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1. INTRODUCTION

A software behavorial speci�cation is a precise description of the intended behavior
of some computing system or its components. Behavioral speci�cations take a va-
riety of forms, and di�erent speci�cation notations play distinct roles in describing
and constraining behavior. For example, type declarations or preconditions indicate
the values that a component is designed to process. Assertions impose constraints
on variable values as a system passes through di�erent execution states. Postcondi-
tions specify the functionality of a component by describing how its output values
relate to its input values. State machines provide a high-level view of system states
and transitions between those states. Sequence charts summarize how a component
interacts with other components or its environment. Use cases capture how users
of di�erent roles may interact with the system.
Numerous aspects of modern software and the processes by which it is constructed

and validated are leading to an increased use of speci�cations.

�Modern software typically makes extensive use of reuseable component frame-
works including graphical user interface (GUI) libraries (e.g., Swing [Walrath
et al. 2004], SWT [SWT ] ), frameworks for web services and business applica-
tions (e.g., Apache Struts [Apache Struts ] and CSLA .Net [Lhotka 2008]), etc.
Speci�cations on the interfaces of these frameworks are useful for declaring soft-

ware contracts [Liskov and Guttag 1986; Meyer 1992] that precisely document
the functionality provided by framework services as well as the speci�c calling
conventions that clients of the framework are obligated to follow to ensure cor-
rect operation of the provided services. Such speci�cations are also important for
maintenance, since code alone cannot reveal what contract the code was intended
to ful�ll.

�The scale of software systems is increasing rapidly, and it is not uncommon for
systems to have well over a million lines of code. In such large-scale systems,
functionality must be decomposed and development tasks distributed to many
teams. In some cases, teams may be located in di�erent organizations and in dif-
ferent geographical areas. Development processes may vary, and both language
and cultural di�erences may introduce ambiguities and hinder communications.
Imprecision in interfaces and team coding assignments can prevent the system
from being correctly assembled from its components and can lead to sign�cant
cost overruns. Use cases and sequence charts [Alhir 1998] can highlight key in-
teractions of sytem components and achieve consensus during design. Interface
speci�cations [Guttag et al. 1993; Jones 1990; Meyer 1997; Wing 1987; 1990] play
a key role in cleanly partitioning the software system, recording the intended be-
havior of software components, achieving an appropriate division of labor among
teams, increasing precision in communication between teams, and in assuring
that desired system functionality can be achieved by composing individually val-
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idated components.

�The sheer scale of software systems is leading to them being used longer, since
they are more costly to replace. At the same time, the pace of technology in-
novation is quickening. Unfortunately, this often leads to �technology refresh�
problems�it is often di�cult to refresh the software to accomodate advances in
execution platforms, implementation languages, frameworks or libraries. Speci�-
cations can provide implementation-independent descriptions of system behavior.
In e�ect, they can serve as abstractions that make development less dependent
on implementation details�facilitating change of hardware components and im-
plementation strategies.

�Safety-critical systems including avionics, medical devices, automotive control
systems, nuclear power plants, as well as systems associated with critical infras-
tructure, increasingly rely on software to provide their functionality. Veri�cation
and validation is a key component of the development and certi�cation of such
systems. Especially useful in these contexts, but in non-critical contexts as well,
speci�cations provide a canonical declaration of a systems intended functionality
against which an implementation can be veri�ed. Speci�cations can also guide
test case construction. When debugging, one can use speci�cations to isolate
faults and assign blame [Findler and Felleisen 2002; Liskov and Guttag 1986;
Meyer 1992].

The bene�ts of speci�cations are ampli�ed when they are written in a formal

speci�cation language�a mathematically precise notation for recording intended
properties of software. In this survey, we will consider speci�cation languages with
both a formal syntax and semantics. Formalizing the syntax of the speci�cation
language enables speci�cations to be processed by software development tools and
checked for well-formedness. Formalizing the semantics helps make speci�cations
unambiguous, less dependent on cultural norms1, and thus less likely to be misun-
derstood. More importantly, formalizing the semantics, e.g., using mathematical
logic, enables tools to provide automated reasoning about speci�cations and their
relationship to associated code.
Formal speci�cations can be leveraged by tools throughout the entire software

life-cycle. At design time, using automated deduction and SAT-based techniques,
speci�cations can be checked automatically for consistency and queried to deter-
mine if desired system behaviors are implied by the speci�cations [Jackson 2006].
As coding begins, static analysis tools can check implementations against speci�ca-
tions, e.g., a method body can be checked to determine if it correctly implements
its contract, that it satis�es the preconditions of any methods that it calls, and that
all assertions in the method body hold [Flanagan et al. 2002; Barnett et al. 2005].
Speci�cations can also serve as a starting place for transformational development
in which speci�cations are systematically re�ned into code [Abadi and Lamport
1988; Abrial 1996; Hehner 1993; Jones 1990; Morgan 1994; Morgan and Vickers
1994; Morris 1980; Partsch and Steinbrüggen 1983]. Formal speci�cations need not
specify full correctness to be useful; light-weight annotations including those that
restrict ranges of numeric variables and that specify the non-nullness of reference

1For example, a �pint� means 473ml in the US, but 586ml in Britain.
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variables can be easily incorporated during development to guide tools that seek
to �nd bugs used deductive techniques [Flanagan et al. 2002; Barnett et al. 2005]
or abstract interpretation [Blanchet et al. 2002]. During testing, executable repre-
sentations of assertions can be checked, test cases can be generated automatically
from formal speci�cations [Cartwright 1981; Chang and Richardson 1999; Boyapati
et al. 2002], or implementations can be exercised directly from speci�cations as in
model-based testing techniques [Jacky et al. 2008]. Formal speci�cations can be
compiled to code-based oracles that determine when a particular test passes or fails
[Hierons et al. 2009]. Even after systems have been deployed, code generated from
speci�cations can provide run-time monitoring of a system's execution and aid in
the implementation of fault-recovery mechanism [Bartetzko et al. 2001; Barnett and
Schulte 2003; Cheon and Leavens 2002]. Finally, in critical systems, tools based
on combinations of automatic and interactive theorem-proving can be used for ver-
i�cation�proving that an implementation is free of bugs and that it satis�es its
formal speci�cation in every possible execution [Barnes 1997; Cohen et al. 2009].
Formal speci�cation can be used for many artifacts of a software development

project such as requirements, software architecture, and code. Our focus in this
survey is on speci�cation languages that can be used to record detailed design (i.e.,
coding) decisions about program modules. Wing [1987; 1990] and Lamport [1989]
called such speci�cations interface speci�cations, since they document both the
interface between such modules and their behavior. However, the term �interface
speci�cation� tends to be confused with very weak speci�cations that document just
the syntactic interface of various modules, such as the names and types of meth-
ods [Object Management Group 1992]. Thus we use the term behavioral interface

speci�cation [Cheon and Leavens 1994] to emphasize the behavioral component of
such speci�cations, such as pre- and postconditions. In this survey, we focus on
behavioral interface speci�cation languages. We give an overview of speci�cation
languages for other artifacts in the next subsection.
The main challenge in designing a behavioral interface speci�cation language is

to balance various design goals including expressiveness, versatility, and ease of
use. For instance, support for unbounded quanti�ers increases the expressiveness
of speci�cations, but prevents some formulas from being checked e�ciently at run
time and, thus, makes them less useful for testing. Support for higher-order logic
increases expressiveness but limits the applicability of automatic program veri�ers.
Denoting speci�cations in terms of expressions of the programming language makes
speci�cations easier to read and write for programmers, but complicates veri�cation
and sometimes limits expressiveness.
During the last decade, behavioral interface speci�cation languages have been an

area of active research, driven by the development of tools that seek to improve the
quality of program code. The development of these tools and their application to
non-trivial programs has lead to important insights:

�The community has developed techniques to specify properties of programs writ-
ten in modern programming languages, in particular, imperative object-oriented
languages.

�There is now a better understanding of the trade-o�s in designing a behavioral in-
terface speci�cation language, in particular, the trade-o� between expressiveness,
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annotation overhead, and support for automatic reasoning.

�There is a general agreement on a set of well-understood core concepts as well as
on current research challenges.

In this survey, we give an overview of the state of the art in designing and using
behavioral interface speci�cation languages. We focus mainly on languages and
notations for expressing properties that enable or help one verify that (part of) a
program satis�es certain properties. Such properties can range from the absence of
certain programming faults to the satisfaction of all speci�ed properties. We discuss
many examples of such properties below. To facilitate comparisons and because
not all speci�cation languages support the same features, we present examples in
several speci�cation languages, including JML [Leavens et al. 2009], SPARK [Barnes
1997], Separation logic [O'Hearn et al. 2001], and Spec# [Barnett et al. 2005].
Translations of each example into several speci�cation languages are available online
at http://www.eecs.ucf.edu/~leavens/spec-lang-survey/examples/index.html.
We intend this survey to be interesting for readers who want to:

�learn ways to specify or describe software properties, e.g., for use by veri�cation
or static analysis tools, or

�design a formal speci�cation language for documenting detailed designs.

In particular, we hope that this survey will be useful to researchers participating
in the Veri�ed Software Initiative (VSI) [Hoare 2005; Hoare et al. 2007].

1.1 Classi�cation of Speci�cations

Speci�cations can be classi�ed according to the kinds of properties they express
and the kinds of artifacts they describe. In this subsection, we list some of the
most important kinds of properties and artifacts, and provide references for those
kinds that are not covered in this paper.

1.1.1 Kinds of Properties. Speci�cation languages have focused on expressing
the following three kinds of properties:

�Functional behavior properties describe the (data) values associated with system
operations or state changes. Such properties typically describe the relationships
between inputs and outputs, and thus typically do not involve more than two
states, usually the pre- and post-states of a procedure. For instance, a functional
behavior speci�cation of a sorting routine might include that the output is a
permutation of the input and that the output is sorted. Functional behavior
properties also include consistency criteria of data structures (such as object
invariants).

�Temporal properties describe properties of a system's sequences of states, along
with the relationship between system events and state transitions. For instance,
a temporal speci�cation of a server might include that every request is handled
eventually.

Temporal properties can be expressed in temporal logic [Emerson 1990; Manna
and Pnueli 1992], or event-based speci�cation languages such as Statemate [Harel
et al. 1990], Petri nets [Peterson 1977; 1981], and process algebras [Hennessy and
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Milner 1985; Milne and Milner 1979; Milner 1990; Milner et al. 1992]. Speci�ca-
tion languages that handle various forms of temporal logic include the Bandera
Speci�cation Language [Corbett et al. 2000], Promela [Holzmann 1997], and SLIC
(the SLAM model checker's speci�cation language) [Ball and Rajamani 2001].

�Resource properties describe constraints on how much of some resource, such as
time or space, may be used by an operation or may be used between a pair of
events. Timing constraints are especially important for the modeling and analysis
of real-time systems. Termination is a special case of a timing property [Hehner
1989].

Resource properties can be expressed in speci�cation languages such as timed
automata [Alur et al. 1990], TPTL [Alur and Henzinger 1994], metric tempo-
ral logic [Ouaknine and Worrell 2005], HighSpec [Dong et al. 2006], CS-OZ-DC
[Olderog 2008], Uppaal [Larsen et al. 1997], Esterel [Berry 2000], Lustre [Halb-
wachs et al. 1992; Pilaud et al. 1987], and the duration calculus [Hansen 2008].
Timing properties for events in code can be speci�ed in the PSpec language [Perl
and Weihl 1993] and Real-time Euclid [Kligerman and Stoyenko 1992; Stoyenko
1992]. Bellini et al. [2000] survey speci�cation languages that build on temporal
logic for real-time system speci�cation.

An orthogonal way of classifying properties distinguishes between safety and live-
ness properties [Manna and Pnueli 1992]. A safety property says that nothing
bad happens, for example, that the system does not crash. A liveness property
says that something good eventually happens, for example, that a system eventu-
ally responds to a request. Functional behavior properties and resource properties
are typically safety properties, whereas speci�cations of temporal properties often
include liveness properties.

1.1.2 Kinds of Artifacts. Speci�cations are used to describe many artifacts in
the software development process. A very broad characterization of these artifacts
and their relation to known speci�cation languages is as follows:

�Requirements-level speci�cations describe the behavior of a system's software as
a whole [Jackson 1995; Heitmeyer et al. 2007; van Lamsweerde 2000].

Requirements speci�cation languages include SCR [Heitmeyer et al. 1998], RSML
and its variants [Heimdahl et al. 2003; Leveson et al. 1999], FSP [Kramer and
Magee 2006; Magee and Kramer 2005], CSP [Brookes et al. 1984; Hoare 1985;
Roscoe 1994], and parts of the UML [Arlow and Neustadt 2005; Rumbaugh et al.
1999] such as Statecharts [Harel 1987].

�Analysis-level speci�cations describe domain models and express concepts in a
domain.

Analysis speci�cation languages that describe functional behavior include Alloy
[Jackson 2006], Z [Hayes 1993; Spivey 1989], TLA [Lamport 1994], ASML [Börger
and Stärk 2003; Gurevich 1991], and algebraic equational speci�cation languages
[Bidoit et al. 1991; Goguen et al. 1978; Wirsing 1990] such as LSL [Guttag
and Horning 1986] and Casl [CoFI (The Common Framework Initiative) 2004;
Mossakowski et al. 2008]. Some re�nement-oriented languages, such as B [Abrial
1996], have the capability to state speci�cations at this level and also lower levels.
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�Architectural speci�cations describe the intended connections (control and data
�ows) between components of a program [Aldrich et al. 2002; Garlan et al. 2000].

�Code interface speci�cation describe contracts between the implementation of
a program part and its clients. These speci�cations can be expressed both as
types and as more general assertions. Type systems are convenient ways to state
invariant properties that are true in all states. Types can concisely state a �nite
set of invariant properties, such as non-nullness and numerical range restrictions
[Nielson 1996] and can also encode general predicates with the aid of dependent
type constructors [Backhouse et al. 1989; Constable et al. 1986; Schmidt 1994;
Martin-Löf 1985].
Languages for functional properties rely heavily on one or two-state assertions,
including pre- and postconditions, as well as invariants. This style of speci�cation
language is typi�ed by Ei�el [Ei�el 2005; 1997] and includes languages such as
Gypsy [Ambler et al. 1977], Anna [Luckham and von Henke 1985; Luckham
1990], SPARK [Barnes 1997; Chapman 2000], VDM [Andrews 1996; Fitzgerald
and Larsen 1998; Fitzgerald 2008; Jones 1990], VDM++ [Fitzgerald et al. 2005;
Mitra 1994], Larch interface speci�cation languages [Guttag et al. 1993; Guttag
et al. 1985; Wing 1987], the RESOLVE family [Ogden et al. 1994; Edwards et al.
1994], Spec# [Barnett et al. 2005; Barnett et al. 2006], and JML [Burdy et al.
2005; Leavens et al. 2006; Leavens 2006]. The Object Constraint Language of
the UML [Warmer and Kleppe 1999; OMG 2006] also �ts in this style.

In this survey, we focus on code interface speci�cation languages for functional
behavior properties. However, some of these properties are also relevant for proving
temporal or resource properties. For instance, proving termination of a list traversal
might depend on an invariant that the list is acyclic.

