Architectural Reasoning in ArchJava
Jonathan Aldrich Craig Chambers

Department of Computer Science and Engineering
University of Washington
Box 352350
Seattle, WA 98195-2350 USA
+1 206 616-1846

{jonal, chambers}@cs.washington.edu
Abstract This paper presents ArchJava, a small, backwards-compatible
Software architecture is a crucial part of the specification of €Xtension to Java that integrates software architecture smoothly
component-based systems. Reasoning about software architectut&ith Java implementation code. Our design makes two novel
can aid design, program understanding, and formal analysis.contributions:
However, existing approaches decouple implementation codee ArchJava seamlessly unifies architectural structure and

from architecture, allowing inconsistencies, causing confusion, implementation in one language, allowing flexible

violating architectural properties, and inhibiting software implementation techniques, ensuring traceability between
evolution. ArchJavais an extension to Java that seamlessly architecture and code, and supporting the co-evolution of
unifies a software architecture with its implementation. architecture and implementation.

ArchJava’s type system ensures that the implementation conforms
to the architectural constraints. Therefore, programmers can
visualize, analyze, reason about, and evolve architectures with
confidence that architectural properties are preserved by the
implementation.

ArchJava also guarantees communication integrity in an
architecture’s implementation, even in the presence of
advanced architectural features like run time component
creation and connection.

The rest of this paper is organized as follows. After the next
section’s discussion of related work, section 3 introduces the
. . o ArchJava language. Section 4 formalizes ArchJava’s type system
Software architecture [GS93][PW92] is the organization of a and outlines a proof of soundness and communication integrity in

tsof_twaltre SﬁteT as a Icc()jllectlon (if Tteractlng cct)mponents.t_ AArchJava. Section 5 briefly describes our initial experience with
ypical architecture includes a set o Components, CONNECUONSA o 34y, Finally, section 6 concludes with a discussion of future
between the components, and constraints on how component%vork
interact. Describing architecture in a formal architecture '

description language (ADL) [MTO00] can make designs more 2 Related Work

precise and subject to analysis, as well as aid programa nymber of architecture description languages have been defined
understanding, implementation, evolution, and reuse. to describe, model, check, and implement software architectures
Existing ADLs, however, are loosely coupled to implementation [MTO0]. Many ADLs support sophisticated analysis, such as
languages, causing problems in the analysis, implementation,checking for protocol deadlock [AG97] or formal reasoning about
understanding, and evolution of software systems. Some ADLscorrect refinement [MQR95]. Some ADLs allow programmers to
[SDK+95][LV95] connect components that are implemented in a fill in implementation code to make a complete system
separate language. However, these languages do not guarant@eV95][SDK+95]. However, there is no guarantee that the
that the implementation code obeys architectural constraints, buimplementation respects the software architecture unless
instead rely on developers to follow style guidelines that prohibit programmers adhere to certain style guidelines.

common programming idioms such as data sharing. Architecturesryis such as Reflexion Models [MNSO01] have been developed
described with more abstract ADLs [AG97][MQR95] must be 4 ghow an engineer where an implementation is and is not
implemented in an entirely different language, making it difficult qngjstent with an architectural view of a software system. These
to trace architectural features to the implementation, and allowing;q|s are particularly effective for legacy systems, where rewriting

the implementation to become inconsist.en't with the architecture hq application in a language that supports architecture directly
as the program evolves. Thus, analysis in existing ADLs may ,,5u1d be prohibitively expensive.

reveal important architectural properties, but these properties are) o
not guaranteed to hold in the implementation. The UML is an example of specification languages that support

.) various kinds of structural specification. UML'’s class diagrams

In order to enable architectural reasoning about an can show the relationships between classes, and UML's object
implementation, the implementation must obey a consistency giagrams show relationships between object instances. However,
property calledcommunication integrityy MQRO5][LVIS]. A iy most UML tools, these diagrams are only intended to show
system has communication integrity if implementation gomeqf the ways in which classes and objects can interact—they
components only communicate directly with the components they cannot pe used to argue that no other kinds of interaction are
are connected to in the architecture. possible, and thus do not support communication integrity.
Object hierarchies can be expressed using composition

1. Introduction

relationships, but this relationship does not enforce puplic component class Parser {

communication integrity either, because elements of the public port in {
composition can still interact with outside objects. provides void setinfo(Token symbol,
. . . SymTabEntry e);
A number of computer-aided software engineering tools allow requires Token nextToken()
programmers to define a software architecture in a design throws ScanException;

language such as UML, ROOM, or SDL, and fill in the

architecture with code in the same language or in C++ or Java. Publicport out{ '
While these tools have powerful capabilities, they either do not féoﬁ'i?:sVoi(f””gfg%%;g?‘;;;ke” 0;
enforce communication integrity or enforce it in a restricted } 9 P '
language that is only applicable to certain domains. For example,

the SDL embedded system language prohibits all data sharing void parse(String file) {

between components via object references. This restriction ~ Token tok = in.nextToken();

ensures communication integrity, but it also makes these éilgﬂpﬁlgg;‘)e_':"e(mk)'

languages very awkward for general-purpose programming. ' '

Many UML tools such as Rational Rose or I-Logix Rhapsody, in

contrast, allow method implementations to be specified in a void parseFile(Token lookahead){ ... }
language like C++ or Java. This supports a great deal of _Void setinfo(Tokent, SymTabEntrye){...}
flexibility, but since the C++ or Java code may communicate SymTabEntry getinfo(Token t) { ...
arbitrarily with other system components, there is no guarantee of }

communication integrity in the implementation code.

