
 1

Architectural Reasoning in ArchJava
Jonathan Aldrich Craig Chambers

Department of Computer Science and Engineering

University of Washington
Box 352350

Seattle, WA 98195-2350 USA
+1 206 616-1846

{jonal, chambers}@cs.washington.edu
Abstract
Software architecture is a crucial part of the specification of
component-based systems. Reasoning about software architecture
can aid design, program understanding, and formal analysis.
However, existing approaches decouple implementation code
from architecture, allowing inconsistencies, causing confusion,
violating architectural properties, and inhibiting software
evolution. ArchJava is an extension to Java that seamlessly
unifies a software architecture with its implementation.
ArchJava’s type system ensures that the implementation conforms
to the architectural constraints. Therefore, programmers can
visualize, analyze, reason about, and evolve architectures with
confidence that architectural properties are preserved by the
implementation.

1. Introduction
Software architecture [GS93][PW92] is the organization of a
software system as a collection of interacting components. A
typical architecture includes a set of components, connections
between the components, and constraints on how components
interact. Describing architecture in a formal architecture
description language (ADL) [MT00] can make designs more
precise and subject to analysis, as well as aid program
understanding, implementation, evolution, and reuse.

Existing ADLs, however, are loosely coupled to implementation
languages, causing problems in the analysis, implementation,
understanding, and evolution of software systems. Some ADLs
[SDK+95][LV95] connect components that are implemented in a
separate language. However, these languages do not guarantee
that the implementation code obeys architectural constraints, but
instead rely on developers to follow style guidelines that prohibit
common programming idioms such as data sharing. Architectures
described with more abstract ADLs [AG97][MQR95] must be
implemented in an entirely different language, making it difficult
to trace architectural features to the implementation, and allowing
the implementation to become inconsistent with the architecture
as the program evolves. Thus, analysis in existing ADLs may
reveal important architectural properties, but these properties are
not guaranteed to hold in the implementation.

In order to enable architectural reasoning about an
implementation, the implementation must obey a consistency
property called communication integrity [MQR95][LV95]. A
system has communication integrity if implementation
components only communicate directly with the components they
are connected to in the architecture.

This paper presents ArchJava, a small, backwards-compatible
extension to Java that integrates software architecture smoothly
with Java implementation code. Our design makes two novel
contributions:

• ArchJava seamlessly unifies architectural structure and
implementation in one language, allowing flexible
implementation techniques, ensuring traceability between
architecture and code, and supporting the co-evolution of
architecture and implementation.

• ArchJava also guarantees communication integrity in an
architecture’s implementation, even in the presence of
advanced architectural features like run time component
creation and connection.

The rest of this paper is organized as follows. After the next
section’s discussion of related work, section 3 introduces the
ArchJava language. Section 4 formalizes ArchJava’s type system
and outlines a proof of soundness and communication integrity in
ArchJava. Section 5 briefly describes our initial experience with
ArchJava. Finally, section 6 concludes with a discussion of future
work.

2. Related Work
A number of architecture description languages have been defined
to describe, model, check, and implement software architectures
[MT00]. Many ADLs support sophisticated analysis, such as
checking for protocol deadlock [AG97] or formal reasoning about
correct refinement [MQR95]. Some ADLs allow programmers to
fill in implementation code to make a complete system
[LV95][SDK+95]. However, there is no guarantee that the
implementation respects the software architecture unless
programmers adhere to certain style guidelines.

Tools such as Reflexion Models [MNS01] have been developed
to show an engineer where an implementation is and is not
consistent with an architectural view of a software system. These
tools are particularly effective for legacy systems, where rewriting
the application in a language that supports architecture directly
would be prohibitively expensive.

The UML is an example of specification languages that support
various kinds of structural specification. UML’s class diagrams
can show the relationships between classes, and UML’s object
diagrams show relationships between object instances. However,
in most UML tools, these diagrams are only intended to show
some of the ways in which classes and objects can interact—they
cannot be used to argue that no other kinds of interaction are
possible, and thus do not support communication integrity.
Object hierarchies can be expressed using composition

 2

relationships, but this relationship does not enforce
communication integrity either, because elements of the
composition can still interact with outside objects.

A number of computer-aided software engineering tools allow
programmers to define a software architecture in a design
language such as UML, ROOM, or SDL, and fill in the
architecture with code in the same language or in C++ or Java.
While these tools have powerful capabilities, they either do not
enforce communication integrity or enforce it in a restricted
language that is only applicable to certain domains. For example,
the SDL embedded system language prohibits all data sharing
between components via object references. This restriction
ensures communication integrity, but it also makes these
languages very awkward for general-purpose programming.
Many UML tools such as Rational Rose or I-Logix Rhapsody, in
contrast, allow method implementations to be specified in a
language like C++ or Java. This supports a great deal of
flexibility, but since the C++ or Java code may communicate
arbitrarily with other system components, there is no guarantee of
communication integrity in the implementation code.

Component-based infrastructures such as COM, CORBA, and
JavaBeans provide sophisticated services such as naming,
transactions and distribution for component-based applications.
Some commercial tools even provide graphical ways to connect
components together, allowing simple architectures to be
visualized. However, these systems have poor support for
structural specification of dynamically changing systems, and
have no concept of communication integrity. Communication
integrity can only be enforced by programmer discipline following
guidelines such as the Law of Demeter [LH89] that states, “only
talk to your immediate friends” in a system.

