
Open Modules: A Proposal for
Modular Reasoning in Aspect-Oriented Programming

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jonathan.aldrich@cs.cmu.edu

ABSTRACT
This paper makes two contributions to a formal under-
standing of aspect-oriented programming. First, we de-
fine TinyAspect, a formal model capturing core AOP con-
cepts. Compared to previous formalizations of AOP con-
structs, TinyAspectis extremely small, models aspects at
the source level, and is defined using structured operational
semantics and syntax-directed typing rules. In combination,
these properties make it easy to investigate aspect-oriented
language extensions and prove theorems about them.

Second, we propose Open Modules, a module system for
TinyAspectthat guarantees modular reasoning in the pres-
ence of aspects. Modular reasoning can be challenging in
AOP systems because advice can change the semantics of
a module from the outside. Open Modules are “open” in
that external aspects can advise functions and pointcuts in
their interface, providing significant aspect-oriented expres-
siveness that is missing in non-AOP systems. In order to
guarantee modular reasoning, however, our system places
limits on advice: external aspects may not advise function
calls internal to a module, except for calls explicitly exposed
through pointcuts in the module’s interface.

We use a notion of bisimulation to show that Open Mod-
ules enforce Reynolds’ abstraction theorem, a strong encap-
sulation property. This theorem guarantees that clients are
unaffected by changes to a module, as long as those changes
preserve the semantics of the functions and pointcuts in the
module’s interface.

1. Outline
This paper makes two contributions: the definition of a

new formal model for aspect-oriented programming, and a
proposed module system for aspects. In order to cleanly
separate these contributions, we motivate each in its own
section. We begin in Section 2 with the presentation of
TinyAspect, a minimal core language for aspect-oriented
programming.

Section 3 motivates the need for better module systems in
aspect-oriented programming, and provides an overview of
Open Modules, our proposed design. Section 4 formalizes
the Open Modules proposal as an extension to TinyAspect.
In Section 5 we use a notion of bisimulation to show that
Open Modules enforce Reynolds’ abstraction theorem, a
strong encapsulation property. Section 6 discusses related
work, Section 7 outlines future work, and Section 8 con-
cludes.

Names n ::= x

Expressions e ::= n | fn x:τ => e | e1 e2 | ()

Declarations d ::= •
| val x = e d
| pointcut x = p d
| around p(x:τ) = e d

Pointcuts p ::= n | call(n)

Types τ, σ ::= unit | τ1 → τ2 | pc(τ1 → τ2)

Figure 1: TinyAspect Source Syntax

2. The TinyAspect Language
We would like to use a formal model of aspect-oriented

programming in order to study language extensions like the
module system discussed in the next section. While other
researchers have used denotational semantics [22], big-step
operational semantics [12], and translation systems [14, 20] to
study the semantics of aspect-oriented programming, small-
step operational semantics have the advantage of providing
a simple and direct semantics that is amenable to syntactic
proof techniques.

Jagadeesan et al. have proposed an operational semantics
for the core of AspectJ, incorporating several different kinds
of pointcuts and advice in an object-oriented setting [10].
These features are ideal for modeling AspectJ, but the com-
plexity of the model makes it tedious to prove properties
about the system.

Walker et al. propose a much simpler formal model incor-
porating just the lambda calculus, labeled join points, and
advice [21]. However, their system is not intended to model
the source-level constructs of langauges like AspectJ directly;
instead, it is a foundational calculus into which source-level
AOP constructs can be translated. It is considerably more
general than existing languages like AspectJ, and so proper-
ties that might be true at the source level of a language may
not hold in the foundational calculus. Thus, a source-level
formal model would be a more effective way to investigate
many source-level properties.

We have developed a new functional core language for
aspect-oriented programming called TinyAspect that is in-
tended to make proofs of source-level properties as straight-
forward as possible. As the name suggests, TinyAspect is
tiny, containing only the lambda calculus with units, declara-

tions, pointcuts, and around advice. TinyAspect directly
models AOP constructs similar to those found in AspectJ,
making source-level properties easy to specify and prove us-
ing small-step operational semantics and standard syntactic
techniques. Although we are working in an aspect-oriented,
functional setting, our system’s design is inspired by that of
Featherweight Java [9], which has been successfully used to
study a number of object-oriented language features.

Figure 1 shows the syntax of TinyAspect. Our syntax is
modeled after ML [15], so that TinyAspect programs are
easy to read and understand. Names in TinyAspect are
simple identifiers; we will extend this to paths when we add
module constructs to the language. Expressions include the
monomorphic lambda calculus – names, functions, and func-
tion application. To this core, we add a primitive unit ex-
pression, so that we have a base case for types. We could
add primitive booleans and integers in a completely stan-
dard way. Since these constructs are orthogonal to aspects,
we omit them.

In most aspect-oriented programming languages, includ-
ing AspectJ, the pointcut and advice constructs are second-
class and declarative. So as to be an accurate source-level
model, a TinyAspect program is made up of a sequence of
declarations. Each declaration defines a scope that includes
the following declarations. A declaration is either the empty
declaration, or a value binding, a pointcut binding, or advice.
The val declaration gives a static name to a value so that it
may be used or advised in other declarations.

The pointcut declaration names a pointcut in the pro-
gram text. A pointcut of the form call(n) refers to any call
to the function value defined at declaration n, while a point-
cut of the form n is just an alias for a previous pointcut decla-
ration n. A real language would have more pointcut forms;
we include only the most basic possible form in order to keep
the language minimal.