Component-based infrastructures such as COM, CORBA, and Figure 1. A parser component in ArchJavg. Thd?arser
JavaBeans provide sophisticated services such as naming, COMPOnent class uses two port® communicate with other
transactions and distribution for component-based applications. cOmPonents in a compiler. The parser'sn port declares a
Some commercial tools even provide graphical ways to connect réquired method that requests a token from the lexical
components together, allowing simple architectures to be analyzer, and a providedmethod that .|n|t|aI|zes tokens in
visualized. However, these systems have poor support for the symbol table. Theout port requires a method that
structural specification of dynamically changing systems, and compiles an AST to object code, and provides a method that
have no concept of communication integrity. Communication 100ks up tokens in the ymbol table.

integrity can only be enforced by programmer discipline following A prototype compiler for ArchJava is publicly available for
guidelines such as the Law of Demeter [LH89] that states, “only download at the ArchJava web site [ACNOla]. Although in
talk to your immediate friends” in a system. ArchJava the source code is the canonical representation of the

Advanced module systems such as MzScheme’s Units [FF98] andi"chitecture, visual representations are also important for
ML’s functors [MTH90] can be used to encapsulate components conveying archltecture_ll structure. This paper uses hand-drawn
and to describe the static architecture of a system. The FoxNeflidagrams to communicate architecture; however, we have also
project [B95] shows how functors can be used to build up acqnstructed aS|mpIe visualization tool that generates archlte_c'_[ural
network stack architecture out of statically connected componentsdiagrams automatically from ArchJava source code. In addition,
However, these systems do not guarantee communication integrityV® intend to provide ararchjavadoc tool that would

in the language; instead, programmers must follow a careful automatically construct graphical and textual web-based
methodology to ensure thaach nodule communicates only with ~ documentation for ArchJava architectures.

the modules it is connected to in the architecture. To allow programmers to describe software architecture, ArchJava

More recently, the coponent-oriented programming languages adds new language constructs to suppaomponents
ComponentJ [SC00] and ACOEL [Sre01] extend a Java-like baseconnections and ports The rest of this section describes by
language to explicitly support component composition. These&xa@mple how to use these constructs to express software
languages can be used to express components and stati@rchitectures. Throughout the discussion, we show how the
architectures. ~ However, neither language makes dynamicCOnstructs work together to enforce communication integrity,
architectures explicit, and neither enforces communication culminating in a precise definition of communication integrity in

integrity. ArchJava. Reports on the ArchJava web site [ACNO1la] provide
more information, including the complete language semantics and
3. The ArchJava Language a formal proof of communication integrity in the core of

ArchJava is designed to investigate the benefits and drawbacks ofirchJava.

a relatively unexplored part of the ADL design space. Our

approach extends a practical implementation language to3-1 CoOmponents and Ports _ _
incorporate architectural features and enforce communicationA componenis a special kind of object that communicates with
integrity. Key benefits we hope to realize with this approach Other components in a structured way. Components are instances
include better program understanding, reliable architectural ©f component classesuch as théarser component class in
reasoning about code, keeping architecture and code consistent dgigure 1. Component classes can inherit from other components.

they evolve, and encouraging more developers to take advantag@ component instance communicates with external components

of software architecture. ArchJava’'s design also has somethrough ports. Aort represents a logical communication channel
limitations, discussed below in section 3.6.

Compiler
out in ut in

parser [0—{ codegen

scanner

public component class Compiler {
component Scanner scanner;
component Parser parser;
component CodeGen codegen;

connect scanner.out, parser.in;
connect parser.out, codegen.in;

public static void main(String argsf]) {
new Compiler().compile(args);
}

public void compile(String args[]) {
// for each file in args do:
...parser.parse(file);...

}

Figure 2. A graphical compiler architecture and its
ArchJava representation. TheCompiler component class
contains three subcomponents—&Scanner , a Parser
and a CodeGen. This compiler architecture follows the
well-known pipeline compiler design [GS93]. The
scanner , parser , and codegen components are
connected in a linear sequence, with theut port of one
component connected to then port of the next conponent.

connected together. Figure 2 shows how a compiler’s architecture
can be expressed in ArchJava. The example shows that the parser
communicates with the scanner using one protocol, and with the
code generator using another. The architecture also implies that
the scanner doesiot communicate directly with the code
generator. A primary goal of ArchJava is to ease program
understanding tasks by supporting this kind of reasoning about
program structure.

3.2.1 Subcomponents

A subcomponenis a component instance that is declared inside

another component class. Components can invoke methods
directly on their subcomponents. However, subcomponents
cannot communicate with components external to their containing
component. Thus, communication patterns among components
are hierarchical.

Subcomponents are declared usingpemponent field-a field of
component type inside a component class, declared using the
component keyword. For example, the compiler component
class defines scanner, parser, and code generator subcomponents.
To enable effective static reasoning about subcomponents,
component fields are treated pmtected , final , and not

static . Subcomponents are automatically instantiated when the
containing component is created—programmers can usewva
expression in the field initializer in order to call a non-default
constructor.