Advanced module systems such as MzScheme’s Units [FF98] and
ML’s functors [MTH90] can be used to encapsulate components
and to describe the static architecture of a system. The FoxNet
project [B95] shows how functors can be used to build up a
network stack architecture out of statically connected components.
However, these systems do not guarantee communication integrity
in the language; instead, programmers must follow a careful
methodology to ensure that each module communicates only with
the modules it is connected to in the architecture.

More recently, the component-oriented programming languages
ComponentJ [SC00] and ACOEL [Sre01] extend a Java-like base
language to explicitly support component composition. These
languages can be used to express components and static
architectures. However, neither language makes dynamic
architectures explicit, and neither enforces communication
integrity.

3. The ArchJava Language
ArchJava is designed to investigate the benefits and drawbacks of
a relatively unexplored part of the ADL design space. Our
approach extends a practical implementation language to
incorporate architectural features and enforce communication
integrity. Key benefits we hope to realize with this approach
include better program understanding, reliable architectural
reasoning about code, keeping architecture and code consistent as
they evolve, and encouraging more developers to take advantage
of software architecture. ArchJava’s design also has some
limitations, discussed below in section 3.6.

A prototype compiler for ArchJava is publicly available for
download at the ArchJava web site [ACN01a]. Although in
ArchJava the source code is the canonical representation of the
architecture, visual representations are also important for
conveying architectural structure. This paper uses hand-drawn
diagrams to communicate architecture; however, we have also
constructed a simple visualization tool that generates architectural
diagrams automatically from ArchJava source code. In addition,
we intend to provide an archjavadoc tool that would
automatically construct graphical and textual web-based
documentation for ArchJava architectures.

To allow programmers to describe software architecture, ArchJava
adds new language constructs to support components,
connections, and ports. The rest of this section describes by
example how to use these constructs to express software
architectures. Throughout the discussion, we show how the
constructs work together to enforce communication integrity,
culminating in a precise definition of communication integrity in
ArchJava. Reports on the ArchJava web site [ACN01a] provide
more information, including the complete language semantics and
a formal proof of communication integrity in the core of
ArchJava.

3.1 Components and Ports
A component is a special kind of object that communicates with
other components in a structured way. Components are instances
of component classes, such as the Parser component class in
Figure 1. Component classes can inherit from other components.

A component instance communicates with external components
through ports. A port represents a logical communication channel

public component class Parser {
 public port in {
 provides void setInfo(Token symbol,
 SymTabEntry e);
 requires Token nextToken()
 throws ScanException;
 }
 public port out {
 provides SymTabEntry getInfo(Token t);
 requires void compile(AST ast);
 }

 void parse(String file) {
 Token tok = in.nextToken();
 AST ast = parseFile(tok);
 out.compile(ast);
 }

 void parseFile(Token lookahead) { ... }
 void setInfo(Token t, SymTabEntry e) { ... }
 SymTabEntry getInfo(Token t) { ... }
 ...
}

Figure 1. A parser component in ArchJava. The Parser
component class uses two ports to communicate with other
components in a compiler. The parser’s in port declares a
required method that requests a token from the lexical
analyzer, and a provided method that initializes tokens in
the symbol table. The out port requires a method that
compiles an AST to object code, and provides a method that
looks up tokens in the symbol table.

 3

between a component instance and one or more components that
it is connected to.

Ports declare three sets of methods, specified using the
requires , provides , and broadcasts keywords.
Provided methods can be invoked by other components connected
to the port. The component can invoke a disjoint set of required
methods through the port. Each required method is implemented
by a component that the port is connected to. Broadcast methods
are just like required methods, except that they must return void
and may be connected to an unbounded number of
implementations.

A port specifies both the services implemented by a component
and the services a component needs to do its job. Required
interfaces make dependencies explicit, reducing coupling between
components and promoting understanding of components in
isolation. Ports also make it easier to reason about a component’s
communication patterns.

Each port is a first-class object that implements its required and
broadcast methods, so a component can invoke these methods
directly on its ports. For example, the parse method calls
nextToken on the parser’s in port. These calls will be bound
to external components that implement the appropriate
functionality.

3.2 Component Composition
In ArchJava, software architecture is expressed with composite
components, which are made up of a number of subcomponents1

1 Note: the term subcomponent indicates composition, whereas

the term component subclass would indicate inheritance.

connected together. Figure 2 shows how a compiler’s architecture
can be expressed in ArchJava. The example shows that the parser
communicates with the scanner using one protocol, and with the
code generator using another. The architecture also implies that
the scanner does not communicate directly with the code
generator. A primary goal of ArchJava is to ease program
understanding tasks by supporting this kind of reasoning about
program structure.

3.2.1 Subcomponents
A subcomponent is a component instance that is declared inside
another component class. Components can invoke methods
directly on their subcomponents. However, subcomponents
cannot communicate with components external to their containing
component. Thus, communication patterns among components
are hierarchical.

Subcomponents are declared using a component field—a field of
component type inside a component class, declared using the
component keyword. For example, the compiler component
class defines scanner, parser, and code generator subcomponents.
To enable effective static reasoning about subcomponents,
component fields are treated as protected , final , and not
static . Subcomponents are automatically instantiated when the
containing component is created—programmers can use a new
expression in the field initializer in order to call a non-default
constructor.

3.2.2 Connections
The connect primitive connects two or more subcomponent
ports together, binding each required method to a provided
method with the same name and signature. Connections are
symmetric, and several connected components may require the
same method. Required methods must be connected to exactly
one provided method. However, invoking a broadcast method
results in calls to each connected provided method with the same
name and signature.