1.2 Speci�cation Languages and Veri�cation Technology

Speci�cation languages are often specialized to support some particular automated
veri�cation technique. An example is Promela's support for the SPIN model checker
[Holzmann 1991]. However, there are interesting synergies between several veri�ca-
tion techniques, such as static and dynamic checking [Ernst 2003; Flanagan 2006],
and some speci�cation languages, such as JML [Burdy et al. 2005], have been de-
signed to support multiple tools.
Veri�cation technology is also closely tied to semantics. A veri�cation logic is a

formal reasoning system that allows proofs that code satis�es a speci�cation [Apt
1981; Apt and 0lderog 1991; Bjørner and Henson 2008; Cousot 1990; Emerson 1990;
Francez 1992; Hoare 1969; Kozen and Tiuryn 1990; Manna and Pnueli 1992]. While
it is, in principle, possible to directly use program semantics to specify and verify
programs, it is often more convenient to encapsulate reusable proof principles for a
given programming language in a veri�cation logic. Then one uses the veri�cation
logic to prove correctness. That such proofs are sound (or valid) is proved using
the programming language's semantics [Apt 1981; Apt and Olderog 1997; Loeckx
and Sieber 1987; Winskel 1993]. On the other hand, model checking [Clarke et al.
1986; Edmund M. Clarke et al. 1999; Holzmann 1997] uses state space exploration
techniques to verify programs, which is directly based on the semantics of �nite
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state machines.
In this survey, we make special e�orts to highlight the interplay between speci-

�cation language design and automated veri�cation techniques. Designing a speci-
�cation language to �t a particular veri�cation technique can be an excellent way
to make that veri�cation technique widely available and easily usable. Conversely,
one important aim of veri�cation technology is to support clear and precise com-
munication with human readers; thus new speci�cation language features provide
interesting challenges to those interested in veri�cation technology.

1.3 Outline

In the remainder of this survey, we focus on various aspects of functional behavior
properties of sequential programs. (We largely omit consideration of concurrent
and parallel programs, due to lack of space.) In the next section, we discuss speci�-
cation of input-output behavior of subprograms, including contracts for procedures.
Section 3 discusses constructs for speci�cations of modules, including packages and
abstract data types. Section 4 describes the speci�cation of data structure shapes
and how to specify procedures that manipulate data structures. Section 5 de-
scribes how speci�cation languages treat subtyping and dynamic dispatch as found
in object-oriented programming. Finally, Section 6 o�ers some conclusions.

2. INPUT/OUTPUT BEHAVIOR

The most basic notions of behavioral speci�cations capture a program's (or sub-
program's) input/output behavior. For example, an input/output speci�cation of
a sorting algorithm might capture the fact that the algorithm takes as input an
arbitrary array of integers and returns a permutation of the input array with the
elements arranged according to some total order. Input/output speci�cations may
also constrain the intermediate states that a program passes through in the process
of transforming inputs into outputs. One common form of constraint speci�cation
is an assertion�a predicate embedded in the code that must hold on the current
program state when execution reaches the point at which the assertion is written.
For example, in a sorting algorithm, an assertion might be used to state that the
array being sorted must be non-empty before the sorting process begins. Another
common form of constraint is an invariant�a predicate that must hold each time
program execution reaches one of a prede�ned set of program points. For example,
in an insertion-sort program, one might have an invariant stating that, whenever
program execution reaches a new iteration of the outer loop, all elements to the left
of the loop index are in sorted order.
This section gives an overview of basic forms of code-level input/output speci�-

cations. Although many of the forms of speci�cation that we discuss are relevant
in a variety of programming language paradigms, we focus our initial discussion of
speci�cation concepts in simple imperative languages. A program P in such a lan-
guage consists of commands such as variable assignment, conditionals, and loops,
organized into subprograms such as procedures and modules. We will discuss more
advanced language features in later sections.
The SPARK language [Barnes 1997] is a nice example of a simple imperative

language with code-level speci�cations and associated checking tools. The SPARK
programming language is a subset of Ada designed for programming high-assurance
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applications, and it omits features such as heap-based data and exceptions that
often cause di�culty when reasoning about programs. The SPARK speci�cation
language includes a variety of annotations and �rst-order logic expressions that are
embedded in Ada comments within the SPARK code. We use SPARK in this section
to illustrate many of the concepts associated with input/output speci�cations.

2.1 In-line Assertions

2.1.1 Overview. Consider a situation in which client code uses a library func-
tion to generate a random number. Let us assume that the client developer reads
the informal documentation associated with the library and concludes that the gen-
erator will always return non-negative values. The developer can use an assertion
to specify this assumption/expectation about the behavior of the library function
at the point where the random function is used:

R := Lib.Random();
--# assert R >= 0;

Assertions are typically written as side-e�ect-free boolean expressions in the pro-
gramming language in which they are embedded. In some cases, assertions are
embedded in program comments (as with the SPARK assertion above, which is
embedded in an Ada inline comment delimited by --) and are recognized and pro-
cessed by veri�cation tools that understand the special comment syntax (# ap-
pended to the Ada comment delimiter --# indicates a SPARK speci�cation). In
other cases (such as with Java assertions), assertions are written as executable code
that may be executed during testing and removed by a pre-processor once testing
is completed.
An assertion documents an expectation. By expressing assumptions and impor-

tant aspects of the intended functionality of the code, assertions can thus aid in
code maintenance. Typically, assertions are also viewed as executable speci�ca-
tions. When an assertion is executed, its evaluation has no e�ect if the assertion
holds for the current state. If the assertion does not hold, program execution is
halted and the system generates an error message.

2.1.2 Tool Foundations. Because the assertion concept is easy to learn and easy
to use, it one of the most familiar widely used forms of program speci�cation (for
example, McConnell's Code Complete [McConnell 1993], one of the most widely
read practical guides to writing commercial software, emphasizes using assertions
in defensive programming). The evolution of assertions and associated checking
tools has a rich history. Floyd made very early use of the assertion concept as a
program speci�cation mechanism [Floyd 1967]. Hoare's seminal paper on axiomatic
semantics [Hoare 1969] also makes fundamental use of assertions. Two pioneering
languages that were designed for verifying programs, Gypsy [Ambler et al. 1977]
and Euclid [Lampson et al. 1981], used assert statements (and other speci�cations)
as built-in language features. Due to their increasing use in current programming
practice, modern languages like Ei�el, Java, and Spec# also include assertions as
built-in language features. However, in-line assertions can be included in almost
any language by de�ning an assert construct as a procedure or macro. For more
details on the history of assertions and assertion checking, we refer the reader to
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the work of Jones [2003] who surveys the early use of assertions in formal reasoning
about programs, and Clarke and Rosenblum [2006] who provide a detailed historical
perspective on the development and use of run-time assertion checking.
Assertions may be checked statically using automated deduction techniques or at

run-time as the program is executed. For example, ESC/Java [Flanagan et al. 2002],
one of the �rst tools to provide checking of speci�cations for realistic Java programs,
attempts to prove that each in-line assertion will hold in all executions using deci-
sion procedures and weakest precondition calculations as the underlying reasoning
technology. Similar technology is used for checking assertions in the Spec# veri�ca-
tion framework for C# [Barnett et al. 2005]. Symbolic execution, which combines
decision procedures with strongest postcondition calculations, is another popular
approach for assertion checking used in tools such as Java PathFinder [Khurshid
et al. 2003] and Kiasan [Deng et al. 2006] for Java, Cute [Sen et al. 2005] for C, and
XRT [Grieskamp et al. 2005] for Spec#. The above tools aim for completely auto-
mated checking of assertions and thus provide checking on only bounded portions of
a program's statespace or report �false alarms� � situations were assertion that are
actually valid are reported as failing due to approximations made during checking.
Other frameworks such as SPARK and the C veri�er VCC [Cohen et al. 2009] aim to
provide complete veri�cation by generating veri�cation conditions from assertions,
discharging as many veri�cation conditions as possible with no user intervention
using decision procedures, and then requiring users to employ interactive theorem
provers to discharge the remaining veri�cation conditions.
In static checking of assertions, it is useful to distinguish between assertions that

one expects a program checker to verify and assertions that cannot be veri�ed in
the given context but provide logical facts that are needed for the rest of a static
veri�cation. Following the re�nement calculus [Back 1980; Morgan 1990], some
speci�cation languages o�er a way to make this distinction, using assert statements
for the former and assume statements for the latter. The distinction between assert
and assume only manifests itself in the behavior of the program veri�er. When
encountering assert B, the veri�er checks that the boolean expression B holds. If
it does not, the veri�er reports an error and execution along that veri�cation path
is halted. If B holds, then the veri�er continues exploring the current execution
with the set of logical facts known by the veri�er enriched to include B. When
encountering assume B, the veri�er continues, after adding B to the set of known
logical facts.
For example, the following assert statements (written in the syntax of VCC

[Cohen et al. 2009]) express the intention for the code to compute the minimum of
two numbers and instruct the program veri�er to prove that the code (which uses
arithmetic tricks to avoid branches) is correct:

m = a - ((a - b) & -(a > b));
_(assert m <= a && m <= b)
_(assert m == a || m == b)

In this case, if the veri�er cannot prove one of the assertion conditions using its
current fact set, an error is reported. In contrast, consider the example given
above using the library function Lib.Random, and assume that the source code is
not available for the function. Without a formal speci�cation of the function, it is
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not possible to prove the assertion R >= 0 that occurs after the call because there
no information about the possible return values of the function. In a speci�cation
language that supports the verify-versus-assume distinction, one would instead use
an assume statement (here shown in Spec# [Barnett et al. 2005]):

R = Lib.Random();
assume R >= 0;

The veri�er does not try to prove R >=0, but instead simply continues to explore
the current execution path with the fact R >=0 added to its fact set.
In-line assertions can also be checked at run-time by compiling a representation

of each assertion into executable code. The resulting assertion-instrumented code
can be e�ective in �nding unexpected behavior during the development and testing
of a program [McConnell 1993]. The compiled representation of assertions does
introduce computational overhead into run-time execution, and when static check-
ing of assertions is combined with run-time checking, overhead can be reduced by
omitting code generation for assertions that have been proven statically to always
hold (code generation for assume statements checks would be maintained, if strict
conformance to their semantics is desired, since they are not proven statically). In
addition, when the quality of a program is high enough to deploy it, and soundness
of assume/asserts need not be strictly enforced, then code generation for assertions
can be disabled to trade the additional checking time for improved performance on
the program's main tasks.

2.1.3 Partial expressions. Syntactically, it is possible to write an assertion whose
evaluation is not well de�ned. For example, the assertion x/y = 5 is not de�ned in
states where y=0. There are �ve general approaches to dealing with this problem.
One approach is to give expressions a non-standard interpretation that treats all

functions and operators as total when they appear in an assertion context. For
example, x/0 would then denote some unspeci�ed function of x, maintaining the
property that an expression is always a function of its subexpressions. Because the
particular value returned by x is under-speci�ed, it is possible to prove the assertion
only if it is immaterial what the value of x is. This approach has been taken, for ex-
ample, in the Larch Shared Language and in ESC/Java. It was also adopted in the
JML run-time assertion checker, which went to great lengths to convert evaluation
failures for boolean-valued expressions into false or true, in an attempt to make
unde�nedness produce assertion violations [Cheon and Leavens 2005]. However,
while this approach has supporters [Gries and Schneider 1995], it has been criti-
cized, for example, because it has some possibly undesirable consequences in typed
logics [Jones 1995], and because it requires expressions to be interpreted di�erently
when they appear in an assertion context as opposed to a program context [Chalin
2005].
Another approach is to treat any unde�ned subformula of an assertion as the

value false [Parnas 1993]. For example, x/y=5 is then treated as false whenever
y=0. A problem with this approach is that x/y=5 might then yield the same result
as x/y 6=5; indeed, x/y = x/y is not always true.
The two approaches above admit unde�ned expressions. That is, they do not

assign any blame for having written an assertion that is not always de�ned. The
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next two approaches will cause an error to be reported for unde�ned evaluations.
The third approach to dealing with unde�ned expressions in assertions is to

generate an error at the time the assertion needs to be checked. This approach
is taken in, for example, Ei�el. Although simple, a consequence of the approach
is that unde�nedness errors in assertions may go undetected for a long time. In
addition, the unde�nedness check is repeated many times during runtime checking.
The fourth approach is to demand that assertions be well de�ned in all possi-

ble contexts. This can be enforced in a static program veri�er by generating a
well-de�nedness check for every assertion given in the program. A consequence
of this approach is that assertions must be written to be self guarding or protec-
tive [Leavens and Wing 1997; Rudich et al. 2008]. For example, an assertion that
mentions x/y = 5 must also explicitly check for y 6= 0, as in y 6= 0 ⇒ x/y = 5.
This approach is compatible with programming languages that have short-circuit
operators [Chalin 2007]. For example, in Java, using the || operator one can write:
y == 0 || x/y == 5.
The �fth approach is to abandon ordinary �rst-order logic and instead to consider

a logic that deals with partial expressions directly. One such logic is the Logic of
Partial Functions [Barringer et al. 1984]. Advantages of this logic are argued by
Jones [Jones 2006] in a paper that also gives a broader history and evaluation of
di�erent approaches found in the rich literature on the subject of partial expressions.
Woodcock et al. [Woodcock et al. 2009] have combined the approaches to partial
expressions in various logics into a unifying theory, which lets them be compared
and, under certain restrictions, be used interchangeably.

2.2 The Pre/Post Technique

2.2.1 Overview. While assertions can be placed at arbitrary points in the code,
they can also be used in a structured manner to enable more systematic reasoning
about program behavior. Pre/postconditions are one example of structured use of
assertions. A precondition is an assertion that must hold whenever the procedure
is called (after parameter passing). A postcondition is an assertion that must hold
immediately after the procedure completes its execution.
The SPARK procedure2 Find_Index_Pos of Figure 1 illustrates the use of pre/-

postconditions to express that the procedure searches a global array S for the value
of input parameter X. First, note that the �assertions� representing pre/postcon-
ditions are not stated in the procedure body using the assert keyword as in the
previous example. Instead, to highlight the distinguished role of the pre/postcon-
dition assertions, they are written using the keywords pre and return and placed
in a special collection of annotations in the header of the procedure.
The precondition states that the value of X must be in the array when the pro-

cedure is invoked. The use of existential quanti�cation in the precondition (i.e.,
there is some position M in the array that holds the value X) illustrates that the
language of assertion expressions may in some cases be richer than language of
program expressions.
In the postcondition, the construct return Z names the return value Z and im-

poses two constraints: (1) the value at index position Z is equal to X, and (2) Z is

2Our discussion ignores the SPARK/Ada distinction between functions and procedures.
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function Find_Index_Pos (X : in Integer) return Index_Range

--# global in S;

--# pre for some M in Index_Range => (S(M) = X);

--# return Z => (S(Z) = X) and

--# (for all M in Index_Range

--# range Index_Range’First .. Z-1

--# => (S(M) /= X));

is

Result_Pos : Index_Range;

begin

for I in Index_Range loop

if S(I) = X then

Result_Pos := I;

exit;

end if;

end loop;

return Result_Pos;

end Find_Index_Pos;

Fig. 1. SPARK illustration of structured assertions.

the �rst position in the array to have a value of X.
Together, the pre- and postconditions of a procedure can be viewed as sum-

marizing the procedure's input/output behavior in the sense that the associated
assertions describe properties of states �owing into and out of the procedure. Sum-
maries can vary in their precision. For example, dropping the constraint (2) in the
postcondition above still yields a valid summary of the associated implementation,
but it is a less precise summary because it does not capture the fact that the index
value returned corresponds to the �rst occurrence of X.
It is also fruitful to view a pre/postcondition pair as de�ning a contract κ between

a procedure P and its clients (other procedure that call P ). From the point of view
of a client of P , the client must abide by the contract by calling P in a state that
satis�es κ's precondition. When doing so, it can rely on P to satisfy the contract
by completing in a state that satis�es κ's postcondition. From the point of view
of the implementation of P , the implementation can assume that it will always
be called with parameters and an associated global variable state that satis�es κ's
precondition. Working under this assumption, P must ful�ll its contract by ensuring
that κ's postcondition will always be satis�ed. The term �Design by Contract� was
coined by Meyer [1992] to describe a program methodology that emphasizes the
contract metaphor by encouraging early de�nition of program module contracts
with coding following at a later stage, guided by previously constructed contracts.

2.2.2 Semantic Foundations. The use of pre/postconditions in program speci-
�cation can be traced back to Floyd/Hoare Logic [Floyd 1967; Hoare 1969] which
characterizes the behavior of a program statement C using triples of the form

{P}C {Q}

where both P (the precondition) and Q (the postcondition) are boolean formula
over variable values.
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A state σ for a program is a mapping from the program's variables to values. We
call a boolean formula over variable values a state predicate and say that a state
σ satis�es a state predicate P when the values of variables as given by σ satisfy
the constraints given by P (i.e., when P (σ) = true). There are two common ways
to de�ne the semantics of Hoare triples, which di�er only in their treatment of
non-termination:

Total correctness:. A Hoare triple is valid i� every execution of the program C
starting in a state satisfying precondition P will terminate in a state satisfying
postcondition Q.