3.2.2 Connections
The connect primitive connects two or more subcomponent

between a component instance and one or more components thgdorts together, binding each required Imogt to a provided

it is connected to.

Ports declare three sets of methods, specified using the
keywords.

Providedmethods can be invoked by other components connected®
to the port. The component can invoke a disjoint se¢aiired

requires , provides , and broadcasts

method with the same name and signature. Connections are
symmetric, and several connected components may require the
same method. Required methods must be connected to exactly
ne provided method. However, invoking a broadcast method

results in calls to eaclonnected provided method with the same

methods through the port. Each required method is implementedqame and signature.

by a component that the port is connectedBmadcastmethods

are just like required methods, except that they must retich

and may be connected to an unbounded number

implementations.

A port specifies both the services implemented by a componen
and the services a component needs to do its job. Require
interfaces make dependencies explicit, reducogpling between

components and promoting understanding of components in

JACNO1a].

Provided methods can be implemented by forwarding invocations
to subcomponents or to the required methods of another port. The

of semantics of method forwarding and broadcast methods are given

in the language reference manual on the ArchJava web site
Alternative connection semantics, such as

synchronous communication, can be implemented in ArchJava
y writing custom “smart connector” components that take the

place of ordinary @nnections in the architecture.

isolation. Ports also make it easier to reason about a component’% 3 Communication Integrity

communication patterns.

The compiler architecture in Figure 2 shows that while the parser

Each port is a first-class object that implements its required andcommunicates with the scanner and code generator, the scanner
broadcast methods, so a component can invoke these methodsnd code generator do not directly communicate with each other.

directly on its ports. For example, thmarse method calls
nextToken on the parser'sn port. These calls will be bound

If the diagram in Figure 2 represented an abstract architecture to
be implemented in Java code, it might be difficult to verify the

to external components that implement the appropriate correctness of this reasoning in the implementation. For example,

functionality.

3.2 Component Composition

In ArchJava, software architecture is expressed wiimposite
componentswhich are made up of a number of subcomponents

! Note: the termsubcomponenindicates composition, whereas

the termcomponent subclasgould indicate inheritance.

if the scanner obtained a reference to the code generator, it could
invoke any of the code generator's methods, violating the
intuition communicated by the architecture. In contrast,
programmers can have confidence that an ArchJava architecture
accurately represents communication between pcomnts,
because the language semantics enforce communication integrity.

Communication integrity in ArchJava means that components in
an architecture can only call each others’hods along declared

connections between ports. Each component in the architecture WebS
can use its ports to communicate with the components to which it @ eboerver

is connected. However, a component may not directly invoke the workers

methods of components other than its childreaecalise this request Router }%
communication may not be declared in the architecture—a serve
violation of communication integrity. We define communication

Worker

integrity more precisely in section 3.5. public component class WebServer {
. i component Router r;
3.4 Dynamic Architectures connect r.request, create;

The constructs described above express architecture as a static COnnect pattern r.workers, Worker.serve;
hierarchy of interacting component instances, which is sufficient

. ublic void run() { r.listen();
for a large class of systems. However, some system architectures P 01 0}

] > ' - private port create {
require creating and connecting together a dynamically provides r.workers requestWorker() {
determined number of components. Furthermore, even in Worker newWorker = new Worker();
programs with a static architecture, the top-level component must r.workers connection
be instantiated at the beginning of the application. = connect (r.workers, newWorker.serve);
return connection;
3.4.1 Dynamic Component Creation }}
Components can be dynamically instantiated using the same }
syntax used to create ordinary objects. For example, Figure 2 _
shows the compiler'snain method, which creates@Gompiler public component class Router {
component and calls itavoke method. At creation timeach public port interface workers { .
ds the component instance that created it as its requires void hitpRequest(inputStream in,
component records p - ! OutputStream out);
parent component For components like€Compiler that are }
instantiated outside the scope of any component instance, the public port request {
parent component isull . requires this .workers requestWorker();
}
Communication integrity places restrictions on the ways in which public void listen() {
component instances can be usececdBise only a comenent’s ServerSocket server = new ServerSocket(80);
parent can invoke its methods directly, it is essential that typed while (true) {

Socket sock = server.accept();

references to subcomponents do not escape the scope of their this .workers conn = main.requestworker();
parent component. This requirement is enforced by prohibiting conn.htth.Qequest(sock.getlnput.Stream(), ’
component types in the ports and public ir#egs of components, sock.getOutputStream());

and prohibiting ordinary classes from declaring arrays or fields of _}
component type. Since a component instance can still be freely }}
passed between components as an expression oOtyjeet , a

ComponentCastException is thrown if an expression is public component class Worker extends Thread {

downcast to a component type outside the scope of its parent public port serve {

component. provides void httpRequest(InputStream in,
OutputStream out) {

342 Connect expreSS|onS this .in= in; this .out = out; start();

Dynamically created components can be connected together at run }

time using aconnect expressionFor instance, Figure 3 shows a public void run() {

web server architecture where Router component eceives File f = getRequestedFile(in);

incoming HTTP requests and passes them through connections to SendHeaders(out);

Worker components that serve the request. The copyFile(f, out);

requestWorker method of the web server dynamically creates // more method & data declarations...

a Worker component and then connectsse&ve port to the }

workers port on theRouter .