Provided methods can be implemented by forwarding invocations
to subcomponents or to the required methods of another port. The
semantics of method forwarding and broadcast methods are given
in the language reference manual on the ArchJava web site
[ACN01a]. Alternative connection semantics, such as
asynchronous communication, can be implemented in ArchJava
by writing custom “smart connector” components that take the
place of ordinary connections in the architecture.

3.3 Communication Integrity
The compiler architecture in Figure 2 shows that while the parser
communicates with the scanner and code generator, the scanner
and code generator do not directly communicate with each other.
If the diagram in Figure 2 represented an abstract architecture to
be implemented in Java code, it might be difficult to verify the
correctness of this reasoning in the implementation. For example,
if the scanner obtained a reference to the code generator, it could
invoke any of the code generator’s methods, violating the
intuition communicated by the architecture. In contrast,
programmers can have confidence that an ArchJava architecture
accurately represents communication between components,
because the language semantics enforce communication integrity.

Communication integrity in ArchJava means that components in
an architecture can only call each others’ methods along declared

Compiler
out in out in

parser codegen scanner

public component class Compiler {
 component Scanner scanner;
 component Parser parser;
 component CodeGen codegen;

 connect scanner.out, parser.in;
 connect parser.out, codegen.in;

 public static void main(String args[]) {
 new Compiler().compile(args);
 }

 public void compile(String args[]) {
 // for each file in args do:
 ...parser.parse(file);...
 }
}

Figure 2. A graphical compiler architecture and its
ArchJava representation. The Compiler component class
contains three subcomponents—a Scanner , a Parser ,
and a CodeGen. This compiler architecture follows the
well-known pipeline compiler design [GS93]. The
scanner , parser , and codegen components are
connected in a linear sequence, with the out port of one
component connected to the in port of the next component.

 4

connections between ports. Each component in the architecture
can use its ports to communicate with the components to which it
is connected. However, a component may not directly invoke the
methods of components other than its children, because this
communication may not be declared in the architecture—a
violation of communication integrity. We define communication
integrity more precisely in section 3.5.

3.4 Dynamic Architectures
The constructs described above express architecture as a static
hierarchy of interacting component instances, which is sufficient
for a large class of systems. However, some system architectures
require creating and connecting together a dynamically
determined number of components. Furthermore, even in
programs with a static architecture, the top-level component must
be instantiated at the beginning of the application.

3.4.1 Dynamic Component Creation
Components can be dynamically instantiated using the same new
syntax used to create ordinary objects. For example, Figure 2
shows the compiler’s main method, which creates a Compiler
component and calls its invoke method. At creation time, each
component records the component instance that created it as its
parent component. For components like Compiler that are
instantiated outside the scope of any component instance, the
parent component is null .

Communication integrity places restrictions on the ways in which
component instances can be used. Because only a component’s
parent can invoke its methods directly, it is essential that typed
references to subcomponents do not escape the scope of their
parent component. This requirement is enforced by prohibiting
component types in the ports and public interfaces of components,
and prohibiting ordinary classes from declaring arrays or fields of
component type. Since a component instance can still be freely
passed between components as an expression of type Object , a
ComponentCastException is thrown if an expression is
downcast to a component type outside the scope of its parent
component.

3.4.2 Connect expressions
Dynamically created components can be connected together at run
time using a connect expression. For instance, Figure 3 shows a
web server architecture where a Router component receives
incoming HTTP requests and passes them through connections to
Worker components that serve the request. The
requestWorker method of the web server dynamically creates
a Worker component and then connects its serve port to the
workers port on the Router .

Communication integrity requires each component to explicitly
document the kinds of architectural interactions that are permitted
between its subcomponents. A connection pattern is used to
describe a set of connections that can be instantiated at run time
using connect expressions. For example, connect pattern
r.workers, Worker.serve describes a set of connections
between the component field r and dynamically created Worker
components.

Each connect expression must match a connection pattern
declared in the enclosing component. A connect expression
matches a connection pattern if the connected ports are identical
and each connected component instance is either the same

component field specified in the pattern, or an instance of the type
specified in the pattern. The connect expression in the web server
example matches the corresponding connection pattern because

WebServer
workers

serve

request

create

Router

Worker

public component class WebServer {
 component Router r;
 connect r.request, create;
 connect pattern r.workers, Worker.serve;

 public void run() { r.listen(); }
 private port create {
 provides r.workers requestWorker() {
 Worker newWorker = new Worker();
 r.workers connection
 = connect (r.workers, newWorker.serve);
 return connection;
 }
 }
}

public component class Router {
 public port interface workers {
 requires void httpRequest(InputStream in,
 OutputStream out);
 }
 public port request {
 requires this .workers requestWorker();
 }
 public void listen() {
 ServerSocket server = new ServerSocket(80);
 while (true) {
 Socket sock = server.accept();
 this .workers conn = main.requestWorker();
 conn.httpRequest(sock.getInputStream(),
 sock.getOutputStream());
 }
 }
}

public component class Worker extends Thread {
 public port serve {
 provides void httpRequest(InputStream in,
 OutputStream out) {
 this .in = in; this .out = out; start();
 }
 }
 public void run() {
 File f = getRequestedFile(in);
 sendHeaders(out);
 copyFile(f, out);
 }
 // more method & data declarations...
}

Figure 3. A web server architecture. The Router
subcomponent accepts incoming HTTP requests, and pass
them on to a set of Worker components that respond.
When a request comes in, the Router requests a new
worker connection on its requestWorker port. The
WebServer then creates a new worker and connects it to
the Route r. The Router assigns requests to Workers
through the workers port.