Partial correctness:. A Hoare triple is valid i� every execution of the program C
starting in a state satisfying precondition P will run forever or terminate in a state
satisfying postcondition Q.

Di�erences in precision of summaries such as those discussed for the example of
Figure 1 can also be captured within this logical view. A formula Q is weaker than
P if P ⇒ Q (P entails Q). When P ⇒ Q, we say that Q abstracts P (equivalently,
P re�nes Q). Intuitively, this means that Q is less restrictive and more approximate
than P , and P represents a more precise summary of states. State predicates can be
viewed as abstractions that summarize state information, and they can be arranged
in a natural approximation lattice based on the entailment relation as an ordering.
This preorder of approximation on state predicates can be used to de�ne a pre-

order on pre/postconditions pairs (procedure contracts) as illustrated in the follow-
ing diagram.

less precise {P} · {Q}
re�ned by ↓ ⇓ ⇑ abstracted by ↑

more precise {P ′} · {Q′}

Let κ represent the contract {P} · {Q} and κ′ represent the contract {P ′} · {Q′}. κ′

is said to be a re�nement of κ (alternatively, κ is an abstraction of κ′) if P ⇒ P ′

and Q′ ⇒ Q [Back 1980]. From the point of view of clients, if κ′ is a re�nement of
κ and if C and C ′ satisfy κ and κ′ respectively, then C ′ can be used in any context
where C is used. This is because C ′ imposes stronger conditions on its output while
being more permissive on inputs then C [Chen and Cheng 2000; Naumann 2001;
Olderog 1983]. Any context that can supply inputs satisfying C's precondition P
can also supply inputs satisfying C ′'s precondition P ′ since P ⇒ P ′. Similarly,
any context that can accept outputs satisfying C's postcondition Q can also accept
outputs satisfying C ′'s postcondition Q since Q′ ⇒ Q. This substitutability is also
used to reason about object-oriented programs with dynamic method binding, as
we explain in Section 5 on page 45.
Fig. 2 on the next page shows SPARK package (a module) speci�cation with two

procedures. The contract for LeastUpperBound re�nes the contract for UpperBound
because (1) it has a weaker precondition (it doesn't impose any constraints on the
prestate whereas UpperBound requires all array elements to be >= 0) and (2) it has
a stronger postcondition (it not only requires Result to be an upper bound of the
array elements, it also requires that Result is equal to one of the array elements).
Therefore, it is sound to replace any call to UpperBound by a call to LeastUpperBound
instead. Every caller that lives up to the precondition of UpperBound also satis�es the
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package BoundPackage

is

Array_Size : constant := 10;

type Index is range 1 .. Array_Size;

type IntArray is array(Index) of Integer;

procedure UpperBound(A : in IntArray; Result : out Integer);

--# derives Result from A;

--# pre (for all I in Index => (A(I) >= 0));

--# post (for all I in Index => (A(I) <= Result));

procedure LeastUpperBound(A : in IntArray; Result : out Integer);

--# derives Result from A;

--# pre true;

--# post (for all I in Index => (A(I) <= Result)) and

--# (for some J in Index => (A(J) = Result));

end BoundPackage;

Fig. 2. A SPARK example illustrating contract re�nement.

weaker precondition assumed by LeastUpperBound, and LeastUpperBound guarantees
a postcondition that implies the postcondition assumed by a caller of UpperBound.

2.2.3 Tool Foundations. Early tools using Floyd/Hoare Logic required a high
degree of manual intervention to construct appropriate pre/postconditions. How-
ever, modern tools achieve signi�cant amounts of automation using techniques such
as weakest precondition calculation. A weakest precondition operator wp(C,Q) takes
a command C and postcondition Q and automatically constructs a precondition P
that makes {P}C {Q} valid. More precisely, P is constructed to be the weakest
formula that can establish Q as a postcondition for C [Dijkstra 1976]. Recalling the
discussion of �weakest� above, the precondition returned by wp(C,Q) is the most
general (or �best�) one in the sense that it imposes the fewest restrictions on inputs
to C that can guarantee Q to hold. A wp-calculus contains rules for computing wp

for each command of the programming language.

2.2.4 Relational Postconditions and Two-state Predicates. It is common that a
postcondition describes not only what holds in the post-state of a procedure, but
also how the post-state relates to the pre-state of the procedure. A simple example
is an increment procedure whose postcondition says that a variable x is 1 more in
the post-state than in the pre-state. There are two general approaches to dealing
with such relational postconditions.
One approach is to introduce a new notation for the pre-values (or post-values, or

both) used in postconditions. Fig. 3 on the following page illustrates this approach
with an increment procedure written in SPARK, where x~ denotes the pre-value
of the global integer variable x. The notation old x is used for pre-values in Ei�el
(which in�uenced JML and Spec# to do the same), and x0 is used in Morgan's
speci�cation statements [Morgan 1990]. Transition systems (e.g., TLA [Lamport
1994]) and relational program logics (e.g., [Hehner 1993; Hoare and He 1998]) often
use the notation x’ to denote the post-value of variable x and x to denote the
pre-value.
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procedure Inc()

--# global in out x;

--# post x = x~ + 1;

is

begin

x := x + 1;

end Inc;

Fig. 3. SPARK example of a relational postcondition.

The other approach to specifying relational postconditions is to make use of logical
variables�variables that are used only in speci�cations and cannot be assigned by
programs. For example, in some speci�cation language with logical variables in
which pre and post are keywords for pre/postconditions, the speci�cation

pre x = X; post x = X + 1;

says that if program variable x has initial value X (where X is a universally quanti�ed
logical variable whose scope is this procedure speci�cation), then it will have the
�nal value X+1. Logical variables are sometimes natural to include in speci�cations,
especially if they denote some value for which there is no unique or convenient
pre-state expression; for example, X might be introduced in a precondition like
x < X && X < y or hash(X) = y. They are also easily handled when verifying the
procedure implementation, where there is no di�erence between logical variables
and other variables that happen not to be assigned.
The meaning of a logical variable at a call site is more delicate. First there is a

proof obligation, typically imposed at call sites, that there must exist a value for
each logical variable mentioned in the precondition. Second, the speci�cation says
that the postcondition holds for all values of the logical variables allowed by the pre-
condition. Logical variables have been used in logics like Hoare Logic [Hoare 1969]
and separation logic [Reynolds 2002], and in speci�cation notations like Z [Spivey
1989].
Another alternative is to use a relational precondition that represents what is left

to do [Feng et al. 2006]. This has been used to reason about low-level programs
that use code pointers.

2.2.5 Framing. An important piece of a procedure speci�cation is the piece that
indicates which parts of the program state the procedure is allowed to modify. This
piece is called the frame of the procedure, and it is what, for example, allows callers
to determine which parts of the caller state are not modi�ed by the call [Borgida
et al. 1995]. There are three general approaches to specifying framing.
One approach is to explicitly write in the postcondition what is not modi�ed,

implicitly saying that all other variables may change. This can be done with log-
ical variables or old expressions (see Section 2.2.4) by explicitly stating for each
unchanged variable that the value of the variable in the post-state is equal to the
pre-state value of the variable. This approach is problematic when some variables
are not in scope (and hence cannot be explicitly mentioned) in the speci�cation.
This has led to some intricate theorems of Hoare Logic style frame rules [Hoare
1971; Reynolds 1981; O'Hearn et al. 2001; Banerjee et al. 2008] and issues like
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fully abstract semantics [Meyer and Sieber 1988]. We will say more about such
information hiding concerns in Section 3.
Another approach to framing is to include a speci�cation construct that indicates

what may be modi�ed, implicitly saying that other variables are not modi�ed. For
example, in a program with two variables x and y, using the modifies construct
of Liskov and Guttag [1986] one can write modifies x to specify that x may be
modi�ed and that y is unchanged. Forms of modifies clauses have been used in
many speci�cation languages, including the Larch family, JML (which uses the
keyword assignable), Spec#, and Z (which uses the symbol Ξ).
An extension of this approach is the variation used in SPARK. Each SPARK

procedure may reference or update the state associated with its parameters as well
as that of global variables. To capture framing, Figs. 1 on page 13 and 3 illustrate
that each SPARK procedure contract must explicitly list the global variables ac-
cessed (both reads and writes) during procedure execution in a globals construct.
Moreover, for each parameter and global variable, mode annotations in, out, and
in out must be used to indicate if each parameter/global in read only, written only,
or both read and written. 3 For example, the global variable x of the Inc procedure
in Fig. 3 on the previous page is read-write , whereas S of procedure in Fig. 1 on
page 13 is read only. Together, the mode annotations on parameters and globals
can be viewed as giving a complete speci�cation of the inputs and outputs of a
procedure.
SPARK framing speci�cations are more precise than those based on a modifies

clause, because SPARK's mode annotations enable one to describe more precisely
how a variable is accessed. Specifying in/out modes is more relevant in languages
like Ada where parameters can be passed by reference.
The third approach to framing is to let the precondition, in concert with the

program semantics, limit what a procedure can modify. This approach is taken in
separation logic and Implicit Dynamic Frames [Smans et al. 2009], where (reading
and) writing to memory requires knowing that the memory contains that location,
which ultimately comes down to the procedure precondition having to specify this.
By analyzing what memory locations the precondition depends on, a caller can
�gure out an upper bound on the e�ect of the call. For example, the separation
logic precondition

x 7→ X ∧ 0 ≤ X

says that x points to a memory location that holds a non-negative number. The
precondition implicitly tells callers that other memory locations are unchanged. We
discuss framing and separation logic in more detail in Section 4.

2.3 Iteration and Recursion

Reasoning about loops and recursion is often challenging because one must write
speci�cations that capture the e�ect of repeated computations where the number
of repetitions is not known in advance. In these cases, reasoning usually proceeds
according to some induction principle, and thus one aims to specify a property that
is preserved by each repetition of the computation. Another challenge for loops and

3VDM contains similar annotations [Jones 1990].
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recursion is to specify termination arguments.

2.3.1 Loop Invariants. When reasoning about loops, properties that are pre-
served by each repetition of the computation are called loop invariants. A loop
invariant is a state predicate that always holds (i.e., is invariant) each time execu-
tion reaches the top of the loop. The role of loop invariants in specifying functional
properties of loops can be seen in the Hoare logic rule for while loops [Hoare 1969].

{P ∧ b}C {P}
{P}while b do C {P ∧ ¬b}

Consider a situation in which we want to prove that a given loop concludes with
a set of variables satisfying Q. We must then �nd a su�ciently strong predicate P
that can be shown to be an invariant of the loop. Proving P to be a loop invariant is
done by showing two properties. First, one shows that P holds when the program
reaches the loop. This proves that P holds the �rst time the top of the loop is
reached. This corresponds to the base case of an inductive argument. Second, one
shows that P is maintained by the loop body. This assumes that P holds at the
end of the loop body, which implies it holds when loop execution branches back to
the top of the loop. It corresponds to an induction step.
If, at the top of the loop, the loop guard holds, then a new iteration is started.

Hence, when proving the loop body to maintain P , the loop guard b can be assumed,
as shown in the triple above the line in the Hoare Logic rule above. If the loop
guard does not hold, the loop terminates, and thus the loop invariant is strong
enough to prove the desired Q if P ∧ ¬b implies Q.
Due to basic undecidability results, an algorithm for calculating weakest precon-

ditions for while loops that can be discharged by automated theorem provers is in-
feasible [Cousot 1990]. Useful automated approaches that �nd or over-approximate
invariants for loops exist for restricted classes of data values (using techniques such
as abstract interpretation [Cousot and Cousot 1977]), but many program veri�ca-
tion tools require loop invariants to be explicitly stated, or even take the unsophis-
ticated approach of sacri�cing soundness by verifying only a bounded number of
loop iterations.

Flexible loop exits. We have shown the treatment of loops for common while
loops, where the one and only exit point is the loop guard that is evaluated at
the top of the loop (this is the same state where the loop invariant is evaluated,
but the invariant is evaluated �rst). Standard approaches extend to loops with
more �exible exit points, like repeat-until loops and loops with exit (as in Ada,
or break as in Java) statements. The program logic for such loops still applies the
loop invariant at the top of the loop, but instead of using the condition P ∧ ¬b
on loop exit, it is as if the exiting loop iteration starts in a state satisfying P and
then exits at the appropriate control point. More formally, to treat such loops, it
can be convenient to use an underlying semantics that allows jumps [Cristian 1984;
Manasse and Nelson 1984; Leino et al. 1999; Huisman and Jacobs 2000].
The example in Fig. 4 on the next page shows a JML speci�cation of a loop

containing a break statement. Method ValuePresent returns true when the integer
X is contained in the array S, which is stored in a �eld of the enclosing class. Since
no precondition is explicitly stated for this method, the precondition defaults to
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//@ ensures \result == (\exists int M; 0 <= M && M < S.length; S[M] == X);

boolean ValuePresent(int X) {

boolean Result = false;

//@ maintaining 0 <= I && I <= S.length;

//@ maintaining !Result;

//@ maintaining (\forall int M; 0 <= M && M < I; S[M] != X);

for(int I = 0; I < S.length; I++)

{

if(S[I] == X) {

Result = true;

break;

}

}

return Result;

}

Fig. 4. A JML example of �exible loop exits. In JML, lines with assertions start with the special
comment symbol //@. The loop invariants follow the keyword maintaining. Backslashes are used
to pre�x expression keywords in JML, to avoid interference with program identi�ers. Assertions
occur before the program element they specify, for instance, the postcondition occurs before the
method and the loop invariant before the loop. In postconditions, \result stands for the value
returned my the method.

function Value_Present (X : Integer) return Boolean

--# global in S;

--# return for some M in Index_Range => (S(M) = X);

is

Result : Boolean;

begin

Result := False;

for I in Index_Range loop

if S(I) = X then

Result := True;

exit;

end if;

--# assert I in Index_Range and

--# not Result and

--# (for all M in Index_Range range Index_Range’First .. I => (S(M) /= X));

end loop;

return Result;

end Value_Present;

Fig. 5. The SPARK version of the example in Fig. 4.

true. The postcondition requires that the return value is true i� there is an index
M for array S such that the value in S at position M is equal to the input parameter
X. Note that the second loop invariant does not hold when the loop is exited via
the break statement. This is sound because the loop invariants are not assumed to
hold when leaving the loop via this exit point.
Some speci�cation languages, like SPARK, treat any inline assertions found in

the loop body as a loop invariant, and this results in a proof obligation structure
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that di�ers from the Hoare rule for while loops above. For example, consider the
SPARK version of Value_Present in Fig. 5 on the preceding page with an asser-
tion specifying an invariant at the end of the loop. The SPARK proof obligations
for Value_Present would be to show that (a) under the assumption that the pre-
condition holds, if the loop is entered (which it will be, because in SPARK all
ranges must be non-empty) then the assertion holds when encountered, (b) assum-
ing the assertion holds, entering the loop again will again lead to the assertion
being satis�ed, (c) assuming the assertion holds, exiting the loop will lead to the
postcondition being satis�ed. Thus, the speci�cation goal is simply to �cut� the
control paths through the loop with at least one assertion that will allow the above
proof obligations to be discharged. From another point of view, the above seman-
tics for the simple Value_Present loop is equivalent to �rst back-propagating the
assertions (using weakest preconditions) to the top of the loop and then applying
the conventional Hoare while rule.