Communication integrity requires each qmment to explicitly Figure 3. A web server architecture. TheRouter

document the kinds of architectural interactions that are permitted Subcomponent accepts incoming HTTP requests, and pass

between its subcomponents. obnnection patterris used to them on to a set ofWorker components that respond.

describe a set of connections that can be instantiated at run timeWhen a request comes in, theRouter requests a new

using connect expressions. For examptinect pattern worker connection on its requestWorker port. The

r.workers, Worker.serve describes a set of connections WebServer then creates a new worker and connects it to

between the component fietdand dynamically creatéd/orker the Route r. The Router assigns requests toVorkers

components. through the workers port.

Each connect expression must match a connection patterrcomponent field specified in the pattern, or an instance of the type
declared in the enclosing component. A connect expressionspecified in the pattern. The connect expression in the web server
matchesa connection pattern if the connected ports are identical example matches the corresponding connection pateraube

and each e@nnected component instance is either the same

thenewWorker component in the connect expression is of static about the temporal order of architectural events, or about
typeWorker , the same type declared in the pattern. component multiplicity.

ArchJava’s definition of communication integrity supports
reasoning about communication through method calls between
components. Program objects can also communicate through data
component in the web server communicates with seVéaker sharing via gligsed objects, static fields, apd t.he runtime system.
components,each through a differentoonection. A port However, e?<|st|ng ways t.o control gommunlcatlon through shared
’ : . data often involve significant restrictions on programming style.
%uture work includes developing ways to reason about these
additional = communication channels while preserving
Each port interface defines a type that includes all of the requiredexpressiveness. Meanwhile, our experience (described below)
methods in that port. Avort interface typecombines a port's suggests that rigorous reasoning about architectural control flow
required interface with annstance expressiorthat indicates can aid in program understanding and evolution, even in the
which component instance the type allowscess to. For presence of shared data structures.
example, in theRouter component, the typthis .workers . .
refers to an instance of theorkers port of the currenRouter 4. ArchJava Formalization
component (in this casthis would be inferred automatically if ~ In this section, we discuss the formal definition of communication
it were omitted). The typeworkers refers to an instance of integrity and ArchJava’s semantics. The next subsection defines

theworkers port of ther subcomponent. This type can be used communication integrity in ArchJava and intuitively explains how

3.4.3 Port Interfaces
Often a single component participates in several connections
using the same conceptual protocol. For exampleRtheer

communicate through different connections at run time.

variable declarations such a®nn in the listen method. semantics of ArchFJ, a language incorporating the core features of

Required methods can be invoked on expressions of portiegerf ArchJava. Finally, subsection 5.3 outlines proofs of

type, as shown by the call tdttpRequest within communication integrity, subject reduction, and progress for
’ ArchFJ.

Router.listen

Port interfaces are instantiated fnoect expressions. A connect 4.1 Definition of Communication Integrity
expression returns aonnection objectthat represents the Communication integrity is the key property of ArchJava that
connection. This connection object implements the port ensures that the implementation does not communicate in ways
interfaces of all the annected ports. Thus, in Figure 3, the that could violate reasoning about control flow in the architecture.

connection objectconnection implements the interfaces |ntuitively, communication integrity in ArchJava means that a
Worker.serve and rworkers , and can therefore be component instancéA may not call the methods of another
assigned to a variable of typavorkers . component instancB unlessB is A's subcomponent, ok andB

Provided methods can obtain the connection object through which@re sibling subcomponents of a common component instance that
the method call was invoked using thender keyword. The declares a connection or connection pattern between them.
detailed semantics afender and other language features are We now precisely define communication integrity in ArchJava.
covered in the ArchJava language reference available on thelet theexecution scopef component instance A on the run time

ArchJava web site [ACNO1a]. stack, denote@scopéA), be any of A’s executing methods and
. . any of the object methods they transitively invoke, until another
3.4.4 Removing Components and Connections component's method is invoked.

Just as Java does not provide a way to explicitly delete objects,
ArchJava does not provide a way to explicitly remove components P€finition 1 [Dynamic Execution Scope]: Let mbe an executing
and connections. Instead, components are garbage-collectef€thod with stack framenf. If mis a component method, then
when they are no longer reachable through direct references off U escopéhis). Otherwisemf U escopécaller(mf)).
connections. For example, in Figure 3Warker component Now we can define communication integrity:

will be garbage collected when the reference to the original
worker fewWorker) and the references to its connections
(connection andconn) go out of scope, and the thread within
Worker finishes execution.

