
A Self-Replication Algorithm

to Flexibly Match Join Point Traces

Paul Leger and Éric Tanter

Department of Computer Science

University of Chile

2

Stateful Aspects

In a Nutshell

An aspect can only match a single join point

A stateful aspect can match a join point trace
[Douence+2005]

Stateful aspects are used in security flaws,

application errors, and crosscutting concerns

a b c d

3

Algorithms to Match

Join Point Traces

a a b

a b

Single Match

Sequence

Join Point

Trace

Or this Single Match Multiple Matches

V

1 1

Multiple Matches with v=1

The matches of a sequence
depend on

the matching semantics of the algorithm

4

Fixed Semantics to Match Traces

 tracematch() {

 sym edit after: call(Editor.edit());

 edit edit edit {

 Editor.save();

} }

sym save after: call(Editor.save());

To adapt the matching semantics of an algorithm,
developers code around it

Autosave feature: the document is automatically saved

every three editions

Tracematches
support

 multiple matches

An artificial symbol is
added to support

single match

edit → edit → edit → edit → edit → edit edit → edit → edit → save → edit → edit → edit → save

Matcher Cells

An algorithm to flexibly match join point traces,

where developers can define their own semantics

Based on self-replication behavior

6

Self-Replicating Behavior

In a Nutshell

creation

 nothing

 death

Reactions of biological cells into a solution

to a reagent trace

 Cell

solution

reagent

7

Matcher Cells

C0 = { }

a1 b

R = {…}
Match

cell

Seed

 a b
v

A cell contains a sequence and bound variables,

and a reagent corresponds to a join point

 a b
v

 a b
v

b v=1
b v=1

 a b
v

v=1

Examples of Matching Semantics

with Matcher Cells

With simple reaction rules, Matcher Cells makes it

possible to express

a wide range of matching semantics

9

Multiple Matches

R = {apply reaction}

C0 = { }

b

 a b
b a

 a b

 a b

b

 a b b

a

b

 a b
b

10

Single Match

R = {apply reaction,

 kill creators}

C0 = { }

b

a

 a b
a

b

b

 a b

11

Single Match at a Time
(the autosave feature solution)

R = {apply reaction,

 kill creators,

 add seed}

C0 = { }

b

a

 a b
a

b

b

 a b

 a b

12

Life-time for a Match

R = {apply reaction,

 kill creators,

 trace life-time,

 add seed}

C0 = { }

b

a

 a b

 a b

…

Δt > time

 a b

13

Only the First Match

R = {apply reaction,

 kill all cells after match}

C0 = { } a b
v z

v=z

 a b
v z

v=z

a1

 a b
v z

v=z

b v=1 v=z a2

 a b
v z

v=z

b v=1 v=z

b v=2 v=z

b2

v=2, z =2

a2

b2

An implementation of Matcher Cells

Matching semantics is defined by

the composition of rules (small functions)

15

Reaction of a Cell

react: Cell x JP → Cell

• returns a new cell if matches

• returns the same cell if does not match the join point

16

Rules

rule: List<Cell> x JP → List<Cell>

var applyReaction = function (cells, jp) {
 return removeDuplicates(append(cells, map(cells, react, jp))); }

var killCreators = function(rule) {
 return function (cells, jp) {
 var nextCells = rule (cells, jp);
 return difference(nextCells, getCreators(nextCells, cells)); } }

var addSeed = function(sequence) {
 return function (rule) {
 return function (cells, jp) {
 var nextCells = rule(cells, jp);
 return length(nextCells) == 0 || onlyMatchCells(nextCells)?
 append(nextCells,[createSeed(sequence)]): nextCells; }}}

The elemental rule

Rule designators

allow

rule composition

Rule designators

can be parametrized

17

Multiple Matches

b

 a b
b a

 a b

b

 a b b

a b

 a b
b

var multipleMatches = applyReaction;

18

Single Match

var singleMatch = killCreators(applyReaction);

b

a

 a b
a

b

b

19

Single Match at a Time

var singleMatchAtATime = addSeed(sequence)(killCreators(applyReaction));

b

a

 a b
a

b

b

 a b

20

Life-time for a Match

b

a

 a b …

Δt > time

 a b

var lifeTimeForAMatch =
addSeed(sequence)(traceLifeTime(delta)(killCreators(applyReaction)));

21

Only the First Match

var onlyTheFirstMatch = killAllCellsAfterMatch(applyReaction);

 a b v z
v=z

a1

 a b v z
v=z

b v=1 v=z
a2

 a b v z
v=z

b v=1 v=z

b v=2 v=z

a2

b2

v=2, z =2

b2

22

Conclusions

The Matcher Cells algorithm

 - allows developers to define their own matching semantics

 - using the composition of reaction rules of self-replication

algorithms

Application

 We implement an expressive and open stateful aspect

language using Matcher Cells (http://pleiad.cl/otm)

Try it on-line:

http://pleiad.cl/otm/matchercells

http://pleiad.cl/otm
http://pleiad.cl/otm/matchercells

23

Adding Customized Information to Cells

react: Cell x JP x [Seq x Env → Cell] → Cell

Some rules require that all cells contain

customized information

For example, the lifeTimeForAMatch rule requires a cell time

function (seq, env) {
 env = env.bind(“time”, getTime());
 return env;
};

24

Independence between

 Sequence Language and Matcher Cells

• The reaction of a cell strongly depends on the sequence

language used

• When a cell matches a join point and/or binds a variable,

the reaction of a cell has to return the next step in the

matching

• Apart from the previous restriction, Matcher Cells

does not impose another restriction to

the sequence language