Loop Framing. An important issue in reasoning about loops that is often ne-
glected in cursory treatments is loop framing, that is, specifying what the loop
modi�es. For example, when reasoning about the loop in function Value_Present
(Fig. 5 on the previous page), it is important to know that S is not changed, whereas
the loop body does have an e�ect on I and Result.
A simple approach that goes a long way is for the semantic reasoning engine to

compute the syntactic loop targets by syntactically scanning the body of the loop
and noting which variables appear in l-value positions. All variables that are not
syntactic loop targets are then known not to be modi�ed by the loop, and so the
reasoning rule can take that into consideration. For example, if the syntactic loop
targets of C does not include a variable x, then the Hoare Logic rule above can be
altered to:

{P ∧ b}C {P}
x is not among the syntactic loop targets of C
{P ∧ x = X}while b do C {P ∧ ¬b ∧ x = X}

where X is a logical constant.
Like procedure framing (see Sections 2.2.5 and 4), loop framing becomes more

involved when it is necessary to know that the global memory or heap is modi�ed
only at certain locations. A solution that works well in practice is to enforce
the enclosing procedure's frame condition also as an invariant of the loop. This
was done in ESC/Modula-3, which called it Loop Modi�cation Inference [Detlefs
et al. 1998], and is used in the veri�ers for, e.g., Spec# and Dafny [Leino 2010].
Another approach, which can be used by itself or to complement Loop Modi�cation
Inference, is to allow explicit modifies clauses on loops. This approach was taken
in the Krakatoa tool [Marché and Paulin-Mohring 2005]; JML has adopted this by
use of its refining statement, which can give arbitrary speci�cations (including
frames) to statements [Shaner et al. 2007; Leavens et al. 2009].
Finally, another aid in loop framing is the ability to refer to the value of variables

before the loop. For example, if the speci�cation language makes it possible to refer,
in a loop, to the value of a variable at the time the loop was reached�e.g., like
preloop(x)�then an invariant such as x = preloop(x) says that the loop does not
change x. A slightly more �exible solution is to allow a program to label statements
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and to refer to the value of a variable from the previous encounter with that label�
e.g., the JML notation \old(x,L), which refers to the value of variable x at label L
[Heym 1995; Leavens et al. 2009].
Ghost variables can also be used to specify loop framing. A ghost variable is a

speci�cation-only variable that is updated by explicit (speci�cation-only) assign-
ment statements.4 For example, by introducing a ghost variable oldx and using the
statement oldx := x just before the loop, the invariant x = oldx speci�es that the
loop does not change x.
E�ectively, preloop, \old, and ghost variables make loop invariants into multi-

state predicates, which of course also makes it possible to write more general in-
variants, like x <= preloop(x) + c.

Alternatives to Reasoning with Loop Invariants. Although most common, not
all program logics make direct use of a loop invariant. For example, in Dynamic
Logic [Kozen and Tiuryn 1990], which is used by the KeY system [Beckert et al.
2007], the user needs to perform an inductive proof on the execution of the given
loops. This avoids the meta-argument that justi�es using a loop invariant in some-
thing like the Hoare Logic rule above, instead giving the user the �exibility, and
burden, of setting up the induction.
As we have shown, loop invariants specify the state at the top of the loop, which

can be viewed as describing the work or state that has been achieved so far by the
loop. There is some evidence that this does not always lead to the most straightfor-
ward conditions; it can be more straightforward instead to focus on the work that
has yet to be done [Hehner 2005]. For example, such a loop speci�cation might say
z’ = z + x*y, which expresses that, at the top of the loop, what has yet to be done
is to increase z by the current value of x ∗ y.

2.3.2 Termination. Repeated computations give rise to potential non-termination.
Loop invariants and pre/post speci�cation allow one to prove the partial correctness
of loops and procedures. To enable proofs of termination and, thus, total correct-
ness, speci�cations need to express termination arguments for loops and recursive
procedures.

Loop Termination. A common approach to proving that a loop does not iterate
forever is to give a function, called a bound function or variant function, from the
loop-head state to a value in a well-founded order, and to show that successive
values in any execution strictly decrease. Another approach is for the semantics
to model the number of completed loop iterations (or some other measure of the
passing of time) in a ghost variable, and to prove the loop invariant that this variable
is bounded [Hehner 1998].
For example, to specify a variant function for the loop in method ValuePresent

4There is some inconsistency in the literature about the use of the terms: ghost variables, auxiliary
variables and logical variables. Susan Owicki's thesis [Owicki 1975] uses "auxiliary variables" for
what we have called "ghost variables". Reynolds originally coined the term "Ghost variable" for
variables that only appear in the assertions and are never mentioned in the program [Reynolds
1981]. In this survey we call this kind of variable a "logical variable". Reynold's used logical
variables for variables of boolean type following Pascal. There is also literature that uses "auxiliary
variable" to mean a variable not mentioned in the program [Apt 1981].
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(Fig. 4 on page 19), one might add the following clause:

//@ decreasing S.length - I;

The expression in such a decreasing clause is of an integer type. To guarantee that
the variant function yields a value in a well-founded order, one technique is to prove
that the expression is non-negative. This is implied by the �rst loop invariant (see
Fig. 4 on page 19). Each loop iteration decreases the value of the variant function
by incrementing I.
Sometimes, the variant function relies on the �nite size of the heap, and in par-

ticular on the �nite number of objects in some chain of pointers. For example,
if the speci�cation language makes use of a hierarchical ownership system [Clarke
et al. 1998; Leino and Müller 2004], then the ownership relation induced by that
hierarchy forms such chains. Provided the ownership relation does not change, a
speci�cation language can allow variant functions to mention objects ordered by
this well-founded order.

Recursive Procedures. Recursive procedures can encode loops and vice versa, and
thus recursive procedures have the same issues of partial correctness and termina-
tion. Loop invariants correspond to preconditions for recursive procedures, since
they must be true at each entry to the procedure, which corresponds to each entry
to a loop. Termination is also handled similarly.
For example, JML o�ers the method speci�cation clause

measured_by E;

which, applied to a method M , requires all calls in the implementation of M to go
to methods whose value of E at the time of the call, is strictly less than the value of
E on entry to M . As with loops, the type of E must be some well-founded order.
Some veri�cation tools prove termination only for some procedures. For example,

Spec# proves the absence of in�nite recursion only for pure methods, which are
side-e�ect free methods that can be used in assertions [Cok 2004; Leavens et al.
2005]. Because of how these pure methods are axiomatized, the soundness of the
veri�cation system depends on the lack of in�nite pure-method recursion [Darvas
and Müller 2006; Darvas and Leino 2007].

2.4 Exceptional Behavior

An exception is a way of returning from a procedure that is di�erent than the
normal return. The caller of a procedure that terminates exceptionally may handle
the exception or propagate it to its caller. Exceptions pose interesting challenges
for speci�cation and veri�cation. They introduce alternative control �ow, which
increases the complexity of speci�cations and veri�cation. Moreover, reasoning
about exception handlers requires precise knowledge about the program state in
which the exception was thrown, for instance, which invariants may be assumed to
hold.
There are three basic approaches to dealing with exceptions. Many speci�cation

and veri�cation techniques use di�erent approaches depending on some categoriza-
tion of the kinds of exceptions [Goodenough 1975; Leino and Schulte 2004]:

(1) Ignore: One might choose to ignore certain kinds of exceptions entirely. For
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instance, when reasoning about partial correctness, one might want to ignore
certain exceptions, such as stack over�ow exceptions. This approach is re�ected
in the semantics as follows: The Hoare triple {P}C {Q} is valid i� for any store
σ that satis�es P , executing C on σ yields a store σ′ that satis�es Q or C throws

an ignored exception [Poetzsch-He�ter 1997].

(2) Prevent: One might choose to prevent certain kinds of exceptions from ever be-
ing thrown. For instance, array-out-of-bounds exceptions are typically program
errors, which should be prevented rather than permitted and then handled.
This approach is re�ected in a program logic by additional proof obligations
for all instructions that potentially throw an exception that is supposed to be
prevented. Programmers need to write su�ciently strong preconditions and/or
code to discharge these proof obligations.

(3) Document: One might choose to permit certain kinds of exceptions; speci�-
cations should then document under which conditions the exception may be
thrown and what may be assumed about the program state when it is thrown.
For instance, certain kinds of exceptions, such as I/O exceptions, are used in-
stead of special return values to signal an unsuccessful operation and should,
thus, be documented in the speci�cation [Flanagan et al. 2002].

It is a design decision for a speci�cation language or program veri�er which
of the three approaches to apply to which kinds of exceptions. JML documents
exceptions that are instances of class Exception (e.g., NullPointerException and
FileNotFoundException) and ignores all others (e.g., VirtualMachineError). Spec#
ignores many kinds of exceptions whose prevention would be too cumbersome to
specify (e.g., StackOverflowException), it prevents those exceptions that are typ-
ically program errors (e.g., NullReferenceException), and documents those that
are part of the application logic (e.g., FileNotFoundException) [Leino and Schulte
2004]. Due to its focus on critical systems, SPARK's goal is to prevent excep-
tions entirely, partly through language design (for instance, absence of recursion,
which makes it easier to avoid stack-over�ow exceptions) and partly through proof
obligations.
Choosing to ignore a possible exception leads to unsound checking, since the

veri�er would not analyze certain execution paths that can occur at run time. Nev-
ertheless, this is sometimes the practical approach to take, considering, for example,
that any instruction in the .NET virtual machine can cause a VirtualMachineError
exception.
Documenting exceptional behavior consists of describing (1) under which con-

ditions the exception may be thrown and (2) what may be assumed about the
program state when it is thrown. We illustrate these concerns with the JML exam-
ple in Fig. 6 on the following page.
The signals clause in the speci�cation of method push is an exceptional postcon-

dition. It expresses that if the method throws an exception of type Exception, then
false has to hold in the post-state of the method. Since this exceptional postcon-
dition cannot be satis�ed, the method must not throw such an exception. It may,
however, throw an ignored exception; for instance, the creation of a new Node object
may cause an OutOfMemoryError, which is not precluded by the signals clause. The
speci�cation of method pop contains an exceptional speci�cation case consisting of
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import java.util.EmptyStackException;

public class Stack<T> {

Node<T> top;

/*@ assignable top, top.prev;

@ signals (Exception) false;
@*/

void push(T val) {

top = new Node<T>(val, top);

}

/*@ normal_behavior
@ requires top != null;
@ assignable top;

@ also
@ exceptional_behavior
@ requires top == null;
@ assignable \nothing;
@ signals (EmptyStackException) true;
@*/

T pop() throws EmptyStackException {

if (top == null) throw new EmptyStackException();

T val = top.val;

top = top.next;

return val;

}

}

class Node<T> {

T val;

Node<T> next, prev;

//@ assignable val, next, n.prev;

Node(T v, Node<T> n) {

val = v;

next = n;

if (n!=null) n.prev = this;
}

}

Fig. 6. A JML speci�cation of the exceptional behavior for Stack.

an exceptional precondition, assignable clause, and postcondition. It expresses that
pop may throw an exception only if top is null in the pre-state of the call. In this
case, the method must not modify the heap. The exceptional postcondition holds
trivially. The Penelope speci�cation language for Ada also has convenient syntax
for expressing when a procedure may or must throw exceptions [Guaspari et al.
1992; Marceau 1994]. Spec# also supports exceptional pre- and postconditions.

ACM Journal Name, Vol. V, No. N, October 2010.



Speci�cation Languages · 25

Modi�es clauses in Spec# specify the locations that are potentially modi�ed in the
normal or exceptional execution; normal or exceptional postconditions can be used
to strengthen the frame axiom for the respective case.
Languages with exceptions provide exception-handling constructs such as catch

and finally blocks in Java and C#. In the presence of side e�ects, it is often
unclear what an exception handler may assume about the state of the program,
for instance, which invariants may be assumed to hold [Jacobs et al. 2007]. For
documented exceptions, the exceptional frame axiom and postcondition provide
this information, but for ignored exceptions, one may only assume properties that
hold throughout the code that potentially throws an exception and properties the
exception handler can test at run time. So, very often, there is no safe way to
recover from an ignored exception.

3. MODULES

As programs become larger, coping with their growing complexity necessitates the
use of structuring techniques that aggregate subprograms and state with related
functionality. For this purpose, programming languages include structuring con-
structs such as modules (e.g., in Modula-3), packages (e.g., in Ada), classes (e.g.,
in Java and C++), and aspects (e.g., in AspectJ). In our discussions, we will adopt
the term module as a generic term for such constructs.
A crucial feature of modules is that they support information hiding. Essentially,

this means that the module's declarations are partitioned into a public module in-

terface, which is visible to all clients of the module, and a private module body,
which contains the module implementation and is hidden from clients. The public
module interface's behavior can be speci�ed using a behavioral interface speci�ca-
tion language. Some programming languages o�er the ability to provide more than
one interface to a module; for example, the protected mode in C++ de�nes an in-
terface to a class that is visible only to those subclass clients that extend the class.
Modula-3 lets the programmer de�ne any number of interfaces to a module. A
speci�cation language may allow speci�cation of each of these di�erent interfaces if
the speci�cations are distinguished by di�erent visibility levels [Leavens and Müller
2007].
Information hiding is best enforced with a combination of programming language

elements and speci�cations. The programming language's modules control visibil-
ity, while the spec�cation language gives the ability to describe behavior that is
su�cient for client programming without exposing implementation details. To-
gether, these give the provider of a module the freedom to revise implementation
details as long as the implementation continues to meet its speci�cation [Liskov and
Guttag 1986; Parnas 1972].
The challenge in writing behavioral speci�cations for modules, and indeed a chal-

lenge in the design of module interface speci�cation languages, lies in letting in-
terface speci�cations say what clients need to know while avoiding exposure of
implementation details. To answer this challenge, a speci�cation language can pro-
vide data abstraction facilities that allow a module's behavior to be speci�ed while
hiding implementation details from all clients, even those clients that use only the
speci�cation (e.g., as part of a veri�cation e�ort). In this section, we discuss how
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data can be abstracted and how one can specify invariants of module implementa-
tions. We will disscuss the related issue of how framing is done in the next section.

3.1 Data Abstraction

Data abstraction allows one to specify the behavior of a module independently of its
implementation. For instance, a hash map can be speci�ed abstractly as a partial
function from keys to values rather than in terms of its concrete representation,
say, an array of linked lists of tuples of keys and values. Abstract speci�cations
have numerous advantages over implementation-dependent speci�cations:

�Data abstraction can be used to specify interfaces that have no implementation,
only partial implementations, or many di�erent implementations. This expres-
siveness is especially needed for object-oriented programming, to handle abstract
classes and subtyping.

�Abstract speci�cations are not a�ected by changes of implementation details. In
particular, clients that rely only on abstract speci�cations need not be re-veri�ed
when the implementation of a module changes.

�Abstract speci�cations tend to be simpler to write, read, and understand than
implementation-dependent speci�cations because they hide certain complications
such as pointers, caches, etc. In the hash map example above, it is much simpler
to specify a look-up in terms of a partial function than to describe it in terms of
arrays of lists.

�Abstract speci�cations are often expressed in terms of mathematical notions such
as sets, sequences, relations, etc. Many theorem provers are equipped with vari-
ous lemmas and tactics for these notions, which increases automation during the
veri�cation step.

�Expressing behavior in terms of mathematical notions such as sets and functions
allows one to formally connect the speci�cation of a module to a high-level de-
sign speci�cation written in languages such as VDM, Z, or B. This approach has
been pioneered by the Larch project, which developed interface speci�cation lan-
guages that make use of mathematical vocabulary expressed in the Larch Shared
Language LSL [Guttag et al. 1993].

In all approaches to data abstraction, the idea is to present a higher-level, more
abstract, view of what the module implements. For instance, one higher-level view
of the stack module is as a mathematical sequence. The speci�cations of the mod-
ule's procedures can thus be given in terms of that abstract view, and the abstract
view must be connected with the actual implementation.
In speci�cation languages that are built on a speci�c mathematical vocabulary,

such as VDM and the Larch family of interface speci�cation languages, the abstract
view is typically a value of a mathematical space such as a sequence. In a spec-
i�cation language without a de�ned mathematical vocabulary, such as JML, the
abstract view is de�ned within the semantics of the programming language. JML
provides a library of modeling classes that provide a JML representation of famil-
iar mathematical concepts. For instance, the modeling class JMLObjectSequence
represents sequences of objects.
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We explain four approaches to data abstraction: ghost variables, model variables,
logic functions, and pure methods.