Definition 2 [Communication Integrity in ArchJava]: Let :< be

the subtyping relation over component classes. A program has
communication integrity if, for all run time method calls to a
methodmof a component instandein an executing stack frame

3.5 Limitations of ArchJava mf, wheremf [escopé), either:

There are currently a number of limitations to the ArchJava 1. a=b,or
approach. Our technique is presently only applicable to programs 2

! . .) . a = pareni{b), or
written in a single language and running on a single JVM, P (b)

although the concepts may extend to a wider domain. 3. parenta) = paren{b) [“connect [pattern]
Architectures in ArchJava are more concrete than architectures in Ay 2.p 1,...,(f]t) n-p n" O clasgparent{a))
ADLs such as Wright, restricting the ways in which a given 00, Ol.ns.t. paren(a).fi =a Otypga)<:ti) O
architecture can be implemented—for example, inter-component (parenta).f; =b Otypeb)<:t;) O
connections must be implemented with method calls. Also, in m0 requiredmethod;) O

order to focus on ensuring communication integrity, we do not yet

A) - m0 providedmethodgp;)
support other types of architectural reasoning, such as reasoning

Syntax:
CL ::= class C extends C {C f; K M}
CP =component clas s P extends
[PlObject] {C f; KMR X}
K = E(C) {super(f); this.f = f;}
M 2= T m(T x) { return e; }
R 2= required T m(T x)
X ::= connect pattern (P)
e n=x
| ef_
| e.m(e,_this)

| newC(e)

I ?Ce;/v P(e, <fresh>, e parent)
e
(e.P R€

| cast(this P, e)

| connect(e, this)
| error

Figure 4. ArchFJ Syntax

4.2 Formalization as ArchFJ
We would like to use formal techniques to prove that the
ArchJava language design guarantees communication integrity,

Types:
T =P
|leP r
|E _
|Ue.P R
Subtyping:
T<T (S-REFLEX)
S<T T< V (S-TRANS)
S<V
P<Q

=R (S-REQUIRED)
e.Pr < €,Qp

T < Object (S-OBJECT)

_ePglePy (S-UNION)

Ue.Pg < ePy

CT(E) =[component] class E
extends F{.. }
E<F

(S-EXTENDS)

Figure 5. ArchFJ Types and Subtyping Rules

and show that the language is type safe—that is, show that certairaass, orObject (as in FJ, there are no interfaces). @onent

classes of errors cannot occur at run time. Unfortunately, proofs
of type safety in a language like Java are extremely tedious due t&

lasses also declare a set of required metRodsd a set of

the many cases involved, and to our knowledge the full Javaconnection patternx between their subcomponents.

language has never been formalized and proven type safeExpressions include field lookup, method calls, object and
Therefore, a standard technique, exemplified by Featherweightcomponent creation, various casts, a connect expression, and an
Java [IPW99], is to formalize a core language that captures theerror expression. These are extended from FJ in a few small

key typing issues while ignoring complicating language details.

of ArchJava in ArchFJ. ArchFJ makes a number of
simplifications relative to ArchJava. ArchFJ leaves out ports;
instead, each cgmonent class has a set of required and provided
methods. Static connections and component fields are left out, as
they are subsumed by dynamically created connections
components. We also omit tsender keyword and broadcast
methods. As in Featherweight Java (FJ), we omit mtes.
These changes make our type soundness proof shorter, but do not
materially affect it otherwise.

4.2.1 Syntax

Figure 4 presents the syntax of ArchFJ. The metavari@btesl

D range over class names;and F range over component and
class namesS, T, andV range over types? and Q range over
component classe; andg range over fieldsg ande range over
expressionst ranges over labels generated<dfgesh> ; andM
ranges over methods. As a shorthand, we use an overbar to
represent a sequence. We assume a fixed classC{alnhapping
regular and component classes to their definitions. A program,
then, is a pair €T, e) of a class table and an expression.

ArchFJ includes the features of FJ plus a few extensions. Regular
classes extend another class (which ca®bject , a predefined

class) and define a constructét and a set of fieldsand
methodsv. Component classes can extend another component

ways:
We have modified Featherweight Java (FJ) to capture the essence . Al method calls capture the current objebis

in an
additional psuedo-argument which comes last and is not
passed on to the callee.

» Components are labeled with a fresh label when they are

created (labels in a method body are freshly generated when
a method call is repted with the mébd’s body). This
label allows us to reason about object identity in an
otherwise functional language (assignment is not relevant to
our type system or definition of communication integrity).
Components also keep track of their parent, and which of
their parent’'s component fields they were created with.

 In addition to regular casts to a class type, there are two new

cast forms: one that allows casting to the required interface
of a component (i.e., the set of methods the component
requires), and another that allows casting to a component
field type. The first cast accepts an instance expression type,
while the latter cast includes an argument that captures the
value ofthis in the current scope. Both arguments are
used to verify the casts in the dynamic semantics.

» A connect expression conceptually creates a connection

object on which components can invoke their required
methods. The connect expression captthiss , the parent
object that created the connection.

Computation:

field{B) =C f

d (R-FIELD)
(new E(e..)).f | - ¢
mbodym.C) = (x, &) (R-INVK)
(new C(e)).m(d, dys) —
[d/x, new C(e)/this Je,
E<C (R-CAST)
(C)new E(..)) - new E(..)
e=new E(..)« C O e=connect(..) (E-CAST)
(C)e) - error
e =new P(e, |, €parent)
mbodym,P) = (x, &)
Ais =€ 00yis =€parent (R-PINVK)
em(d, dy,) ~[d/x, efthis Je,
e=new F’(gY I, euns) P<Q (R-PCAST)
cast(e s, Q. €) - e
e = connect(..) O
(e =new P(é, l, € parent)
where €hs * € parent 0P # Q) (E-PCAST)
cast(e 5, Q, €) — error
€t = NEw P() €cast D_e P<Q (R-RCAST)
(€ cas -QR)(CONNECH € ey))
— connect(e e,)
e=new E(..) O
e =connect(e ey)
where €.y 0€ O €y =New F(.) £ Q ¢ poagy
(€ o QR(€) - error
dye Oe legal(connect(e, e,))
mbodym.connect(e eus) =80 €) (& xinvK)

(connect(€ ey))-m(d, dy)
~[d/x, e /this Je,

Figure 6. ArchFJ Reduction Rules

« We represent failed dynamic checks (such as casts) with ant
explicit error value, to make our progress theorem cleaner

to state.