 5

the newWorker component in the connect expression is of static
type Worker , the same type declared in the pattern.

3.4.3 Port Interfaces
Often a single component participates in several connections
using the same conceptual protocol. For example, the Router
component in the web server communicates with several Worker
components, each through a different connection. A port
interface describes a port that can be instantiated several times to
communicate through different connections at run time.

Each port interface defines a type that includes all of the required
methods in that port. A port interface type combines a port’s
required interface with an instance expression that indicates
which component instance the type allows access to. For
example, in the Router component, the type this .workers
refers to an instance of the workers port of the current Router
component (in this case, this would be inferred automatically if
it were omitted). The type r.workers refers to an instance of
the workers port of the r subcomponent. This type can be used
in method signatures such as requestWorker and local
variable declarations such as conn in the listen method.
Required methods can be invoked on expressions of port interface
type, as shown by the call to httpRequest within
Router.listen .

Port interfaces are instantiated by connect expressions. A connect
expression returns a connection object that represents the
connection. This connection object implements the port
interfaces of all the connected ports. Thus, in Figure 3, the
connection object connection implements the interfaces
Worker.serve and r.workers , and can therefore be
assigned to a variable of type r.workers .

Provided methods can obtain the connection object through which
the method call was invoked using the sender keyword. The
detailed semantics of sender and other language features are
covered in the ArchJava language reference available on the
ArchJava web site [ACN01a].

3.4.4 Removing Components and Connections
Just as Java does not provide a way to explicitly delete objects,
ArchJava does not provide a way to explicitly remove components
and connections. Instead, components are garbage-collected
when they are no longer reachable through direct references or
connections. For example, in Figure 3, a Worker component
will be garbage collected when the reference to the original
worker (newWorker) and the references to its connections
(connection and conn) go out of scope, and the thread within
Worker finishes execution.

3.5 Limitations of ArchJava
There are currently a number of limitations to the ArchJava
approach. Our technique is presently only applicable to programs
written in a single language and running on a single JVM,
although the concepts may extend to a wider domain.
Architectures in ArchJava are more concrete than architectures in
ADLs such as Wright, restricting the ways in which a given
architecture can be implemented—for example, inter-component
connections must be implemented with method calls. Also, in
order to focus on ensuring communication integrity, we do not yet
support other types of architectural reasoning, such as reasoning

about the temporal order of architectural events, or about
component multiplicity.

ArchJava’s definition of communication integrity supports
reasoning about communication through method calls between
components. Program objects can also communicate through data
sharing via aliased objects, static fields, and the runtime system.
However, existing ways to control communication through shared
data often involve significant restrictions on programming style.
Future work includes developing ways to reason about these
additional communication channels while preserving
expressiveness. Meanwhile, our experience (described below)
suggests that rigorous reasoning about architectural control flow
can aid in program understanding and evolution, even in the
presence of shared data structures.

4. ArchJava Formalization
In this section, we discuss the formal definition of communication
integrity and ArchJava’s semantics. The next subsection defines
communication integrity in ArchJava and intuitively explains how
it is enforced. Subsection 5.2 gives the static and dynamic
semantics of ArchFJ, a language incorporating the core features of
ArchJava. Finally, subsection 5.3 outlines proofs of
communication integrity, subject reduction, and progress for
ArchFJ.

4.1 Definition of Communication Integrity
Communication integrity is the key property of ArchJava that
ensures that the implementation does not communicate in ways
that could violate reasoning about control flow in the architecture.
Intuitively, communication integrity in ArchJava means that a
component instance A may not call the methods of another
component instance B unless B is A’s subcomponent, or A and B
are sibling subcomponents of a common component instance that
declares a connection or connection pattern between them.

We now precisely define communication integrity in ArchJava.
Let the execution scope of component instance A on the run time
stack, denoted escope(A), be any of A’s executing methods and
any of the object methods they transitively invoke, until another
component’s method is invoked.

Definition 1 [Dynamic Execution Scope]: Let m be an executing
method with stack frame mf . If m is a component method, then
mf ∈ escope(this). Otherwise, mf ∈ escope(caller(mf)).

Now we can define communication integrity:

Definition 2 [Communication Integrity in ArchJava]: Let :< be
the subtyping relation over component classes. A program has
communication integrity if, for all run time method calls to a
method m of a component instance b in an executing stack frame
mf , where mf ∈ escope(a), either:

1. a = b, or

2. a = parent(b), or

3. parent(a) = parent(b) ∧ “connect [pattern]
(f|t) 1.p 1,...,(f|t) n.p n” ∈ class(parent(a))
∧ ∃i,j ∈ 1..n s.t. (parent(a).f i = a ∨ type(a)<:t i) ∧
 (parent(a).f j = b ∨ type(b)<:t j) ∧
 m ∈ requiredmethods(pi) ∧
 m ∈ providedmethods(pj)

 6

4.2 Formalization as ArchFJ
We would like to use formal techniques to prove that the
ArchJava language design guarantees communication integrity,
and show that the language is type safe—that is, show that certain
classes of errors cannot occur at run time. Unfortunately, proofs
of type safety in a language like Java are extremely tedious due to
the many cases involved, and to our knowledge the full Java
language has never been formalized and proven type safe.
Therefore, a standard technique, exemplified by Featherweight
Java [IPW99], is to formalize a core language that captures the
key typing issues while ignoring complicating language details.

