=
E II_.-""-_ — .I} J- IEIIIIIIII.' -':I—lllr .II._.
TU Berlin Software Engineering Group

Towards Type Safety
of
Aspect-Oriented Languages

by
Florian Kammuller & Matthias V6sgen

Outline

* Introduction
* Featherweight Java and formalization

 Formalization of aspects

 Formalization of weaving
* AO type soundness
e Future Work

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

Theorem provers
How do theorem provers work?

e Automatic or human-aided term-rewriting

What are the applications?
* Proofs over complex structures (like prog. languages)

e Extraction of verified programs

Theorem provers and type-safety
Project Bali: Verification of the Java specification

using the prover Isabelle.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

Popular theorem provers

Isabelle

* Classical logic
e Extensive libraries
e User friendly

e Constructive logic
* Few libraries

TWELF

.
(...)

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

Why did we choose Coq?

Cog Is a constructive theorem prover

Constructive proofs can be interpreted as algorithms
(Curry-Howard Isomorphism)

-> Co(can extract code from proofs

-> \We can extract a typechecker out of a proof for type
safety

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

Definitions of type soundness

Natural language definition:

“Well Typed terms never get stuck.”

Formal definition: Progress & Preservation

Progress: Well-typed terms can be evaluated
or they are values.

Preservation: The evaluation of a well-typed term leads to
a another well-typed term.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages 6

Outline

 Featherweight Java and formalization

 Formalization of aspects

 Formalization of weaving
* AO type soundness
* Future Work

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

Featherweight Java

Java reduced to: e Object creation
* Method invocation
* Field access
e Casting
e \ariables

“Inside every large language Is a small language
struggling to get out.”

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages 8

Properties of Featherweight Java

* Inheritance Is part of the language

e Strictly formalized type system

* VVery compact

* Quasi-functional language
 Nominal type system

* A-calculus can be implemented in it

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages 9

Featherweight Java example

class Pair extends Object {
Object fst;
Obiject snd;

Pair(Object fst, Object snd) {
super(); this.fst = fst; this.snd = snd; }

Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); }

}

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

10

Cog-FJ-Formalization
by Stephanie Weirich

* Nearly complete formalization of FJ in Coqg
* Type soundness proofs were made
e Clear top-down structure

'

Suitable foundation for extensions

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

11

Type-soundness in FJ

Cog-Code for progress and preservation

Lemma type_soundness :
forall CT: classTable e:expression e':expression,
class_table typing CT // All classes well typed
-> multi_step CT e €' // Reduction from e to e’ ex.
-> ~(exists e", reduction CT e'e") // No reduction from e’ ex.
-> (value e'V failed_cast CT e'). // e'is a value or a failed cast

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages 12

Outline

* Formalization of aspects

 Formalization of weaving

 AO type soundness
* Future Work

F. Kammiiller &M. Visgen

Towards Type Safety of Aspect-Oriented Languages

13

Formalization of AO

Weavm

Aspect

RN

Advice

Pointcut

Advice Expression Pointcut Selection

F. Kammiiller &M. Visgen

Towards Type Safety of Aspect-Oriented Languages

Class

(...)

14

Aspects

ASpeCt\
Name {Advice}
{Fields}
Superaspect-Name {Methods} {Pointcuts}

Cog-Code:

Inductive aspectDef : Set ;=
| Aspect : aspectName -> aspectName -> list fieldDef ->

methodTable ->pointcutTable -> adviceTable -> aspectDet.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

15

Pointcuts

Execution Pointcut

7N\

Name {Selections}

Cog-Code:

Inductive pointcutDef: Set :=
| Execution : pointcutName -> pointcutSelectionList
-> pointcutDef.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

16

Pointcut Selections

Pointcut Selection

N\

Classname Methodname

Cog-Code:

Inductive pointcutSelection : Set :=
| methodSel: className -> methodName ->
pointcutSelection.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

17

Advice

Advice

7\

Pointcutname Advice expression

Cog-Code:

Inductive adviceDef: Set =
| aroundAdvice: pointcutName -> adviceExp -> adviceDet.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

18

Advice Expression

They are method expressions including
a proceed statement

Cog-Code:

Inductive adviceExp : Set =
proceed: adviceExp
adVar : varName -> adviceExp
adFieldProj : adviceExp -> fieldName -> adviceExp
adMethodlInvk : adviceExp -> methodName ->
list adviceExp -> adviceExp
| adNew : className -> list adviceExp -> adviceExp
| adCast : className -> adviceExp -> adviceExp.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

19

Outline

* Formalization of weaving

 AO type soundness
e Future Work

F. Kammiiller &M. Visgen

Towards Type Safety of Aspect-Oriented Languages

20

Weaving, top-level

. Weavin
An aspect-Table is weaved / \g

INnto a class-Table
{Aspects} {Classes}

Cog-Code:

Definition wv_AT _CT (CT: classTable) (AT: aspectTable) :
classTable :=
MapCollect _ (fun _asp =>wv_asp CT CT asp) AT.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages 21

Weaving, bottom level

. N Weaving
An advice expression IS / \
weaved into a method |
expression Advice | I\/Iethod.
Expression EXxpression
Cog-Code:

Fixpoint merge_expr (mExpr: exp) (aExpr: adviceExp) {struct aExpr}: exp :=
match aExpr with
proceed => mExpr
| adVar Vv => Varv
| adFieldProj aExpr2 fieldN => FieldProj (merge _expr mExpr aExpr2) fieldN
(...)

end.

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages 22

Outline

e AO type soundness
e Future Work

F. Kammiiller &M. Visgen

Towards Type Safety of Aspect-Oriented Languages

23

Type soundness (1)

Is an aspect table well typed?

Parameter asp_table typing: aspectTable -> Prop.

A well typed aspect table weaves a well typed

class table
Axiom type soundness_woven:
forall (AT:aspectTable) (CT:classTable),
class_table typing CT
-> asp_table typing AT
-> class_table typing (wv_AT _CT CT AT).

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

.

Type soundness (2)

Progress and Preservation with AO:

Lemma weave type soundness:
forall (CTO CT: classTable)(e e': exp)(AT: aspectTable),
CT=wv_AT CT CTO AT
-> class_table typing CTO
-> asp_table typing AT
-> multi_ stepCT e €'
-> ~(exists e", reduction CT €' e")
-> (value €'V failed_cast CT ¢').

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

25

Outline

e Future Work

F. Kammiiller &M. Visgen

Towards Type Safety of Aspect-Oriented Languages

26

Future work

There Is a lot to do
 Completion of the formalization

* Proof type soundness, confinement etc.
* |nvestigate the runtime weaving problem

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

27

Thanks for listening!

F. Kammiiller &M. Visgen Towards Type Safety of Aspect-Oriented Languages

28