4.2.2 Types and Subtypes

ArchJava’s types and subtyping rules are given in Figure 5.
Types include class and component tydes fequired interface
types of component& P r), and union types of multiple required
interfaces. Subtyping of classes and porents is defined by the
reflexive, transitive closure of the immediate subclass relation
given by theextends clauses inCT. We require that there are

no cycles in the induced subtype relation. Required interface
types follow the subtyping relation of components (ignoring the
instance expressions, which are reasoned about separately from
subtyping). Finally, every type is a subtypeQ@ifject , and a
union is a subtype of all its member types.

4.2.3 Reduction Rules

The reduction relation, defined by the reduction rules given in
Figure 6, is of the forne>e’ , read “expressior reduces to
expressione’ in one step.” We write>* for the reflexive,
transitive closure of>. The only unusual reduction rule is R-
XINVK, which allows method invocation on connection
expressions. Thembody helper function does a lookup to
determine the correct method body to invoke. Two error rules are
defined representing casts that are not guaranteed to succeed by
the type system presented below. The reduction rules can be
applied at any point in an expression, so we also need appropriate
congruence rules (such aziPe’ thene.f >e'.f), which we

omit here. Furthermore, we assume an order of evaluation that
follows Java’s normal evaluation rules.

4.2.4 Typing Rules

Most of the typing rules given in Figure 7 are standard. Typing
judgments are given in amvironment I', a finite mapping from
variables to types. Rule T-INVK places constraints on passing
connection objects to an argument position declared with a
required interface and instance expressiothisf , to ensure that

the connection object does indeed connect the receiver object.
Rule T-PNEW introduces qualified component types. Rule T-
CONNECT introduces union types for connections. In addition,
T-CONNECT verifies that some connection pattern in the current
component matches the types of the connected objects; this will
be important later for establishing that reduction cannot get stuck
due to an illegal connection.

Class, method, and connection typing rules check for well-formed
class definitions, and have the form “class declardfiois OK,”

and “method/connectioX is OK in E.” The rules for class and
method typing are similar to those in FJ. In the case of
component classes, the typing rule verifies that only subclasses of
Object may define required methods—as in ArchJava,
component subclasses may only inherit existing required methods
from their component superclass. The connection typing rule
verifies that each required rhetd has a unique provided method
with the right signature, and that every method name has only one
signature across all the required methods.

We have made one significant simplification relative to FJ. We
do not distinguish between upcasts, downcasts, and so-called
“stupid casts” which cast one type to an unrelated one. This
means that our type system does not check for “stupid casts” in
he original typing derivation, as Java’'s type system does.
However, the change shortens our presentation and proofs
considerably, and the stupid casts technique from FJ can be easily
applied to our system to get the same checks that are present in
Java.

Expression Typing:
I Fx0Orx) (T-VAR)

r+e,0G fields(G,) =C f
M ke f, 0G

(T-FIELD)

M he0T mypémTf, e, 1)=T-T
rteds S<T
I Foegs OTps
T, =this.P implies § = e,Sg

i (T-INVK)
I Fe.m(e ey)OT[e,/this]
fieldC) =D f rrE (_eIZ]C C<D (T-NEW)
I F new C(e)C
fieldgP)=Df T FedC C< D
rre, 0T,
(T-PNEW)

I F new P(E, <fresh > e)OP

FFey ORyw T HeOP P<Q
connect pattern(éDconnectéPthis)
I F connect(e ey,)OU(e.Py)

(T-CONNECT)

[+edh (T-CAST)
I F(e .o -Prl Che He o -Prl C
[FeOT T key DRy (T-PCAST)

I F cast(e 4 ,Q.)0Q

Class Typing:
K = F(B 6 (_:f_) {super(a); this. f = f_;}
fieldE=Dg NI X OKIN P
E=Object O #(ﬁ)=0 (T-CLASS)
[component] class F extends E
{Cf; K M[R X} OK

Method Typing:
x:T, this :.E FedS S<T
CT(E) =[component] class E extends F {..}
overridgm, F, T T) T,'T' not components
T m(‘T’ ;){ return e; } OKin E

(T-METH)

Connection Typing:
Oi mtypém,Py) =TT implies
0#i st.mtypém,p;) =TT
0 Ok# j mtypém,R,) not defined
Oi, j mtyp€m,Py) =T- TOmtypém,By) =S.5S
implies T=SOT=S
connect pattern(E) OKIN Q
Figure 7. ArchFJ Static Semantics

(T-X)

Field lookup:
fieldgObject)=e
CT(E) =[component] class E extends F
{CF: K M[R X}
fieldgF) =D g

fieldfE)=D g, C f

Connection lookup:
connect@Object)=
CT(P) =component class P extends E
{Cf; KMR X
connectgE) =Z

connectf) = X,, X

Method type lookup:

<

CT(E) =[component] class E extends F {...
T m('T' ;) {return e;} oM
mtypém,E) =TT