We have modified Featherweight Java (FJ) to capture the essence
of ArchJava in ArchFJ. ArchFJ makes a number of
simplifications relative to ArchJava. ArchFJ leaves out ports;
instead, each component class has a set of required and provided
methods. Static connections and component fields are left out, as
they are subsumed by dynamically created connections
components. We also omit the sender keyword and broadcast
methods. As in Featherweight Java (FJ), we omit interfaces.
These changes make our type soundness proof shorter, but do not
materially affect it otherwise.

4.2.1 Syntax
Figure 4 presents the syntax of ArchFJ. The metavariables C and
D range over class names; E and F range over component and
class names; S, T, and V range over types; P and Q range over
component classes; f and g range over fields; d and e range over
expressions; l ranges over labels generated by <fresh> ; and M
ranges over methods. As a shorthand, we use an overbar to
represent a sequence. We assume a fixed class table CT mapping
regular and component classes to their definitions. A program,
then, is a pair (CT, e) of a class table and an expression.

ArchFJ includes the features of FJ plus a few extensions. Regular
classes extend another class (which can be Object , a predefined

class) and define a constructor K and a set of fieldsf and

methodsM. Component classes can extend another component

class, or Object (as in FJ, there are no interfaces). Component

classes also declare a set of required methodsR and a set of

connection patterns X between their subcomponents.

Expressions include field lookup, method calls, object and
component creation, various casts, a connect expression, and an
error expression. These are extended from FJ in a few small
ways:

• All method calls capture the current object this in an
additional psuedo-argument which comes last and is not
passed on to the callee.

• Components are labeled with a fresh label when they are
created (labels in a method body are freshly generated when
a method call is replaced with the method’s body). This
label allows us to reason about object identity in an
otherwise functional language (assignment is not relevant to
our type system or definition of communication integrity).
Components also keep track of their parent, and which of
their parent’s component fields they were created with.

• In addition to regular casts to a class type, there are two new
cast forms: one that allows casting to the required interface
of a component (i.e., the set of methods the component
requires), and another that allows casting to a component
field type. The first cast accepts an instance expression type,
while the latter cast includes an argument that captures the
value of this in the current scope. Both arguments are
used to verify the casts in the dynamic semantics.

• A connect expression conceptually creates a connection
object on which components can invoke their required
methods. The connect expression captures this , the parent
object that created the connection.

Types:

T ::= P
 | e.P R
 | E _
 | U(e.P R)

Subtyping:

 T : T < (S-REFLEX)

V : S

V : T T : S

<
<<

 (S-TRANS)

R2R1 .Qe : .Pe

Q : P

<
<

 (S-REQUIRED)

 Object : T < (S-OBJECT)

RR

RR

e.P :)e.PU(

e.Pe.P

<
∈

 (S-UNION)

F : E

} ... { F extends

E class][component E

<

=)(CT

 (S-EXTENDS)

Figure 5. ArchFJ Types and Subtyping Rules

Syntax:
 _ _ _

CL ::= class C extends C {C f; K M}

CP ::= component c las s P ex tends
[P|Object] {C f; K M R X}
 _ _ _ _ _

K ::= E(C f) {super(f); this.f = f;}
 _ _

M ::= T m(T x) { return e; }
 _ _

R ::= required T m(T x)
 _
X ::= connect pattern (P)

e ::= x
 | e.f _
 | e.m(e,_this)
 | new C(e)

| new P(e, <fresh>, e parent)
| (C)e
| (e.P R)e

 | cast(this , P, e)
 | connect(e, this)
 | error

Figure 4. ArchFJ Syntax

 7

• We represent failed dynamic checks (such as casts) with an
explicit error value, to make our progress theorem cleaner
to state.

4.2.2 Types and Subtypes
ArchJava’s types and subtyping rules are given in Figure 5.
Types include class and component types (E), required interface
types of components (e.P R), and union types of multiple required
interfaces. Subtyping of classes and components is defined by the
reflexive, transitive closure of the immediate subclass relation
given by the extends clauses in CT. We require that there are

no cycles in the induced subtype relation. Required interface
types follow the subtyping relation of components (ignoring the
instance expressions, which are reasoned about separately from
subtyping). Finally, every type is a subtype of Object , and a
union is a subtype of all its member types.

4.2.3 Reduction Rules
The reduction relation, defined by the reduction rules given in
Figure 6, is of the form eÆe’ , read “expression e reduces to
expression e’ in one step.” We write Æ* for the reflexive,
transitive closure of Æ. The only unusual reduction rule is R-
XINVK, which allows method invocation on connection
expressions. The mbody helper function does a lookup to
determine the correct method body to invoke. Two error rules are
defined representing casts that are not guaranteed to succeed by
the type system presented below. The reduction rules can be
applied at any point in an expression, so we also need appropriate
congruence rules (such as if eÆe’ then e.f Æe’.f), which we
omit here. Furthermore, we assume an order of evaluation that
follows Java’s normal evaluation rules.

