.

[21] G. T. Leavens and K. K. Dhara. Concepts of behavioral
subtyping and a sketch of their extension to
component-based systems. In G. T. Leavens and
M. Sitaraman, editors, Foundations of Component-Based
Systems, chapter 6, pages 113–135. Cambridge University
Press, Cambridge, UK, 2000.

[22] G. T. Leavens and D. A. Naumann. Behavioral subtyping,
specification inheritance, and modular reasoning. Technical
Report 06-20b, Department of Computer Science, Iowa State
University, Ames, Iowa, 50011, Sept. 2006.

[23] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, P. Müller, J. Kiniry, P. Chalin, and D. M. Zimmerman.
JML Reference Manual. Available from
http://www.jmlspecs.org, Sept. 2009.

[24] G. T. Leavens and W. E. Weihl. Specification and verification
of object-oriented programs using supertype abstraction.
Acta Informatica, 32(8):705–778, Nov. 1995.

[25] K. R. M. Leino. Recursive object types in a logic of
object-oriented programs. Nordic Journal of Computing,
5(4):330–360, Winter 1998.

[26] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Trans. Prog. Lang. Syst., 16(6):1811–1841,
Nov. 1994.

[27] M. Parkinson and G. Bierman. Separation logic, abstraction
and inheritance. In P. Wadler, editor, ACM Symposium on
Principles of Programming Languages, pages 75–86, New
York, NY, Jan. 2008. ACM.

[28] M. J. Parkinson. Local reasoning for Java. Technical Report
654, University of Cambridge Computer Laboratory, Nov.
2005. The author’s Ph.D. dissertation.

[29] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek.
High-level programming of embedded hard real-time
devices. In Proceedings of the 5th European conference on
Computer systems, EuroSys ’10, pages 69–82, New York,
NY, USA, 2010. ACM.

[30] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and
J. Vitek. Developing safety critical java applications with
oscj/l0. In JTRES ’10: Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and
Embedded Systems, pages 95–101, New York, NY, USA,
2010. ACM.

[31] Purdue University - S3 Lab. The Ovm Virtual Machine
homepage, http://www.ovmj.org/, 2005.

[32] M. Schoeberl and R. Pedersen. WCET analysis for a java
processor. In JTRES ’06: Proceedings of the 4th
international workshop on Java technologies for real-time
and embedded systems, pages 202–211, New York, NY,
USA, 2006. ACM.

[33] A. Shaw. Real-Time Systems and Software. John Wiley &
Sons, New York, NY, 2001.

[34] Sun Microsystems, Inc. JSR 302: Safety critical java
technology. From
http://jcp.org/en/jsr/detail?id=302 (Date
retrieved: March 19, 2008), 2007.

[35] J. M. Wing. Writing Larch interface language specifications.
ACM Trans. Prog. Lang. Syst., 9(1):1–24, Jan. 1987.

7

ftp.cs.iastate.edu
http://www.jmlspecs.org
http://www.ovmj.org/
http://jcp.org/en/jsr/detail?id=302

	Introduction and Motivation
	SafeJML
	Syntax and semantics of SafeJML

	Subtyping and WCET analysis
	A Solution for Subtyping
	Implementation of Our Solution

	Discussion
	Related Work
	Conclusion
	Installation Instructions
	References