3.1.1 Ghost Variables. One simple approach to data abstraction is to introduce
ghost variables for the abstract view in the module interface. Fig. 7 shows a simple
Counter class with JML speci�cations. The ghost variable value is used to specify
the behavior of increment and decrement without exposing implementation details.
Changing the internal representation of the counter, for instance, to store the value
explicitly, does not a�ect the public speci�cations.

public class Counter {

private int increments;

private int decrements;

//@ public ghost int value;

//@ private invariant value == increments - decrements;

//@ public ensures value == \old(value) + 1;

public void increment() {

increments++;

//@ set value = value + 1;

}

//@ public ensures value == \old(value) - 1;

public void decrement() {

decrements++;

//@ set value = value - 1;

}

//@ public ensures \result == value;

public int get() {

return increments - decrements;

}

}

Fig. 7. A JML speci�cation of a class Counter using a ghost variable. Data abstraction for
assignable clauses is discussed in Section 4 on page 34.

Similar to the use of ghost variables in loops (see Section 2.3.1 on page 20), we
can specify the connection between the ghost variables and the implementation's
variables by a module invariant. Here, the invariant expresses that the counter value
is the di�erence between the number of increments and the number of decrements.
Note that this invariant is not visible to clients since it refers to implementation
details, namely the hidden variables increments and decrements.
To maintain this invariant, the procedure implementations in the module must

update the ghost variable value accordingly. In JML, this is achieved by set state-
ments, as illustrated in the methods increment and decrement.
The approach of using ghost variables for data abstraction has a relatively small

impact on the complexity of the speci�cation language. The biggest complication
comes from the use of module invariants, where one sometimes needs to wrestle with
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intermediate states where the invariants do not hold (like the states between the
two statements of increment in Fig. 7 on the previous page). We discuss invariants
further in Section 3.2 below.
Underlying this approach to data abstraction is a well established theory called

data re�nement [Hoare 1972; Back 1980; Back and von Wright 1998; de Roever
and Engelhardt 1998]. The idea is to use an abstraction relation R to describe the
connection between the concrete variables and the abstract view. The correct data
re�nement of a speci�cation S into a program P is then de�ned as

S v R−1;P ;R, (1)

where v is the program re�nement operator [Back 1980; Morgan 1990]. Since both
speci�cations and programs can be considered relations between pairs of pre and
post states, formula (1) above can be read as follows:

(∀σ :: (σ R−1 σ0) =⇒ (∀σ1 :: (σ0 P σ1) =⇒ (∀σ′(σ1 R σ′) =⇒ (σ S σ′))))

This approach typically assumes that the di�erent scopes of the program see either
the abstract view or the concrete variables, never both, but this restriction can be
lifted [Leino 1995].

3.1.2 Model Variables. A second approach to data abstraction uses model vari-

ables [Cheon et al. 2005; Leino 1995], also known as abstract variables (in the
re�nement calculus). A model variable has the appearance of a variable, but its
value is de�ned as a function of more concrete variables, called its representation.
Like ghost variables, model variables typically hold values of a mathematical do-
main such as sets or sequences. Fig. 8 on the next page shows the Counter example
from Fig. 7 on the previous page, this time speci�ed using a model variable.
To a client that is aware only of the abstract view of a module, there is no in-

teresting di�erence between model variables and ghost variables. However, unlike
a ghost variable, whose value changes only as performed by ghost-variable assign-
ments, the value of a model variable changes immediately when there is a change
in the value of a variable used in its representation. Therefore, the module body is
simpler because the connection between the model variable and its representation is
declared once and for all. In JML, this connection is expressed using a represents
clause that describes how the value of the model variable can be derived from values
of concrete variables. Like the invariant in the previous version of the example, the
represents clause is not visible to clients.
Though simple for a user, the treatment of model variables has some complica-

tions. One complication is that the given representation function may be a partial
expression. As for other partial expressions (see Section 2.1.3), one has to decide
when the expression has to be de�ned and how to enforce that decision.
Another complication is how to deal with the far-reaching changes of model vari-

ables. When an ordinary program variable is changed, it has a potential e�ect on all
model variables whose representation transitively depends on the variable; that is,
it has a potential e�ect on the entire upward closure of the variable [Leino and Nel-
son 2002]. This becomes especially troublesome when model variables are �elds of
dynamically allocated objects and the dependencies can go through an unbounded
number of objects. A solution to this complication is to let model variables occa-
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public class Counter {

private int increments;

private int decrements;

//@ public model int value;

//@ private represents value = increments - decrements;

//@ public ensures value == \old(value) + 1;

public void increment() {

Old: increments++;

Here: ;

}

//@ public ensures value == \old(value) - 1;

public void decrement() {

Old: decrements++;

Here: ;

}

// get method as before

}

Fig. 8. A JML speci�cation of class Counter using a model variable. The statement labels Old and
Here are used in Section 3.1.3, and can be ignored on �rst reading.

sionally go out of sync with their representation function [Leino and Müller 2006];
the semantics of model variables then reverts to the simpler semantics of ghost vari-
ables, but with the convenience that the model variables are automatically updated
outside the regions where they are allowed to go out of sync. This solution also
suggests a policy for when representation functions need to be well de�ned.

3.1.3 Logic Functions. A third approach to data abstraction makes use of math-
ematical functions and predicates, which (following Filliâtre and Marché [2004]) we
shall refer to as logic functions. A logic function is de�ned using the expression lan-
guage of the speci�cation logic, which will typically di�er from the programming
language. The main di�erence from model variables, aside from syntax, is that
logic functions are not de�ned using the programming language, but are always
de�ned in mathematical terms. This di�erence has two important consequences.
First, it is clear that evaluating logic functions does not change the program state.
However, the de�nition may depend on the program state, so changing the program
state may a�ect the value of the logic function. Second, the reasoning logic uses
the logic function de�nitions directly. For example, if the logic function is de�ned
recursively, it is up to the reasoning logic to decide how to unfold or inductively
reason about the de�nition.
JML does not support logic functions, but the JML dialect used in the Krakatoa

tool, KML, does [Marché 2009]. For our Counter example, we can replace the model
variable value and its represents clause with the following logic function, which is
declared outside class Counter:

/*@ logic int value{L}(Counter c) =
@ \at(c.increments,L) - \at(c.decrements,L);

ACM Journal Name, Vol. V, No. N, October 2010.



30 · Hatcli� et al.

@*/

where L is a label that is used to refer to a particular state and \at is used to refer
to the state at a given label. The speci�cation of Counter can refer to the abstract
state of the counter by applying the above logic function, that is, by replacing
value by value{Here}(this) and \old(value) by value{Old}(this) in Fig. 8 on
the preceding page. Besides logic functions and their de�nitions, KML allows one
to state axioms and lemmas, which are passed directly to the theorem prover.
Traditionally, logic functions are found in all non-executable speci�cation no-

tations, like Z [Spivey 1989] and TLA [Lamport 1994]. They are also supported
in many speci�cation languages that are more closely integrated into program-
ming languages, like in Larch [Guttag et al. 1993], ACSL [Baudin et al. 2009] and
the Caduceus tool for C [Filliâtre and Marché 2004], the Krakatoa tool for Java
[Marché et al. 2004; Marché 2009], VeriCool [Smans et al. 2008], and Dafny [Leino
2010]. Their use in separation logic, where they go under the name of abstract
predicates [Parkinson and Bierman 2005], is particularly interesting. There, the
de�nitions can make use of the separating-conjunction operator, which means the
abstract predicates can at the same time describe well-formedness conditions on
the heap structure (see Section 4.2).
An issue with logic functions is making sure their de�nitions are logically consis-

tent. This can be done using techniques like those we have already described for
well-de�nedness of expressions (Section 2.1.3) and termination of recursive proce-
dures (Section 2.3.2).

3.1.4 Pure Methods. The fourth and last approach to data abstraction that we
consider is pure methods [Leavens et al. 2005; Leavens et al. 2006]. Instead of using
logic functions, whose de�nitions use the reasoning logic and which are reasoned
about directly by that logic, pure methods use the programming language's facil-
ities for declaring a function or method that returns a value. By declaring the
method as pure, one indicates the intention that the method's implementation has
no observable side e�ects on the program state, which lets assertions call the pure
method. For instance, the get method in class Counter can be declared pure (see
Fig. 9 on the next page) and then be used to specify increment and decrement.
To reason about the pure method in an assertion, one uses not the implemen-

tation of the pure method, but instead its pre-/postcondition speci�cation. In our
example, the postcondition of get is private because it refers to hidden implemen-
tation details. Nevertheless, this postcondition allows one to prove that increment
and decrement satisfy their speci�cations. The implementation of a pure method,
which is veri�ed to really be pure and to satisfy its speci�cation, computes a value
that can be used in the dynamic checking of assertions.
Using an already existing language feature has de�nite appeals over introducing

logic functions. In the limit, one may attempt to use pure methods as the means
for users to build up algebraic theories (e.g., a theory of permutations or a theory of
multisets) that can be used in assertions (like the modeling classes in JML [Leavens
et al. 2009]). However, the handling of pure methods has proved to be surprisingly
di�cult.
One problem, which is shared with logic functions, is verifying that the pure

method is well de�ned and does not lead to an unsound axiomatization [Darvas
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public class Counter {

private int increments;

private int decrements;

//@ public ensures get() == \old(get()) + 1;

public void increment() {

increments++;

}

//@ public ensures get() == \old(get()) - 1;

public void decrement() {

decrements++;

}

//@ private ensures \result == increments - decrements;

/*@ pure @*/ public int get() {

return increments - decrements;

}

}

Fig. 9. A JML speci�cation of class Counter using the pure method get.

and Müller 2006; Darvas and Leino 2007].
Another problem is checking that the method really is pure, that is, free of side

e�ects. This is not as simple as a syntactic check for assignment statements, because
one wants to allow the method body to, for example, allocate new objects (perhaps
an iterator object or a string builder) and modify their state. Hence, the desired
check is that of observational purity, which says that the method may have some
side e�ects but it appears pure to any observer [Barnett et al. 2004; Naumann 2007;
Cok and Leavens 2008; Salcianu and Rinard 2005].
A third problem is that pure methods are not necessarily deterministic. More

precisely, calling a pure method twice may yield two di�erent results, because the
side e�ects supposedly not visible to observers cause the second call to start in
a slightly di�erent state. This means that pure methods cannot be represented
as mathematical functions of their arguments and of an unchanging heap. One
solution is to make the de�nition of observational purity strict enough to avoid this
situation; another is to allow slightly di�erent results and to prevent callers from
assuming anything more than some sort of equivalence between the results [Leino
and Müller 2008].

3.1.5 Summary of Data Abstraction Techniques. All four data abstraction tech-
niques described above allow one to express speci�cations without revealing im-
plementation details. The main di�erences between the techniques lie in how the
abstract state of a module gets updated and in whether the abstraction is expressed
in the programming language or in the underlying logic.
With ghost variables, all updates of the abstract state have to be performed

explicitly by the program. So for a program veri�er, ghost variables behave exactly
like ordinary program variables, which makes them easy to reason about and trivial
to support in speci�cation languages and veri�cation tools. However, the explicit
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updates sometimes lead to a large speci�cation overhead, especially for recursive
data structures. In contrast, model variables, logic functions, and pure methods
automatically re�ect changes in the concrete representation, without any explicit
updates. A downside of these implicit changes is that framing�that is, deciding
which abstract values are a�ected by an update of a concrete variable�becomes
challenging and requires other veri�cation techniques, which we discuss in Section 4.
Logic functions are de�ned as mathematical functions in the program logic, which

gives them a precise semantics and avoids the problems of checking purity and de-
terminism. However, logic functions require programmers to be familiar with two
di�erent formalisms, the programming language and the mathematical notation in
which the logic functions are de�ned. In contrast, the values assigned to ghost
variables, the representations of model variables, and the speci�cations and imple-
mentations of pure methods are typically expressed in the programming language.
While this leads to the complications we discussed above, it simpli�es run-time
assertion checking and facilitates reuse. For instance, modules typically provide
various methods to observe the state of the module, and these methods can also
be used in speci�cations as pure methods. Finally, model variables can be seen as
parameter-less pure methods. The absence of parameters greatly simpli�es framing,
see Section 4.

3.2 Module Invariants

Data abstraction o�ers a way to talk about the module's state in the module inter-
face and to connect that abstract view with the module body's state. But proving
the correctness of a module body also relies on knowing that its concrete data
structures are in a good state [Hoare 1972], for instance, that certain variables hold
non-null value or that an index lies within the bounds of an array. Such properties
about data structures are in general captured by module invariants.
Module invariants might be categorized as being private or public. A private

module invariant is visible only to the module body, and hence it can depend only
on variables (e.g., �elds) declared in the module body. A public module invariant
can mention public variables and other entities declared in the module interface
but cannot depend on private variables. Such public invariants let clients of the
module know about properties that are ensured by the module, for example that
the stack size lies within some bound. Making certain invariants private preserves
information hiding and avoids the re-veri�cation of clients when implementation
details and the corresponding invariants change [Leavens and Müller 2007].
When module invariants mention more than one variable, it becomes necessary to

allow some program points where an invariant is temporarily violated. A question
is then, when does a module invariant hold? A simple answer is that a module
invariant holds whenever control is outside the module. The simple answer su�ces
in the idyllic sequential setting where a module invariant constrains the state of only
one module and where the entry and exit points of the module can be determined
statically. A module invariant is then checked at the end of the module initialization
and at each module exit point; in return, the module invariant can be assumed to
hold at each module entry point.
However, these assumptions do not apply to realistic programs. First, it is com-

mon to use invariants to relate the state of several modules. For instance, such
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multi-module invariants relate the objects in a data structure (e.g., the subject
and its observers in the Observer pattern [Gamma et al. 1995]) or constrain the
components of an aggregate structure (e.g., the array used to implement a list). A
special case of multi-module invariants occurs with inheritance in object-oriented
programs, where subclass invariants often constrain the values of �elds that are
inherited from superclasses, that is, declared in a di�erent module. Second, the
entry and exit points of a module are often not statically known, for instance, in
the presence of procedure pointers or dynamically dispatched methods. A compli-
cation, then, is the possibility of call-backs: when a module calls a procedure while
the module invariant is temporarily violated, the procedure might call back and
re-enter the module under the false assumption that the module invariant holds.
With procedure pointers and dynamic binding, such call-backs cannot, in general,
be detected with complete precision by a modular static analysis. In the following,
we summarize solutions to these two issues and glance at alternatives to module
invariants.

3.2.1 Multi-Module Invariants. When invariants constrain the state of multiple
modules, then the update of a single variable potentially violates numerous module
invariants. For instance, an update of a subject module might temporarily violate
the invariants of all its observers, until the observers are noti�ed and their invariants
get re-established. The key issue in reasoning about multi-module invariants is how
to enforce statically and modularly that all invariants that are potentially violated
by an update get re-established. There are three major solutions:
(1) Encapsulation: A variable is encapsulated in a structure (such as a module

or an object) if it can be assigned to only by procedures of that structure. When
an invariant is restricted to constrain only encapsulated variables, then one can
impose proof obligations on the procedures of the structure to enforce that the
invariant is preserved [Müller et al. 2006]. A typical example is aggregate structures,
where the sub-components of the aggregate are modi�ed only through the aggregate
component.
(2) Visibility : Even when invariants depend on variables that are not encap-

sulated, one can determine the necessary checks statically and modularly if an
invariant is visible at all variable assignments that possibly violate the invariant
[Müller et al. 2006]. This visibility requirement is found in recursive data struc-
tures (e.g., the invariant that relates two nodes of a doubly-linked list) and when
several cooperating modules are declared in a larger context (such as a package or
assembly), for instance, a list and its iterator.
(3) Monotonicity : Invariants may depend on variables of arbitrary modules if

the variables evolve monotonically and the invariant is preserved by the monotonic
updates. For instance, if a counter variable is only incremented, then an invariant
stating that the counter is positive is never violated after it has once been estab-
lished. The two most common forms of monotonicity are initialization (a variable
goes from the uninitialized state to the initialized state but never back) [Fähndrich
and Xia 2007] and immutability (a variable is not updated at all after its initializa-
tion) [Leino et al. 2008]. More general forms of monotonicity are explored in type
states [Fähndrich and Leino 2003; Pilkiewicz and Pottier 2009], object relations
[Leino and Schulte 2007; Cohen et al. 2010], and concurrency [Jones 1983; Cohen
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et al. 2010].