Z|

CT(E) s[component] class E extends F{...

m isnotdefinedin M

mtypgm,E) = mtypgm,F)

T
i

CT(P) =component class P extends E{...
required T m('T' ;)Dﬁ
mtypém,P) =TT

T
i

CT(P)=component class P extends E{...

m isnotdeclaredn R
mtypém,e.P z) = mtypém,e.E 5)

Cihis =€, mefém:ei-PR‘)_:T ST
mtypém,U(e.Pg). ey)=T - T

Figure 8. ArchFJ Auxiliary Definitions

4.2.5 Auxiliary Definitions

Most of the auxiliary definitions shown in Figures 8 and 9 are
straightforward and are taken from FJ. The connection typing
rule verifies that the passed-this expression is one of the
instance expressions in the union type. The connection method
lookup rule chooses the componémiroviding the method with
mtype based on the static types in the original connection
declaration. It is guaranteed to choose a unique component
because the amnection typing rule implies thahtypeis only
defined for one of the types in the connection. It then picks the
actual method body dynamically using the usoddody rule.
Finally, it returns the expression to be passedhas in the
method call.

The legal rule checks that a connect expression corresponds to a
connection pattern. It also verifies that the connect expression
was created inside the parent componemriash sibling.

Method body lookup:
CT(E) =[component] class E extends F {...K/I..}
C m(E: ;) {return e;}DK/I
mbodym,E) = (x, €)

CT(E) s[component] class E extends F{...K/I..}

m isnotdefinedin M
mbodym,E) = mbodym,F)

s = New Ry (..) e =new @)
connect pattern(I%DconnectePthis)
Q<P mtypdmP)=T T
mbodym,Q) = (X, &,)
mbodym,connect(5, €is) =(;, €y €)

Legal Connections:

€pis = NEW Ry, (..) e =new Q(d;,l;,ey)
connect pattern(I?oDconnecteris)
Q<P

legal(connect(E, €is))

Ui e =ey, Uey =€y,

Valid method overriding:

mtypém, E)=T - T,, implies S=T and S =T
overridgm, E, S- §)

Fiaure9. More Auxiliarv Definitions

4.3 Theorems

Proof sketch: The main property required is the following term-
substitution lemma:

Lemma 1 [Term Substitution]: If T, x:S FeOT, and

I +dOS, wheres < S, then T k[d/xe OT, for some
T <T.

Lemma 1 is proved by induction on the derivation of
rnox:S FedT,.

The theorem itself can then be proved by induction on the
derivation ofe, - e, , with a case analysis on the last rule used.

Lemma 1 is useful in many of the steps, and especially for the
congruence rules.

The only tricky case is to show that the preconditions of T-INVK
still hold after a reduction step. This can be shown based on a
case analysis on the introduction of required component types (T-
INVK, T-CONNECT, and T-CAST), and a lemma that term
substitution preserves the required relationships among instance
expressions.

Theorem [Progress]: Supposee is a well-typed expression.
Then eithere has arerror subexpression, @ is avaluemade
up of only new and connect expressions b €' .

Proof sketch: The theorem is proved by induction on the
derivation of the reduction of. For each reduction rule, we
show that any valid typing for the subexpressions in the left-hand-
side, together with the assumption of progress for the
subexpression, implies the preconditions for the reduction rule.
In most cases the implication is clear, but two interesting lemmas
are necessary for rules R-PINVK and R-XINVK, respectively.

Lemma 2 [An expression of component type reduces this
or a direct child component ofthis]:

We state three main theorems: communication integrity, subjectConsider an expressiore.m(e,..) where e.=new E(...),
reduction, and progress. Subject reduction and progress togethehpodym E) = (x.e o), andeo has a subexpressianm(e,, this)

imply that the ArchJava type system is sound. First, the reductionIf

rules ensure communication integrity:
Theorem [Communication Integrity in ArchFJ]:
1. For all direct method invocations on a componerhat

succeed, eitheP or P's parent component is the current
componenthis

2. For all method invocations on a connection thateed, the
current componenP is part of the connectior? and the
componentQ being invoked either have the same parent or
one is the parent of the other, and the paRentleclared a
connection pattern betwe@wandQ

Proof: Part 1 of communication integrity is ensured by the
preconditiondis =& O d tis =€parent Of R-PINVK. Part 2 of
communication integrity is ensured by the preconditign Oe

of R-XINVK as well as the definition dégal.

x: T, this :E F e, OP and
. - * new Q(..), then eithee; = this
>%e ¢.

[d/x,

Or €parent

e, /thisle -+ € parent

This lemma can be proved by a case analysis of the last typing
rule used in the typing derivation @f. There are only three rules
that result in a component type: T-VAR, T-PNEW, and T-PCAST
(methods cannot return component type, by the well-formed
method rule). The T-VAR rule gives a component type to a
variablex, but the only way a component type can be introduced
into I is by the component method typing rule, with x =this . If

the component type was introduced in T-PNE®/, = new
Q(...,this) and soeparent = €:. If the component type came
from T-PCAST,e1 must be of the formast(this, P, new
Q(...,eparent)) , and o) the derivation of
[dix, efthisle |, -* new Q(...e must include a

reduction rule R-PCAST which verifies th@garent = €¢ in the

parent)

The presentation of our Subject Reduction and Progress theoremg, expression

is adapted from FJ [IPW99].