4.2.4 Typing Rules
Most of the typing rules given in Figure 7 are standard. Typing
judgments are given in anHQYLURQPHQW +� D ILQLWH PDSSLQJ IURP

variables to types. Rule T-INVK places constraints on passing
connection objects to an argument position declared with a
required interface and instance expression of this , to ensure that
the connection object does indeed connect the receiver object.
Rule T-PNEW introduces qualified component types. Rule T-
CONNECT introduces union types for connections. In addition,
T-CONNECT verifies that some connection pattern in the current
component matches the types of the connected objects; this will
be important later for establishing that reduction cannot get stuck
due to an illegal connection.

Class, method, and connection typing rules check for well-formed
class definitions, and have the form “class declaration E is OK,”
and “method/connection X is OK in E.” The rules for class and
method typing are similar to those in FJ. In the case of
component classes, the typing rule verifies that only subclasses of
Object may define required methods—as in ArchJava,
component subclasses may only inherit existing required methods
from their component superclass. The connection typing rule
verifies that each required method has a unique provided method
with the right signature, and that every method name has only one
signature across all the required methods.

We have made one significant simplification relative to FJ. We
do not distinguish between upcasts, downcasts, and so-called
“stupid casts” which cast one type to an unrelated one. This
means that our type system does not check for “stupid casts” in
the original typing derivation, as Java’s type system does.
However, the change shortens our presentation and proofs
considerably, and the stupid casts technique from FJ can be easily
applied to our system to get the same checks that are present in
Java.

Computation:

ii

fields

e)).f,eE((new

f CE

→…
=)(

 (R-FIELD)

0

this

0

]ethis)eC(new ,xd[

)d ,d)).m(eC((new

e,xCm,

→
=)()(mbody

 (R-INVK)

)E(new))E((C)(new

C : E

…→…
<

 (R-CAST)

error (C)(e)

)connect(e C)E(newe

→
…=∨</…= :

 (E-CAST)

0this

parentthisthis

0

parent

]ethise ,xd[)d ,de.m(

eded

e,xPm,

)e l, ,eP(newe

→

=∨=
=

=

)()(mbody

 (R-PINVK)

e e) Q, ,cast(e

Q : P)e l, ,eP(newe

this

this

→
<=

 (R-PCAST)

error e) Q, ,cast(e

Q) : Pe e where

)e l, ,eP(new(e

)connect(e

this

parentthis

parent

→
</∨≠

=

∨…=

 (E-PCAST)

)e,econnect(

))e,e)(connect(.Q(e

Q : P ee)P(newe

this

thisRcast

castcast

→

<∈…=
 (R-RCAST)

error)(e).Q(e

Q :)F(newe ee where

)e,econnect(e

)E(newe

Rcast

castcast

this

→
</…=∨∉

=

∨…=

 (E-RCAST)

0i

thisthis

i0this

thisthis

]ethise ,xd[

)d ,d)).m(e,e(connect(

e,e,x)e,econnect(m,

)e,econnect(ed

→

=

∈

)()(

)(

mbody

legal

 (R-XINVK)

Figure 6. ArchFJ Reduction Rules

 8

4.2.5 Auxiliary Definitions
Most of the auxiliary definitions shown in Figures 8 and 9 are
straightforward and are taken from FJ. The connection typing
rule verifies that the passed-in this expression is one of the
instance expressions in the union type. The connection method
lookup rule chooses the component i providing the method with
mtype, based on the static types in the original connection
declaration. It is guaranteed to choose a unique component
because the connection typing rule implies that mtype is only
defined for one of the types in the connection. It then picks the
actual method body dynamically using the usual mbody rule.
Finally, it returns the expression to be passed as this in the
method call.

The legal rule checks that a connect expression corresponds to a
connection pattern. It also verifies that the connect expression
was created inside the parent component of each sibling.

Expression Typing:
)(xx Γ∈Γ --l (T-VAR)

ii

fields

C.fe

f CC Ce

0

000

∈Γ
=∈Γ

--l

--l)(
 (T-FIELD)

]/

)(

thisT[e)e ,e.m(e

.Se S implies this.PT

Te

T : S Se

TT]e[,Tm, Te

0this0

Ri0iRii

thisthis

this000

∈Γ
==

∈Γ
<∈Γ

→=∈Γ

--l

--l

--l

--l mtype

 (T-INVK)

C)eC(new

D : C Ce f DC

∈Γ
<∈Γ=

--l

--l)(fields
 (T-NEW)

P)e ,fresh ,eP(new

Te

D : C Ce f DP

p

pp

∈><Γ

∈Γ
<∈Γ=

--l

--l

--l)(fields

 (T-PNEW)

)e.PU()e ,econnect(

P)Qpattern(connect

Q : P Pe Pe

Rthis

this

thisthis

∈Γ
∈

<∈Γ∈Γ

--l

--l--l

)(connects
(T-CONNECT)

C]|.P[eC])e|.P([e

Te

RcastRcast

0

∈Γ
∈Γ

--l

--l
 (T-CAST)

Qe)Q,,cast(e

Pe Te

this

thisthis

∈Γ
∈Γ∈Γ

--l

--l--l
 (T-PCAST)

Class Typing:

OK]}X R[M K ;f C{

E extends F class][component

R ObjectE

P IN OK]X[,M g DE

};f fthis.);g{super()f C ,g DF(K

0)(#

)(

=∨=

=

==

fields

 (T-CLASS)

Method Typing:

E in OK } e; return {)x Tm(T

components not TT, TT F, m,

}{ F extends E class][componentE

T : S Se :Ethis ,T:x

)(

)(

→

…=
<∈

override

CT

--l

(T-METH)

Connection Typing:

Q IN OK)Ppattern(connect

STST

SSPm,TTPm,

 Pm,

TTPm,

 TTPm,

RR

R

=∧=

→=∧→=∀

≠∀∧

→=≠∃

→=∀

implies

)()(,

)(

)(..

implies)(

ji

k

j

i

mtypemtypeji

definednotmtypejk

mtypetsij

mtypei

(T-X)

Figure 7. ArchFJ Static Semantics

Field lookup:

fields(Object) = �

f C ,g DE

g DF

]}X R[M K ;f C{

F extends E class][componentE

=
=

=

)(

)(

)(

fields

fields

CT

Connection lookup:

connects(Object) = �

X ,XP

XE

}X R M K ;f C{

E extends P class componentP

0

0

=
=

=

)(

)(

)(

connects

connects

CT

Method type lookup:

TTEm,

M}e; return{)x T(m T

}M{ F extends E class][componentE

→=
∈

……=

)(

)(

mtype

CT

)()(

in definednot is

)(

Fm,Em,

M m

}M{ F extends E class][componentE

mtypemtype

CT

=

……=

TTPm,

R)x T(m T required

}R{ E extends P class componentP

→=
∈

……=

)(

)(

mtype

CT

)()(

in declarednot is

)(

RR e.Em,e.Pm,

R m

}R{ E extends P class componentP

mtypemtype

CT

=

……=

TTe,e.PU(m,

TT.Pem, ee

thisR

Rthis

→=
→==

))(

)(

mtype

mtype iii

Figure 8. ArchFJ Auxiliary Definitions

 9

4.3 Theorems
We state three main theorems: communication integrity, subject
reduction, and progress. Subject reduction and progress together
imply that the ArchJava type system is sound. First, the reduction
rules ensure communication integrity:

Theorem [Communication Integrity in ArchFJ]:

1. For all direct method invocations on a component P that
succeed, either P or P’s parent component is the current
component this .

2. For all method invocations on a connection that succeed, the
current component P is part of the connection, P and the
component Q being invoked either have the same parent or
one is the parent of the other, and the parent P’ declared a
connection pattern between P and Q.

Proof: Part 1 of communication integrity is ensured by the
precondition dthis =e ∨ d this =eparent of R-PINVK. Part 2 of

communication integrity is ensured by the precondition ed this ∈

of R-XINVK as well as the definition of legal.

The presentation of our Subject Reduction and Progress theorems
is adapted from FJ [IPW99].

Theorem [Subject Reduction]: If 00 Te ∈Γ --l and 10 ee → , then

11 Te ∈Γ --l for some 01 T : T < .

Proof sketch: The main property required is the following term-
substitution lemma:

Lemma 1 [Term Substitution]: If 00 Te S:x , ∈Γ --l and

1Sd ∈Γ --l where 01 S : S < , then 1T]exd[∈Γ --l for some

01 T : T < .

Lemma 1 is proved by induction on the derivation of

00 Te S:x , ∈Γ --l .

The theorem itself can then be proved by induction on the
derivation of 10 ee → , with a case analysis on the last rule used.

Lemma 1 is useful in many of the steps, and especially for the
congruence rules.

The only tricky case is to show that the preconditions of T-INVK
still hold after a reduction step. This can be shown based on a
case analysis on the introduction of required component types (T-
INVK, T-CONNECT, and T-CAST), and a lemma that term
substitution preserves the required relationships among instance
expressions.

Theorem [Progress]: Suppose e is a well-typed expression.
Then either e has an error subexpression, or e is a value made
up of only new and connect expressions, or e Æ e’ .

Proof sketch: The theorem is proved by induction on the
derivation of the reduction of e. For each reduction rule, we
show that any valid typing for the subexpressions in the left-hand-
side, together with the assumption of progress for the
subexpression, implies the preconditions for the reduction rule.
In most cases the implication is clear, but two interesting lemmas
are necessary for rules R-PINVK and R-XINVK, respectively.

Lemma 2 [An expression of component type reduces to this
or a direct child component of this]:

Consider an expression),e.m(et … where et =new E(…) ,

mbody(m,E) = (x,e 0), and e0 has a subexpression this) ,e.m(e 11 .

If Pe :Ethis ,T:x 1 ∈--l and

)e,Q(new /this]ee [d/x, parent1t …→ * , then either e1 = this

or eparent Æ* e t .

This lemma can be proved by a case analysis of the last typing
rule used in the typing derivation of e1. There are only three rules
that result in a component type: T-VAR, T-PNEW, and T-PCAST
(methods cannot return component type, by the well-formed
method rule). The T-VAR rule gives a component type to a
variable x , but the only way a component type can be introduced
LQWR + LV E\ WKH FRPSRQHQW PHWKRG W\SLQJ UXOH� ZLWK x = this . If
the component type was introduced in T-PNEW, e1 = new
Q(…,this) and so eparent = et . If the component type came
from T-PCAST, e1 must be of the form cast(this, P, new
Q(…,eparent)) , and so the derivation of

)e,Q(new /this]ee [d/x, parent1t …→ * must include a

reduction rule R-PCAST which verifies that eparent = et in the
final expression.

Lemma 3 [Well-typed connection expressions are legal]: If
T)econnect(e, this ∈Γ --l then)()econnect(e, thislegal .

The typing rule T-CONNECT, together with Lemma 2,
demonstrates that all the required properties in legal hold.