3.2.2 Call-backs. A common semantics for module invariants is to require mod-
ule invariants to hold in all visible states, that is, in the pre- and post-states of
all procedures [Drossopoulou et al. 2008; Meyer 1997]. To avoid that a call-back
enters a module under the false assumption that the module invariant holds, tech-
niques based on a visible state semantics enforce that each module invariant is
re-established before calling a procedure that potentially calls back. Since it is
typically not known statically which procedures call back, invariants need to be
re-established before each call, which is often inconvenient and may be impossible
if the call itself is necessary for reestablishing the invariant.
An alternative to the visible state semantics is to specify explicitly in each pro-

cedure's precondition which invariants it requires to hold [Leino and Müller 2004].
It is then possible to make calls while an invariant is violated as long as the called
procedure does not require that invariant to hold. If it does not, the procedure
might still call back, but not under the false assumption that the invariant holds.
This approach, which is implemented in Spec#, is more �exible than visible state
semantics, but requires good default speci�cations and abstraction mechanisms to
keep the speci�cation overhead low.

3.2.3 Alternatives. Speci�cation and veri�cation techniques that handle the in-
variants occurring in modern (especially object-oriented) programs in a sound and
modular way are non-trivial. An alternative to module invariants is to specify the
required constraints explicitly in pre- and postconditions. The data abstraction
mechanisms described in Section 3.1 on page 26 can be used to preserve informa-
tion hiding and to express constraints on multiple modules. This approach solves
the call-back problem trivially, because there are no implicit assumptions when cer-
tain conditions hold. Dealing with multi-module invariants is reduced to framing
model variables, logic functions, or pure methods, which we discuss in Section 4.
Replacing invariants by logic functions (abstract predicates) is common in separa-
tion logic [Parkinson and Bierman 2005]. ESC/Modula-3 [Leino and Nelson 2002]
explored this speci�cation pattern using a model variable valid to express that an
object is in a good state.

4. OBJECTS AND THE HEAP

In order to specify the behavior of objects and other heap data structures, a speci-
�cation technique must be able to describe (a) the topology of the data structures
and (b) the e�ects that methods have on them. We illustrate these two facets using
a Java class Node with �elds a and b of type Node.
A speci�cation of the topology of a data structure typically answers the following

questions:

�What is the shape of the implemented data structure? For example, instances of
Node could represent a doubly-linked list (with a and b pointing to the predecessor
and successor node, respectively) or a binary tree (with a and b pointing to the
left and right child node, respectively). Information about the shape is typically
needed to prove functional correctness of a data structure, for instance, deletion
of a node works di�erently for lists and trees.
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�Does the data structure contain cycles? For example, our nodes could form a
cyclic or an acyclic list. Information about cyclicity is, for instance, needed to
program and prove termination or deadlock-freedom of list traversals.

�Which objects of a data structure are potentially shared? For example, for a
tree structure, we want to express that the left and right subtrees are disjoint.
Similarly, we might want to express that two instances of a class List do not
share any nodes. Information about sharing is needed to reason about the e�ects
of modi�cations, for instance, to prove that modifying the nodes of one list does
not a�ect any other list.

A speci�cation of the e�ects of the methods of a data structure may include:

�Write e�ects: which parts of the heap are potentially modi�ed by a method. This
information is needed to determine which properties of the heap are a�ected by
a method.

�Read e�ects: which parts of the heap are potentially read by a method. This
information is needed to reason about dependencies, both for knowing when a
pure method's value may change (see Section 3.1.4 on page 30) and for reasoning
about interference in a concurrent program.

�Allocation and de-allocation e�ects: which objects are allocated or de-allocated
by a method. Information about allocation is, for instance, needed to prove
that the result of a method is di�erent from all existing objects. De-allocation
information is needed to verify programs with explicit memory management.

�Locking information: which locks are acquired or released by a method. This
information is needed to prove the absence of data races and deadlocks.

In order to be useful for program veri�cation, speci�cation techniques for topolo-
gies and e�ects must address three major challenges.
(1) Abstraction: heap properties have to be expressed in an implementation-

independent way. Abstraction is important to preserve information hiding and to
support subtyping [Leavens and Müller 2007; Leino 1998]. For instance, a write
e�ect speci�cation that simply lists the (concrete) �elds modi�ed by a method
breaks information hiding by revealing �eld names, does not work for interfaces and
abstract classes, which might not have �elds, and is too restrictive for subclasses,
which might have to modify additional �elds.
(2) Reasoning: the formal framework in which heap properties are expressed

should allow e�cient, ideally automatic reasoning. For instance, topology proper-
ties are often expressed using reachability predicates, which are notoriously di�cult
to handle for automatic theorem provers such as SMT solvers.
(3) Framing: One of the most important reasoning steps that any speci�cation

of heap operations must support is framing, that is, proving that certain heap
properties are not a�ected by a heap operation [Gorelick 1975]. The following
invariance rule illustrates framing:

{P}C {Q}
{P ∧R}C {Q ∧R} if the write e�ect of C is disjoint from FV(R)

This rule su�ces if R is a predicate that only involves simple variables and FV(R)
denotes the free variables of R. The rule says that an assertion about some state
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that is unmodi�ed by C can be preserved. However, with complex heap data
structures, the side condition becomes more troublesome: the disjointness of the
e�ects of C and the assertion R becomes more di�cult to specify. We need to be
able to specify that the footprint of C�the locations that C changes�is disjoint
from the footprint of R�the locations that R depends upon.
In the following, we present three major approaches to the speci�cation of heap

properties. The �rst approach uses explicit footprints, sets of objects (or locations)
that are used in predicates and e�ect speci�cations. The second approach uses
implicit footprints, which are derived from predicates in specialized logics. The
third approach uses prede�ned footprints, which are derived from prede�ned heap
topologies. We illustrate the three approaches with an example of an unbounded
stack that is implemented using a linked list. We present its implementation in
Fig. 10. This implementation uses the Node class from Fig. 6 on page 24 to represent
the stack as a doubly-linked list.

public class UnboundedStack<T> {

private Node<T> top;

public void push(T val) {

top = new Node<T>(val,top);

}

public T pop() {

T val = top.val;

top = top.next;

return val;

}

public boolean isEmpty() {

return top==null;
}

}

Fig. 10. A Java implementation of an unbounded stack. Class Node is shown in Fig. 6 on page 24.

4.1 Explicit footprints

The basic idea of this approach is to represent the footprint of data structures
and predicates directly in the logic as sets of objects or sets of locations. We will
call these sets regions in the following. A speci�cation typically contains: (a) A
speci�cation of regions, which can be expressed as ghost variables or as functions of
the heap. (b) Predicates that describe the topology of a data structure and other
well-formedness conditions. (c) Read and write e�ects for the operations of the
data structure, expressed in terms of the speci�ed regions.
We illustrate the explicit footprint approach using dynamic frames [Kassios 2006],

which are supported by the Dafny language [Leino 2010]. A Dafny program is a
collection of classes. Each class may declare �elds, methods, and logic functions.
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As discussed in Section 3.1.3, the logic functions can be used in speci�cations. In
this case they are used to specify footprints as sets of objects.
(a) We specify the footprint of the doubly-linked list of Node objects using a

(ghost) �eld:

ghost var footprint: set<Node<T>>;

which has to be updated explicitly in the code whenever the footprint of the list
changes, for instance, when a node is added. (b) The contents of footprint as well
as other well-formedness conditions are speci�ed by the boolean function shown in
Fig. 11, where + is overloaded to denote set union and sequence concatenation, in
denotes set membership, < is overloaded to denote the strict subset operator, {_}
constructs a singleton set, and [_] constructs a singleton sequence.

function Valid(): bool

reads {this} + footprint;

{

this in footprint && !(null in footprint) &&

(next == null ==> content == [val]) &&

(next != null ==> next in footprint && next.footprint < footprint &&

!(this in next.footprint) && next.prev == this &&

content == [val] + next.content && next.Valid())

}

Fig. 11. A logic function de�ning a list Node's footprint in Dafny.

The function Valid expresses that footprint contains at least the current node this
and its successors. It also speci�es the topology. The conjunct next.prev == this
ensures that each node is correctly linked to its successor. Since the footprint of
the successor must be a subset of the footprint of the current node, but not contain
the current node, we can conclude that the list is acyclic. The ghost �eld content
ranges over sequences of T; it is used to specify the functional behavior of the list.
(c) The region footprint is used to specify the read e�ect of Valid.
Fig. 12 on the next page shows the Dafny version of class UnboundedStack. Like

Node, it declares a �eld to store the footprint. Function IsUnboundedStack speci�es
the well-formedness conditions for stacks, especially that the footprint of a stack
contains the footprint of its nodes and that the nodes are well-formed. Methods
Push and Pop illustrate how regions are used to specify write e�ects using a modi�es
clause.
The Explicit footprint technique addresses the three challenges described above

as follows:
(1) Abstraction: E�ects are speci�ed in terms of regions, which do not reveal

implementation details such as names of �elds. The content of a region is typically
underspeci�ed, which allows subclasses to extend inherited regions. For instance,
function IsUnboundedStack only requires that at least the stack and the footprint of
its �rst node be in the footprint, but subclasses might add more objects if needed.
To specify footprints implementation-independently, one can apply any of the

data abstraction techniques outlined in Section 3.1 on page 26. As initially pre-
sented by Kassios, dynamic frames use logic functions to describe regions. VeriCool
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class UnboundedStack<T> {

var top: Node<T>;

ghost var footprint: set<object>;
ghost var content: seq<T>;

function IsUnboundedStack(): bool
reads {this} + footprint;

{

this in footprint &&

(top == null ==> content == []) &&

(top != null ==> top in footprint && top.footprint <= footprint &&

top.prev == null && content == top.content && top.Valid())

}

function IsEmpty(): bool
reads {this};

{ content == [] }

method InitUnboundedStack()

modifies {this};
ensures IsUnboundedStack() && IsEmpty();

{ top := null; footprint := {this}; content := []; }

method Push(val: T)

requires IsUnboundedStack();

modifies footprint;

ensures IsUnboundedStack() && content == [val] + old(content);
{

var tmp := new Node<T>; call tmp.InitNode(val,top);

top := tmp; footprint := footprint + {tmp};

content := [val] + content;

}

method Pop() returns (result: T)

requires IsUnboundedStack() && !IsEmpty();

modifies footprint;

ensures IsUnboundedStack() && content == old(content)[1..];
{

result := top.val;

assert top.Valid();

footprint := footprint - top.footprint; top := top.next;

if (top != null) {

footprint := footprint + top.footprint; top.prev := null;
}

content := content[1..];
} }

Fig. 12. A Dafny version of UnboundedStack. Dafny does not have constructors; therefore, method
InitUnboundedStack is used to initialize a new instance. We implemented IsEmpty as a function
instead of a method to be able to use it in speci�cations.

ACM Journal Name, Vol. V, No. N, October 2010.



Speci�cation Languages · 39

[Smans et al. 2008b] uses pure methods for this purpose. When using an automatic
theorem prover to reason about footprints, recursively de�ned pure methods or
logic functions can be a hampering issue, due to the possibility that the prover will
instantiate function de�nitions inde�nitely. The problem can be curbed by instead
using ghost variables, as in Dafny [Leino 2010] and region logic [Banerjee et al.
2008].
Data groups [Leino 1998; Leino et al. 2002] can also be used to specify footprints

within a single object. They are very similar to model variables (see Section 3.1.2
on page 28). A data group represents a region. Typically, a data group is declared
in a module interface (like a model variable); the contents of the data group is
declared in the module body (like the representation of the model variable).
(2) Reasoning: The original work on dynamic frames [Kassios 2006] uses higher-

order logic, which is di�cult to automate. However, subsequent work, for instance
on VeriCool, Dafny, and region logic developed dynamic frames in a �rst-order set-
ting. Zee et al. have used explicit footprints successfully to verify the functional
correctness of linked data structures in Jahob [Zee et al. 2008]. Banerjee et al.
[Banerjee et al. 2008] report on promising experiments with an encoding of region
logic in the intermediate veri�cation language Boogie [Leino and Rümmer 2010].
However, the VCC project [Cohen et al. 2009] experienced performance problems
with dynamic frames, which made them switch to a �exible ownership system in-
stead.
(3) Framing: With explicit footprints, framing is done by proving that the read

e�ect of a predicate and the write e�ect of a method are disjoint. For instance, for
well-formed stacks s1 and s2, the following code veri�es in Dafny (where !! denotes
disjointness of sets):

assume s1.footprint !! s2.footprint;
assume s1.IsEmpty();
call s2.Push(o);
assert s1.IsEmpty();

The call to Push preserves s1.IsEmpty() because the read e�ect of s1.IsEmpty() is
{s1}. Since s1 is well-formed, we know that s1 is in s1.footprint and thus disjoint
from s2.footprint, which is the write e�ect of the call to s2.Push.

4.2 Implicit footprints

Next we consider specialized logics, which allow for elegant implicit representations
of the footprints. The two main representatives of this approach are separation
logic [O'Hearn et al. 2001; O'Hearn et al. 2004; Reynolds 2000; 2002] and implicit
dynamic frames [Smans et al. 2008a; Leino and Müller 2009]. In this section, we
focus on separation logic, which extends the assertion language of Hoare logic with
a new connective, the separating conjunction P ∗ Q. Each assertion in separation
logic de�nes a portion of the heap. P ∗ Q means that the current portion of the
heap can be split into two disjoint portions such that one satis�es P and the other
Q.
The key to separation logic is local reasoning, that is, a speci�cation needs to

describe all the state that the code uses (even if it just reads from it). The triple
{P}C{Q} means that all the state the code C needs to execute is described by P .
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That is, P describes precisely the footprint of the code C. This interpretation of
triples leads to the following key rule of separation logic.

{P}C {Q}
{P ∗R}C {Q ∗R}

This rule allows any proof to be extended by disjoint state, and to know that this
disjoint state is unmodi�ed. This is valid as P must describe all the heap that C
uses, and hence it cannot change any additional state.
Note that some versions of separation logic require side conditions about local

variable modi�cation, as ∗ only separates heaps. Separation logic can be extended
such that ∗ is used to also separate variables, so that these side conditions are not
required [Parkinson et al. 2006].
In the rest of this subsection, we use a separation logic for Java based on Parkin-

son's work [Parkinson 2005; Parkinson and Bierman 2005]. This separation logic
has a primitive assertion to describe the value of a �eld in the heap, x.f 7→ v. It
means the heap contains at least the �eld f of the object x and it has value v.
Using ∗ we can describe the portion of the heap containing several disjoint objects.
Separation logic uses predicates (logic functions, see Section 3.1.3 on page 29) to

specify data structures. We de�ne a predicate, Node, to specify the state associated
with a Node object.