Theorem [Subject Reduction]: If I + e,0T, ande, - €, , then
r + e, 0T, forsomeT, < T,.

Lemma 3 [Well-typed connection expressions are legal]:If
I F connect(e, ey,)OT thenlegal(connect(e, ey)).

The typing rule T-CONNECT, together with Lemma 2,
demonstrates that all the required propertidegal hold.

5. Evaluation [AG97] Robert Allen and David GarlalA Formal Basis for

We have written a prototype compiler for ArchJava, which is Architectural ConnectionACM Transactions on Software
available for download from the ArchJava web site [ACNO1a]. In Engineering and Methodology, 6(3):213---249, July 1997.
order to determine whether the ArchJava language enabledB95] Jeremy Buhler. The Fox Project. ACM Crossroads 2.1,
effective component-oriented programming, we undertook a case September 1995.

study applying ArchJava to Aphyds, a 12,000-line circuit design [FF98] M. Flatt and M. Felleisen. Units: Cool modules for HOT

application written in Java. languages. In PLDI'98 - ACM Conf. on Programming
Results from our case study [ACNO1b] indicate that for this Language Design and Implementation, pages 236--248,
program, the developer's architecture can be expressed in 1998.

ArchJava V\(ith relati\(ely little effort (apogt 30 programmer hours?. [GS93] David Garlan and Mary Shaw.
The resulting architecture yields insight into the program’s
communication patterns, and may be useful in eliminating
software defects.

An Introduction to
Software Architecture. In Advances in Software Engineering
and Knowledge Engineering, | (Ambriola V, Tortora G,

Eds.) World Scientific Publishing Company, 1993.

6. Conclusion and Future Work [IPW99] Atsushi Igarishi, Benjamin Pierce, and Philip Wadler.
ArchJava allows programmers to effectively express software Featherweight Java: A minimal core calculus for Java and
architecture and then seamlessly fill in the implementation with GJ. In Proceedings of ACM Conference on Object Oriented

Java code. This paper has motivated and outlined a language Languages and Systems, November 1999.
design integrating architecture and implementation, and proved[LHgg] Karl Lieberherr and lan HollandAssuring Good Style
type soundness and communication integrity in a formalization of for Object-Oriented ProgramsEEE Software, Sept 1989.

ArchJava. At every stage of development and evolution, Kh d hi
ArchJava enforces communication integrity, ensuring that the (Lves] DC Luckham, J. Vera. An Event_Base Architecture
Definition Language. IEEE Transactions on Software

implementation conforms to the specified architecture. Thus, . .

ArchJava helps to promote effective architecture-based design, ~ Engineering Vol. 21, No 9, September 1995.
implementation, program understanding, and evolution. [MNSO01] Gail C. Murphy, David Notkin, and Kevin J. Sullivan.
Software Reflexion Models: Bridging the Gap Between
Design and Implementation. To appealBE&E Transactions
on Software Engineerin@001.

In future work, we intend to extend the case study to larger
programs, to see if ArchJava can be successfully applied to
programs of 100,000 lines and up. We will also investigate
extending the language design to enable more advanced reasonin®QR95] M. Moriconi, X. Qian, A.A. Riemenschneider. Correct
about component-based systems, including temporal ordering Architecture RefinementlEEE Transactions on Software
constraints on component method invocations and constraints on Engineering Vol. 21, No 4, April 1995.

data sharing between components. [MT00] Nenad Medvidovic and Richard N. Taylor. A

Classification and Comparison Framework for Software
7. Acknowledgements Architecture Description Language€EE Transactions on
We would like to thank David Notkin, Todd Millstein, Vassily Software Engineeringvol. 26, no. 1, pp. 70-93, January
Litvinov, Vibha Sazawal, Matthai Philipose, and themaymous 2000.

reviewers for their comments and suggestions. This work was
supported in part by NSF grant CCR-9970986, NSF Young
Investigator Award CCR-945776, and gifts from Sun

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of
Standard ML. The MIT Press, Cambridge, Massachussetts,

Microsystems and IBM. 1990.
[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations
8. References for the Study_ of _Software Architecture. ACM SIGSOFT
[ACNO1a] Jonathan Aldrich, Craig Chambers, and David Notkin. Software Engineering Notes, 17:40--52, October 1992.
ArchJava web site. [SC00] J. C. Seco and L. Caires. A Basic Model of Typed
http://www.cs.washington.edu/homes/jonal/archjava/ Components. Proc. European Conference on Object-
[ACNO1b] Jonathan Aldrich, Craig Chambers, and David Notkin. Oriented Programming, 2000.
Component-Oriented Programming in ArchJava. In [SDK+95] M. Shaw, R. DelLine, V. Klein, T.L. Ross, D.M.
Proceedings of the OOPSLA '01 Wohiap on Language Young, G. ZelesnikAbstractions for Software Architecture
Mechanisms for Programming Software Components, July and Tools to Support ThenEEE Transactions on Software
2001. Available at Engineering, Vol. 21, No 4, April 95.
http://www.cs.washington.edu/homes/jonal/archjava/ [Sre01] V. C. Sreedhar. ACOEL: A Component-Oriented

Extensional Language. Unpublished manuscript, July 2001.

10