Method body lookup:

)()(

)(

e,xEm,

M}e; return{)x C(m C

}M{ F extends E class][componentE

=
∈

……=

mbody

CT

)()(

in definednot is

)(

Fm,Em,

M m

}M{ F extends E class][componentE

mbodymbody

CT

=

……=

)()(

)()(

)(

)(

0

0

i

i

i

mbody

mbody

mtype

connects

e,e,x)e ,econnect(m,

e,xQm,

TTPm, P : Q

P)Ppattern(connect

)(Q newe)(P new e

this

this

thisthis

=
=

→=<

∈

…=…=

Legal Connections:

)(

)(

)e,econnect(

eeee i P : Q

P)Ppattern(connect

)e,l,d(Q newe)(P new e

this

thispithisi

this

piiiiithisthis

legal

connects

=∨=∀<

∈

=…=

Valid method overriding:

)(

andimplies,)(

0

000

SS E, m,

TS TS TTE m,

→
==→=

override

mtype

Figure 9. More Auxili ary Defini tions

 10

5. Evaluation
We have written a prototype compiler for ArchJava, which is
available for download from the ArchJava web site [ACN01a]. In
order to determine whether the ArchJava language enables
effective component-oriented programming, we undertook a case
study applying ArchJava to Aphyds, a 12,000-line circuit design
application written in Java.

Results from our case study [ACN01b] indicate that for this
program, the developer’s architecture can be expressed in
ArchJava with relatively little effort (about 30 programmer hours).
The resulting architecture yields insight into the program’s
communication patterns, and may be useful in eliminating
software defects.

6. Conclusion and Future Work
ArchJava allows programmers to effectively express software
architecture and then seamlessly fill in the implementation with
Java code. This paper has motivated and outlined a language
design integrating architecture and implementation, and proved
type soundness and communication integrity in a formalization of
ArchJava. At every stage of development and evolution,
ArchJava enforces communication integrity, ensuring that the
implementation conforms to the specified architecture. Thus,
ArchJava helps to promote effective architecture-based design,
implementation, program understanding, and evolution.

In future work, we intend to extend the case study to larger
programs, to see if ArchJava can be successfully applied to
programs of 100,000 lines and up. We will also investigate
extending the language design to enable more advanced reasoning
about component-based systems, including temporal ordering
constraints on component method invocations and constraints on
data sharing between components.

7. Acknowledgements
We would like to thank David Notkin, Todd Millstein, Vassily
Litvinov, Vibha Sazawal, Matthai Philipose, and the anonymous
reviewers for their comments and suggestions. This work was
supported in part by NSF grant CCR-9970986, NSF Young
Investigator Award CCR-945776, and gifts from Sun
Microsystems and IBM.

8. References
[ACN01a] Jonathan Aldrich, Craig Chambers, and David Notkin.

ArchJava web site.
http://www.cs.washington.edu/homes/jonal/archjava/

[ACN01b] Jonathan Aldrich, Craig Chambers, and David Notkin.
Component-Oriented Programming in ArchJava. In
Proceedings of the OOPSLA ’01 Workshop on Language
Mechanisms for Programming Software Components, July
2001. Available at
http://www.cs.washington.edu/homes/jonal/archjava/

[AG97] Robert Allen and David Garlan. A Formal Basis for
Architectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3):213---249, July 1997.

[B95] Jeremy Buhler. The Fox Project. ACM Crossroads 2.1,
September 1995.

[FF98] M. Flatt and M. Felleisen. Units: Cool modules for HOT
languages. In PLDI'98 - ACM Conf. on Programming
Language Design and Implementation, pages 236--248,
1998.

[GS93] David Garlan and Mary Shaw. An Introduction to
Software Architecture. In Advances in Software Engineering
and Knowledge Engineering, I (Ambriola V, Tortora G,
Eds.) World Scientific Publishing Company, 1993.

[IPW99] Atsushi Igarishi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java and
GJ. In Proceedings of ACM Conference on Object Oriented
Languages and Systems, November 1999.

[LH89] Karl Lieberherr and Ian Holland. Assuring Good Style
for Object-Oriented Programs. IEEE Software, Sept 1989.

[LV95] D.C. Luckham, J. Vera. An Event Based Architecture
Definition Language. IEEE Transactions on Software
Engineering Vol. 21, No 9, September 1995.

[MNS01] Gail C. Murphy, David Notkin, and Kevin J. Sullivan.
Software Reflexion Models: Bridging the Gap Between
Design and Implementation. To appear in IEEE Transactions
on Software Engineering, 2001.

[MQR95] M. Moriconi, X. Qian, A.A. Riemenschneider. Correct
Architecture Refinement. IEEE Transactions on Software
Engineering, Vol. 21, No 4, April 1995.

[MT00] Nenad Medvidovic and Richard N. Taylor. A
Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on
Software Engineering, vol. 26, no. 1, pp. 70-93, January
2000.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. The MIT Press, Cambridge, Massachussetts,
1990.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations
for the Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17:40--52, October 1992.

[SC00] J. C. Seco and L. Caires. A Basic Model of Typed
Components. Proc. European Conference on Object-
Oriented Programming, 2000.

[SDK+95] M. Shaw, R. DeLine, V. Klein, T.L. Ross, D.M.
Young, G. Zelesnik. Abstractions for Software Architecture
and Tools to Support Them. IEEE Transactions on Software
Engineering, Vol. 21, No 4, April 95.

[Sre01] V. C. Sreedhar. ACOEL: A Component-Oriented
Extensional Language. Unpublished manuscript, July 2001.