Node(x, v, n, p) = x.val 7→ v ∗ x.next 7→ n ∗ x.prev 7→ p

This simply states that we have three �elds for the node x: val, next, and prev, the
�rst pointing to v, the second to n, and the third to p. The predicate Node(x, v, n, p)
implicitly de�nes a footprint consisting of x.val, x.next, and x.prev.
Using this predicate, we can de�ne a recursive predicate List for a doubly-linked

list:

List(x, nil(), p) = x = null
List(x, cons(v, vs), p) = ∃n. Node(x, v, n, p) ∗ List(n, vs, x)

The �rst argument to this predicate indicates the head of the linked list, the second
speci�es the contents of the list as a sequence, and the �nal speci�es the value of
the previous pointer coming from the doubly-linked list. The de�nition is split into
two cases: (a) empty nil(), the head is simply null; and (b) nonempty cons(v, vs),
the list is composed of a node with value v, and the rest of the list with con-
tents vs. Importantly, for the second case, the node and the rest of the list are
disjoint. This means the list cannot be cyclic. The implicit footprint de�ned by
List(x, cons(v, vs), p) contains the val, next, and prev �elds of all nodes reachable
from x via next references.
Finally, we package the list into a predicate that represents the Stack class:

Stack(s, vs) = ∃l, p. s.top 7→ l ∗ List(l, vs, p)

This has a single �eld top that points to the start of the list. Its implicit footprint
contains s.top as well as all locations in the footprint of the underlying list.
We use this predicate to specify the operations on the stack in Fig. 13 on the

next page, in the syntax of jStar speci�cation �les (each Java method signature
is followed by two formula, the �rst the precondition and the second the post).
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Note that this speci�cation does not contain explicit read or write e�ects (modi�es
clauses). They are implicit in the method preconditions. By mentioning the Stack
predicate in the precondition of a method, the method gains the permission to read
and write all locations in the footprint of the predicate; the method cannot access
any memory outside of this footprint. To compensate for the absence of explicit
write e�ect speci�cations, method isEmpty needs a postcondition that states that
the method will preserve the stack.

class UnboundedStack {

UnboundedStack() :

{}

{ Stack(this, nil()) };

void push(Object val) :

{ Stack(this, vs) }

{ Stack(this, cons(val,vs)) };

Object pop() :

{ Stack(this, cons(v,vs)) }

{ Stack(this, vs) ∗ v == return};

boolean isEmpty() :

{ Stack(this, vs) }

{ Stack(this, vs)

∗ (return==false() ∗ vs == cons(_,_)

|| return==true() ∗ vs == nil() ) };

}

Fig. 13. A separation-logic speci�cation for class UnboundedStack. The variables v and vs are logical
variables as described in Section 2.2.4 on page 15. The _ represents anonymous existentials, each
occurence can have a di�erent value.

Returning to the three challenge properties for specifying topologies and e�ects:
(1) Abstraction: Separation logic and implicit dynamic frames achieve abstrac-

tion through logic functions. The speci�cation of the stack does not reveal imple-
mentation details as they are packaged up in the de�nition of the predicate. The
second parameter to the stack predicate represents the interesting data stored in
the stack. The de�nitions of the predicates relate this value to the actual memory
layout of the data. If this predicate is scoped so that the client does not know
the de�nition, then the de�nition is abstract, and hence, the client cannot depend
on any internal structure of the stack [Parkinson and Bierman 2005]. We could
give exactly the same speci�cation if the stack were implemented using a singly or
doubly-linked list, or an array that is dynamically resized when full.
(2) Reasoning: There have been many hand proofs of separation logic programs.

There is now a series of tools that can reason using separation logic, including
Smallfoot [Berdine et al. 2005], SpaceInvader [Distefano et al. 2006], SLAyer5, jStar

5http://research.microsoft.com/en-us/um/cambridge/projects/slayer/
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[Distefano and Parkinson 2008], and VeriFast [Jacobs and Piessens 2008]. Auto-
matic reasoning about separation logic formulae is an active area of research, but
still lags behind classical logic.
Implicit dynamic frames can be encoded in �rst-order logic and are, thus, well-

suited to automatic veri�cation with SMT solvers, as illustrated by VeriCool [Smans
et al. 2008b] and Chalice [Leino et al. 2009].
(3) Framing: Framing with implicit footprints is practically trivial. In the speci-

�cation, we have not had to specify modi�es clauses or footprints. They are implicit
in the de�nition of the predicate. The predicates describe the shape of the stack.
The code cannot access any memory outside of this shape. As ∗ expresses disjoint-
ness, we simply have to describe the precondition of the method as a separate area
of the heap, and then whatever heap is not in the area needed by the precondition
will be preserved by the call. Consider the following:

assume Stack(s1, xs) * Stack(s2, ys);
s2.push(o);
assert Stack(s1, xs) * Stack(s2, cons(o,ys));

Here, the call to push only needs to �nd the stack predicate for s2. It is automatic
that all the state disjoint from that predicate, that is, other predicates composed
with ∗, will be preserved.

4.3 Prede�ned footprints

Whereas the �rst two approaches describe the heap properties found in a program,
the third approach is to enable e�cient reasoning for programs with restricted
topologies. We will discuss ownership [Clarke et al. 1998] as a representative for
this approach.
Most ownership systems enforce a tree topology: every object in the heap has at

most one owner object, and the owner relation is acyclic. Topological properties
beyond this tree structure have to be expressed using object invariants and predicate
logic. Read and write e�ects typically use ownership as an abstraction mechanism:
the right to read or write an object includes the right to read or write all the objects
it (transitively) owns.
We illustrate this approach using Spec#. Spec# expresses ownership via at-

tributes on �eld declarations. For instance, the [Peer] attribute in the following
�eld declarations in class Node express that a Node object has the same owner as its
successor and its predecessor:

[Peer] Node<T> next;
[Peer] Node<T> prev;

Additional topological properties, such as the fact that the nodes form a list and
that the list is acyclic, have to be expressed via object invariants:

invariant next != null ==> next.prev == this;
invariant prev != null ==> prev.next == this;
invariant 0 < len && len == (next == null ? 1 : next.len + 1);

The integer �eld len is needed to specify acyclicity of the list formed by the nodes.
Class UnboundedStack is shown in Fig. 14 on page 44. Its top �eld is declared with
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the [Rep] attribute, which expresses that the stack owns its �rst node and, since all
nodes in the list are peers, all nodes. Therefore, di�erent stacks are guaranteed to
have disjoint node structures. When a �eld declaration has no ownership attribute,
its owner is not speci�ed and can be arbitrary. This is the case for the objects
stored on a stack.
Spec# uses modi�es clauses to specify write e�ects. Essentially, the modi�es

clause of method Push expresses that the method may modify all �elds of this
(denoted by the wildcard, *) as well as the �elds of all objects (transitively) owned
by this. This interpretation allows the method to change the underlying node
structure without mentioning these implementation details in the modi�es clause.
Read e�ects are expressed using the Reads attribute. The default for a pure

method is that it may read the state of its receiver and all objects owned by the
receiver. This default applies, for instance, to method IsEmpty in our example.
Again, ownership is used to abstract from the internal representation of the stack.
The three challenges are addressed as follows:
(1) Abstraction: The e�ect speci�cations of UnboundedStack do not reveal imple-

mentation details. The wildcard allows one to abstract over �eld names, whereas
ownership is used to abstract over the owned objects, which form the internal rep-
resentation of the stack.
(2) Reasoning: Ownership has been used to verify invariants [Drossopoulou et al.

2008; Leino and Müller 2004; Müller et al. 2006] and write e�ects [Müller et al.
2003]. All the existing ownership-based veri�cation techniques enforce that all
modi�cations of an object must be initiated by its owner. This strong encapsulation
property gives owners full control over modi�cations of their internal representation
and, thus, allows them to maintain invariants. Ownership has been shown to be
useful also in reasoning about model �elds [Leino and Müller 2006] and in enforcing
object immutability [Leino et al. 2008].
The ownership topology and encapsulation can be enforced by type systems [Lu

et al. 2007; Müller 2002], for instance through Universe Types [Dietl and Müller
2005] as is the case in JML, or through logic-based reasoning like in Spec# [Leino
and Müller 2004]. In the latter case, ownership annotations are encoded as object
invariants and then veri�ed in a program logic.
(3) Framing: Since ownership enforces a tree structure on the heap, we know that

the ownership trees rooted in two distinct objects o1 and o2 are disjoint if neither
o1 owns o2 nor vice versa. The disjointness of ownership trees can then be used to
prove that read and write e�ects of methods do not overlap. For instance, in the
following code snippet, we can prove that the call to s2.Push does not a�ect the
result of s1.IsEmpty because the write e�ect of the former is the ownership tree
rooted in s2 and the read e�ect of the latter in the tree rooted in s1. Since s1 and
s2 are distinct objects with the same owner, these trees are known to be disjoint.

assume s1 != s2 && Owner.Same(s1, s2);
assume s1.IsEmpty();
s2.Push(o);
assert s1.IsEmpty();
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public class UnboundedStack<T> {

[Rep] private Node<T> top;

invariant top != null ==> top.prev == null;

sealed model int height {

satisfies height == (top == null ? 0 : top.len);

}

public void Push(T val)

modifies this.*;
ensures height == old(height) + 1;

{

Node<T> tmp = new Node<T>(val);

expose(this) {

if (top == null) { tmp.len = 1; }

else { top.Prepend(tmp); }

top = tmp;

}

}

[return: NoDefaultContract] public T Pop()

requires height > 0;

modifies this.*;
ensures height == old(height) - 1;

{

assert top != null; // follows from precondition

Node<T> r = top;

expose(this) {

top = top.next;

if (top != null) {

expose(top) {

expose(r) { r.next = null; r.len = 1; }

top.prev = null;
}

}

}

return r.val;

}

[Pure] public bool IsEmpty()

ensures result == (height == 0);

{ return top == null; }

}

Fig. 14. A Spec# version of UnboundedStack. The satisfies clause in the declaration of the model
�eld height provides the representation of height. An expose(o) block indicates program points at
which o's object invariant may be broken. The attribute [return: NoDefaultContract] on method
Pop disables a default postcondition that requires the result's invariant to hold, a property would
require an ownership relation between the stack and its elements. Method IsEmpty is declared
pure such that it can be called in speci�cations.
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4.4 Summary of Heap Speci�cation Techniques

All three techniques described above allow one to specify the topologies of many
common object structures and the e�ects of their operations. They have been used
as the basis of several program veri�ers. However, the three techniques strike a
di�erent balance between expressiveness and automation.
Techniques based on explicit footprints are very expressive, since they allow spec-

i�cations to relate di�erent regions in arbitrary ways, for instance, to express the
disjointness or inclusion of regions or to characterize their intersection. Therefore,
these techniques can easily specify overlapping regions (sharing) or cyclic struc-
tures. However, this �exibility complicates reasoning. When regions are stored
explicitly in ghost variables, programs need to update these ghost variables ex-
plicitly to maintain invariants. Especially for recursive data structures, writing
these updates can be cumbersome. Alternatively, when regions are computed by
pure methods or logic functions, one needs to reason explicitly about the e�ects of
heap modi�cations on the results of these functions, that is, on the contents of the
regions.
Techniques based on implicit footprints are almost as expressive as techniques

with explicit footprints, but any sharing or cycles must be made explicitely, which
can complicate the reasoning. Veri�ers based on separation logic have mostly ap-
plied symbolic execution and not yet achieved the same level of automation as
veri�ers based on veri�cation condition generation. Recent work on implicit dy-
namic frames in Chalice [Leino and Müller 2009] showed how to reason automati-
cally about implicit footprints using veri�cation conditions and automatic theorem
provers. Investigating whether this approach is also applicable to separation logic
is ongoing research.
Finally, techniques based on prede�ned footprints are very convenient to use for

data structures whose topology is supported by the technique, but they provide
no support for other structures. For instance, speci�cation techniques based on
ownership handle hierarchic aggregate structures with very little speci�cation over-
head, but fail to specify non-hierarchical topologies such as the Observer pattern.
The prede�ned topologies allow program veri�ers to apply specialized veri�cation
strategies and, thus, increase automation. For instance, a veri�er can exploit the
hierarchy of ownership topologies to show the termination of traversals of such
structures.

5. SUBTYPING AND INHERITANCE

Object-oriented programming (OOP) presents many challenging problems for spec-
i�cation and veri�cation. We have already discussed issues related to abstract data
type speci�cation and heap manipulation, both of which are prominent features
of OOP. The other essential characteristic of OOP is the use of subtyping and
dynamic dispatch.
In type systems, subtype polymorphism allows variables and expressions to denote

values of several di�erent but related types at run time; for example, a variable coll
of static type Collection might denote an object of some Collection subtype such
as Stack, Set, or Bag. Subtyping in this sense is a purely type-theoretic property
that requires that each instance of a subtype can be manipulated as if it were an
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instance of its supertypes without type errors. For example, if the type system
allows a method call such as coll.add(e), then since coll denotes an object of
some subtype of Collection, the call must not produce a run-time type error.
Cardelli published an in�uential study of the conditions for type checking OOP
[Cardelli 1988]. Cardelli's subtyping rules prevent type errors, and can be extended
to languages with more features, such as multiple dispatch [Castagna 1995]. This
use of subtype polymorphism is at the core of most object-oriented design patterns
[Gamma et al. 1995].
Dynamic dispatch is a semantic feature of OO languages that allows a method

call, such as coll.add(e), to have di�erent e�ects depending on the run-time type of
the receiver object, coll. The programming language dynamically determines what
implementation to run for such a call based on the run-time type of the receiver.
The selected implementation may be provided by coll's static type, Collection,
or instead of being inherited in this way, it may be overridden by a method in a
subtype of Collection. So in general, the executed implementation might be one
of any number of di�erent implementations, some of which might not have been
imagined when the call was written.
However, it is not only the implementation to be executed that is not known

statically (in general): without some methodological convention, such as behavioral
subtyping, even the speci�cation of the method that will be executed will not be
known statically. An example is the code shown in Fig. 15, which assumes that
the size of the Collection coll is zero and that the object e is a legal element of
the collection; it then calls coll's add method, which is dynamically dispatched.
Because the speci�cation of the code executed may vary among subtypes, this

//@ assignable coll.*;

public void testAdd(Collection coll, Object e) {

//@ assume coll.size() == 0 && coll.legalElement(e);

boolean b = coll.add(e);

//@ assert coll.contains(e);

//@ assert b ==> coll.size() == 1;

}

Fig. 15. A test of Collection's add method.

kind of code presents a problem for static veri�cation. One approach to solving
this problem is to verify what a method call does for each possible subtype of the
receiver's type [von Oheimb 2001]. However, such a case analysis would be di�cult
to maintain, as each time a new subtype was added to the program the case analysis
code would have to be extended.
A more modular approach is to follow the analogy of object-oriented type systems

and impose restrictions on the behavior of subtypes: this methodology is known
as behavioral subtyping [America 1987; Dhara and Leavens 1996; Leavens 2006;
Liskov 1988; Liskov and Wing 1994; Meyer 1997]. Using behavioral subtyping,
one can use the speci�cation of a supertype's objects to soundly reason about the
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behavior of all possible subtype objects.6 For example, behavioral subtyping would
allow one to use the speci�cation of Collection to draw conclusions about the
call to add in Fig. 15 on the previous page. Behavioral subtyping validates such
conclusions because the contract for Collection's add method, given in Fig. 16, says
that the element is contained in the collection after the call and, when the result
of the call is true, then the collection's size has been increased by 1. Put the other

public interface Collection {

//@ model instance JMLDataGroup state;

/*@ pure @*/ int size();

/*@ pure @*/ boolean legalElement(Object o);

/*@ pure @*/ boolean contains(Object o);

/*@ public behavior
@ requires legalElement(o);

@ assignable state;

@ ensures contains(o);

@ ensures \result ==> size() == \old(size()+1);
@ ensures !\result ==> size() == \old(size()); @*/

boolean add(Object o);

}

Fig. 16. A JML speci�cation for Collection.

way around, with behavioral subtyping, subtype objects must behave according to
the instance speci�cation of each of their supertypes, when they are manipulated
using that supertype's interface [Liskov 1988]. For example, the add method of a
Collection subtype must obey the contract given in Fig. 16. Just as a type system
with subtyping guarantees that no run-time type errors occur when calling methods
using dynamic dispatch, verifying behavioral subtyping ensures that no surprising
behavior occurs when calling methods using dynamic dispatch [Leavens and Weihl
1995].
A simple way of enforcing behavioral subtyping is to impose the following four

rules for every supertype C and subtype D [America 1987; Liskov and Wing 1994]:

(1) For each instance method D.m that overrides a method C.m, the precondition
of C.m must imply the precondition of D.m. That is, overriding methods may
weaken preconditions.

6An alternative to behavioral subtyping is class re�nement [Back et al. 2000], which requires that,
in addition to behavioral subtyping, all constructors (and class/static methods) of a class re�ne the
corresponding constructors of their supertypes. This su�ces for sound reasoning, but is stronger
than needed if the client code that one reasons about only manipulates existing objects and does
not call constructors.
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(2) For each instance method D.m that overrides a method C.m, the frame of
D.m must be a subset of the frame of C.m. That is, overriding methods may
strengthen frame conditions.

(3) For each instance method D.m that overrides a method C.m, the postcondition
of D.m must imply the postcondition of C.m. That is, overriding methods may
strengthen postconditions.

(4) The invariant for D objects must imply the invariant for C objects. That is,
subtypes may strengthen invariants.

Rules 1�3 allow one to reason about a call to o.m using the speci�cation for m
in o's static type C. By rule 1, establishing the precondition of C.m before the
call guarantees that also the precondition of the method selected at run time, D.m,
holds. By rule 2, D.m can only modify locations that C.m's speci�cation allows
to be changed; thus one can safely conclude that if C.m's speci�cation guarantees
that the value of some location x is left unchanged, then D.m also does. By
rule 3, one may assume C.m's postcondition after the call because D.m establishes
a postcondition that is at least as strong.
Rule 4 is necessary to handle inheritance. A method implementation C.m may

assume C's invariant. By rule 4, this assumption is still justi�ed when m is inherited
by a subtype D. However, there can be problems if a method implementation C.m
is called on a D object, since C.m will not know how to establish the potentially
stronger invariant of D objects. A drastic solution to this problem is to outlaw
invariants that mention variables that are declared in a superclass [Müller et al.
2006]. Another way around this problem is to require C.m to be overridden in
cases where it can modify the object's state in ways that threaten the invariant of
D [Ruby and Leavens 2000]. Yet another solution is to re-verify all inherited and
non-overridden methods [Parkinson and Bierman 2008] in the subclass D. Finally,
the Spec# methodology solves this problem by tying each invariant to a class, and
carefully restricting when �elds can be modi�ed and when each class's invariant
must be re-established [Barnett et al. 2004; Leino and Müller 2004; Leino and
Wallenburg 2008]. Rule 4 also applies to other consistency criteria of objects such
as history constraints [Liskov and Wing 1994].
One way to summarize these rules is to say that all overriding subtype methods

must satisfy the speci�cation of each method that they override, which is necessary
for sound modular reasoning using a supertype's method speci�cation [Dhara and
Leavens 1996; Leavens and Weihl 1995].
However, the programming language and the veri�cation logic guarantee addi-

tional properties for dynamically-dispatched calls, which can be used to weaken the
above rules and still maintain soundness [Chen and Cheng 2000]. Weaker rules are
bene�cial, since they allow more types to be behavioral subtypes and give develop-
ers more freedom in design and implementation of subtypes.
The programming language guarantees that an overriding method in class D will

be called only when the receiver's class is D (or a subtype of D). In speci�cation
frameworks where the invariant of the receiver has to hold in the pre- and post-
state of a call, this implies that one may assume the D-invariant of the receiver to
hold (which, according to rule 4 may be stronger than the C-invariant). These two
properties allow for weaker versions of rules 1�3. For each instance method D.m
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that overrides a method C.m:

(D1) the precondition of C.m must imply the precondition of D.m, provided that

the receiver is of type D and the D-invariant of the receiver holds.

(D2) the frame of D.m must be a subset of the frame condition of C.m, provided
that the receiver is of type D and the D-invariant of the receiver holds in the

pre- and post-state.

(D3) the postcondition of D.m must imply the postcondition of C.m, provided that

the receiver is of type D and the D-invariant of the receiver holds in the pre-

and post-state.

For instance, rule (D3) allows D.m to have a weaker postcondition than C.m if
this weaker postcondition together with the D-invariant implies the postcondition
of C.m.
The knowledge that the receiver is of class D is not only useful to assume D's

invariant, but for all speci�cation elements that may be re�ned in subclasses, such
as model �elds [Leino 1995; Leino and Müller 2006; Müller 2002] and pure methods
[Darvas and Müller 2005]. For instance, the possible values of a model �eld may
be restricted in subclasses. Thus, more precise type information for the receiver
provides more information about the values of its model �elds.
Veri�cation logics guarantee that methods are called only in states in which their

preconditions hold. This enables a weaker version of the frame and postcondition
rules, which only require that a supertype's frame and postcondition are obeyed
when that supertype's precondition also held in the call's pre-state [Dhara and
Leavens 1996; Chen and Cheng 2000]:

(D2′) the frame of D.m must be a subset of the frame condition of C.m, provided
that the receiver is of type D, the D-invariant of the receiver holds in the pre-
and post-state, and C.m's precondition holds in the pre-state .

(D3′) the postcondition of D.m must imply the postcondition of C.m, provided
that the receiver is of type D, the D-invariant of the receiver holds in the pre-
and post-state, and C.m's precondition holds in the pre-state.

To simplify the application of the rules for behavioral subtyping, many speci�-
cation languages use speci�cation inheritance [Dhara and Leavens 1996; Leavens
2006]. Subtypes inherit the speci�cations of their supertypes and can re�ne the
inherited speci�cations by adding declarations. A simple way to de�ne the e�ective
speci�cation of a class is to combine the inherited and the declared speci�cation
as follows:7 The e�ective precondition of a method D.m is the disjunction of the
precondition declared for D.m and the preconditions of the methods it overrides.
Taking the disjunction guarantees that the e�ective precondition is weaker than the
preconditions of all overridden methods and, thus, that rule 1 is satis�ed. The ef-
fective frame of D.m is the intersection of the frame declared for D.m and the frame
of the methods it overrides. Using this intersection guarantees that the e�ective
frame is a subset of the frames of the methods it overrides, and thus that rule 2 is

7This simple form of speci�cation inheritance is based on the behavioral subtyping rules (1)�
(4) above [Liskov and Wing 1994]. Ei�el [Meyer 1997] also has a simple form of speci�cation
inheritance with similar rules, but has no frame conditions.
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satis�ed. The e�ective postcondition of D.m is the conjunction of the postcondition
declared for D.m and the postconditions of the methods it overrides.8 Taking the
conjunction guarantees that the e�ective postcondition is stronger than the post-
conditions of all overridden methods and thus that rule (3) is satis�ed. Finally, the
e�ective invariant of a class D is the conjunction of the invariant declared for D
and the invariants of D's supertypes. Taking the conjunction guarantees that the
e�ective invariant is stronger than the invariants of D's supertypes and thus that
rule (4) is satis�ed.
An example illustrating the above rules is shown in Fig. 17 on the next page.

This subtype of Collection is a behavioral subtype because it obeys the speci�ca-
tion of Collection. We illustrate speci�cation inheritance using method add. The
method satis�es rule (1) by providing the requires clause true; thus, the e�ective
precondition is the disjunction of Collection's precondition with true, which is
equivalent to true, and thus weaker than Collection's precondition. The method
satis�es rule (2) by providing an assignable clause that, according to the data
group declarations in Arraylist, denotes a subset of the assignable locations listed
in Collection; thus the intersection, which is the e�ective frame, contains only the
locations denoted by Arraylist's assignable clause. Method add satis�es rule (3) by
providing the ensures clause \result; thus, the e�ective postcondition is equivalent
to contains(o) && size() == \old(size()+1) && \result, which is stronger than
Collection's postcondition. Finally, ArrayList satis�es rule (4) by contributing
additional conjuncts to the e�ective invariant.
Speci�cation inheritance enforces behavioral subtyping [Dhara and Leavens 1996;

Leavens and Naumann 2006]. However, the above rules have been criticized as dis-
guising speci�cation errors because failure to comply with the rules of behavioral
subtyping is silently turned into unsatis�able speci�cations. Assume that an over-
ridden supertype method has the declared precondition p > 0 and the overriding
subtype method requires p <= 0. With speci�cation inheritance, however, the ef-
fective precondition of the overriding method is equivalent to true. Findler and
Felleisen [Findler and Felleisen 2001] argue that this should be considered a speci�-
cation error, which should be reported, since the disjunction of these preconditions
will silently accept calls that violate either the supertype's precondition or the
subtype's. (In JML and other languages that use speci�cation inheritance, the sub-
type's method would have to accept all these calls and satisfy both speci�cations
[Leavens 2006].)
Despite this criticism, most existing speci�cation languages enforce behavioral

subtyping through speci�cation inheritance. JML [Leavens 2006; Leavens et al.
2009] de�nes e�ective preconditions and invariants as described above. For post-
conditions, JML exploits behavioral subtyping rule (3′): in the e�ective postcon-
dition, the postcondition of a method C.m only has to hold if the corresponding
precondition held before the call. That is, the e�ective postcondition is a conjunc-
tion of implications of the form

∧
c(old(prec) ⇒ postc) rather than a conjunction of

postconditions
∧

c postc. The rule for frame properties similarly depends on which
precondition holds. Using rule (3′) gives the join of speci�cations in the lattice

8This rule for forming the e�ective postcondition is stronger than necessary to satisfy condition
(D3′) [Dhara and Leavens 1996] and indeed JML uses a more relaxed rule [Leavens 2006],
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public class ArrayList implements Collection {

private /*@ spec_public @*/ Object[] elements = new Object[3]; //@ in state;

//@ maps elements[*] \into state;

private /*@ spec_public @*/ int siz = 0; //@ in state;

//@ invariant elements != null && elements.length > 0;

//@ invariant 0 <= siz && siz <= elements.length;

//@ also
//@ ensures \result == siz;

public /*@ pure @*/ int size() { return siz; }

//@ also
//@ ensures \result;
/*@ pure @*/ public boolean legalElement(Object o) { return true; }

/*@ also
@ ensures \result == (\exists int i; 0 <= i && i < siz;

@ elements[i] == o); @*/

public /*@ pure @*/ boolean contains(Object o) {

for (int i = 0; i < siz; i++) {

if (elements[i] == o) { return true; }

}

return false;
}

//@ also
//@ requires true;
//@ assignable elements, elements[siz], siz;

//@ ensures \result;
public boolean add(Object o) {

if (siz == elements.length) {

Object[] tmp = new Object[siz*2];

System.arraycopy(elements,0,tmp,0,siz);

elements = tmp;

}

elements[siz++] = o;

return true;
}

}

Fig. 17. A JML speci�cation for ArrayList, which is a behavioral subtype of Collection. JML uses
the also keyword to highlight the fact that a method speci�cation in a subtype will be combined
with an inherited speci�cation.

determined by the re�nement ordering [Leavens and Naumann 2006; Leino and
Manohar 1999; Wing 1983]. This is the meaning behind the JML also keyword.

Ei�el's rules are very similar to JML's, but in the e�ective postcondition of a
method D.m, the declared postcondition of D.m has to hold even if the correspond-
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ing precondition did not hold before the call [Ei�el 2005]. The resulting e�ective
postcondition has the form

∧
c(old(prec) ⇒ postc) ∧ postD, which is stronger than

necessary for soundness. Spec# [Barnett et al. 2005] uses a stricter rule for precon-
ditions. Overriding methods must not change the inherited precondition. When
a method implements signatures from more than one supertype (interface), the
preconditions in these supertypes must be identical. The e�ective postcondition of
a method is simply the conjunction of all inherited and declared postconditions.
Thus with Spec#'s precondition rule, a distinction among di�erent precondition
cases is not useful. Finally, in Spec# an overriding method must not declare addi-
tional modi�es clauses. A larger modi�es clause would be unsound with Spec#'s
precondition rule, and a smaller modi�es clause, that is, strengthening of the frame
properties, can be achieved through additional postconditions.
Even though behavioral subtyping is an important design principle for the safe

use of subtyping and inheritance, there are implementations where a subclass re-
stricts or changes the behavior of its superclass. To support such implementations,
it has been proposed to distinguish between static and dynamic method speci�ca-
tions [Chin et al. 2008; Parkinson and Bierman 2008; Poetzsch-He�ter and Müller
1999]. A static speci�cation describes the behavior of a particular method im-
plementation, whereas a dynamic speci�cation describes the common behavior of
all implementations of a method, including overriding methods in subclasses. In
other words, static speci�cations are not inherited by subtypes and are not sub-
ject to behavioral subtyping. Hence, static speci�cations are used to reason about
statically-bound calls where the implementation to be executed is known statically,
for instance, Java's super calls or calls to final methods; dynamic speci�cations
are used to reason about dynamically-dispatched calls.

6. CONCLUSIONS

Specifying the behavior of complex programs requires highly expressive notations.
For instance, the functional speci�cation of a compiler includes a speci�cation of the
syntax of the source and target language, of the semantics of both languages, and
of the translation function [Leroy 2006]. Mathematical logics such as higher-order
logic provide the required expressiveness, but are di�cult to automate. Proofs
in these frameworks are largely interactive, and verifying programs beyond toy
examples still takes heroic e�orts by highly specialized experts.
It is one of the main objectives of speci�cation language designers to �nd idioms

that strike a good trade-o� between expressiveness, usability by programmers, and
automated veri�cation. In this paper, we surveyed behavioral interface speci�ca-
tion languages for sequential programs and presented some speci�cation language
features that are good compromises between these competing goals: (1) They are
su�ciently expressive to specify the functional correctness of program components
and complex data structures (see for instance the Composite Pattern speci�ca-
tions presented at SAVCBS 2008 [ACM 2008]). (2) They are based on relatively
simple concepts, which can be taught to undergraduate students and applied by
programmers (see for instance an industrial JML case study [Cataño and Huisman
2002]). (3) They have been used successfully in automatic program veri�ers such
as ESC/Java, Spec#, Jahob, or jStar (see for instance the automatic veri�cation
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of linked-list structures in Jahob [Zee et al. 2008]).

Despite these successes, there are a number of research challenges that need to
be addressed in order to achieve the objectives of the Veri�ed Software Initiative
[Hoare 2003]. Some of the key challenges are:

(1) Extending the well-established speci�cation techniques for sequential pro-
grams to concurrency. Even though the foundations for reasoning about concurrent
programs are available (for instance, temporal logic to express liveness properties
[Lamport 1994], rely-guarantee reasoning to specify shared-variable concurrency
[Xu et al. 1997], or permissions to specify thread synchronization [Boyland 2003]),
the development of speci�cation languages that can express functional behavior of
programs using advanced concurrency primitives is in an early stage and not ready
to be applied to mainstream programs [Jacobs et al. 2008; O'Hearn 2007; Leino
and Müller 2009; Rodríguez et al. 2005], with the notable exception of VCC [Cohen
et al. 2010], which is being applied to Microsoft's Hyper-V virtualization platform,
a large concurrent C-program.

(2) Linking detailed design speci�cations to requirement speci�cations, analysis-
level speci�cations, and software architecture. Behavioral interface speci�cations
languages can express properties of software components, but expressing the inter-
action between components is still a challenge. For instance, although there are
techniques to specify the Observer pattern [Banerjee et al. 2008], reasoning about
the correctness of an event-driven system seems to be beyond the state of the art.
Another such example is data-driven architectures, where the program is essentially
an interpreter of some data such as business rules, which encode the actual appli-
cation logic. Verifying such applications will require a formal connection between
architectural properties and detailed design speci�cations.

(3) Increasing the automation of veri�cation. Today's automatic veri�ers are still
limited to fairly simple properties such as the absence of exceptions. Even though
steady progress is being made [Zee et al. 2008; Leino 2010], the veri�cation of the
functional correctness of whole applications still requires signi�cant user interac-
tion. This challenge will partly be addressed by the theorem proving community,
but it will also be necessary to improve programming, speci�cation, and veri�ca-
tion methodology in order to produce veri�cation conditions that are more easily
accessible to automatic theorem provers such as SMT solvers [Barrett and Tinelli
2007; de Moura and Bjørner 2008].

Addressing these and other challenges in ways that are useful for the Veri�ed
Software Initiative will require close collaboration of experts in programming and
speci�cation language design, veri�cation methodology, and theorem proving. It
is, thus, important to foster collaborations among these communities, for instance
through joint projects, tool integration, as well as challenges and competitions.
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