The arounddeclaration names some pointcut p describing
calls to some function, binds the variable x to the argument of
the function, and specifies that the advice e should be run in
place of the original function. Inside the body of the advice e,
the special variable proceed is bound to the original value
of the function, so that e can choose to invoke the original
function if desired.
TinyAspect types τ include the unit type, function

types of the form τ1 → τ2, and pointcut types representing
calls to a function of type τ1 → τ2.

2.1 Fibonacci Caching Example
We illustrate the language by writing the Fibonacci func-

tion in it, and writing a simple aspect that caches calls to the
function to increase performance. While this is not a com-
pelling example of aspects, it is standard in the literature and
simple enough for an introduction to the language.

Figure 2 shows the TinyAspect code for the Fibonacci
function. We assume integers and booleans have been added
to illustrate the example.
TinyAspect does not have recursion as a primitive in the

language, so the fib function includes just the base case of
the Fibonacci function definition, returning 1.

We use around advice on calls to fib to handle the re-
cursive cases. The advice is invoked first whenever a client
calls fib. The advice is invoked first whenever a client calls
fib. The body of the advice checks to see if the argument
is greater than 2; if so, it returns the sum of fib(x-1) and

val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

(* advice to cache calls to fib *)
val inCache = fn ...
val lookupCache = fn ...
val updateCache = fn ...

pointcut cacheFunction = call(fib)
around cacheFunction(x:int) =

if (inCache x)
then lookupCache x
else let v = proceed x

in updateCache x v; v

Figure 2: The Fibonacci function written in TinyAspect,
along with an aspect that caches calls to fib.

fib(x-2). These recursive calls are intercepted by the ad-
vice, rather than the original function, allowing recursion to
work properly. In the case when the argument is less than
3, the advice invokes proceed with the original number x.
Within the scope of an advice declaration, the special vari-
able proceed refers to the advised definition of the function.
Thus, the call to proceed is forwarded to the original defi-
nition of fib, which returns 1.

In the lower half of the figure is an aspect that caches calls
to fib, thereby allowing the normally exponential function
to run in linear time. We assume there is a cache data struc-
ture and three functions for checking if a result is in the cache
for a given value, looking up an argument in the cache, and
storing a new argument-result pair in the cache.

So that we can make the caching code more reusable, we
declare a cacheFunction pointcut that names the func-
tion calls to be cached–in this case, all calls to fib. Then
we declare around advice on the cacheFunction pointcut
which checks to see if the argument x is in the cache. If it is,
the advice gets the result from the cache and returns it. If the
value is not in the cache, the advice calls proceed to calcu-
late the result of the call to fib, stores the result in the cache,
and then returns the result.

In the semantics of TinyAspect, the last advice to be de-
clared on a declaration is invoked first. Thus, if a client
calls fib, the caching advice will be invoked first. If the
caching advice calls proceed, then the first advice (which
recursively defines fib) will be invoked. If that advice in
turn calls proceed, the original function definition will be
invoked. However, if the advice makes a recursive call to
fib, the call will be intercepted by the caching advice. Thus,
the cache works exactly as we would expect–it is invoked
on all recursive calls to fib, and thus it is able to effectively
avoid the exponential cost of executing fib in the naı̈ve way.

2.2 Operational Semantics
We define the semantics of TinyAspect more precisely

as a set of small-step reduction rules. These rules translate
a series of source-level declarations into the values shown in
Figure 3.

Expression-level values include the unit value and func-

Expression values v ::= () | fn x:τ => e | `

Pointcut values pv ::= call(`)

Declaration values dv ::= •
| val x ≡ v dv

| pointcut x ≡ pv dv

Evaluation contexts C ::= � e2 | v1 � | val x = � d
| val x ≡ v �

| pointcut x ≡ pv �

Figure 3: TinyAspect Values and Contexts

tions. In TinyAspect, advice applies to declarations, not to
functions. We therefore need to keep track of declaration us-
age in the program text, and so a reference to a declaration is
represented by a label `. In the operational semantics, below,
an auxiliary environment keeps track of the advice that has
been applied to each declaration.

A pointcut value can only take one form: calls to a partic-
ular declaration `. In our formal system we model execution
of declarations by replacing source-level declarations with
“declaration values,” which we distinguish by using the ≡
symbol for binding.

Figure 3 also shows the contexts in which reduction may
occur. Reduction proceeds first on the left-hand side of an
application, then on the right-hand side. Reduction occurs
within a value declaration before proceeding to the following
declarations. Pointcut declarations are atomic, and so they
only define an evaluation context for the declarations that
follow.

Figure 4 describes the operational semantics of
TinyAspect. A machine state is a pair (η, e) of an ad-
vice environment η (mapping labels to values) and an
expression e. Advice environments are similar to stores,
but are used to keep track of a mapping from declaration
labels to declaration values, and are modified by advice
declarations. We use the η[`] notation in order to look up the
value of a label in η, and we denote the functional update of
an environment as η′ = [` 7→v] η. The reduction judgment is
of the form (η, e) 7→ (η′, e′), read, “In advice environment
η, expression e reduces to expression e′ with a new advice
environment η′.”

The rule for function application is standard, replacing the
application with the body of the function and substituting
the argument value v for the formal x. We normally treat
labels ` as values, because we want to avoid “looking them
up” before they are advised. However, when we are in a
position to invoke the function represented by a label, we
use the rule r-lookup to look up the label’s value in the current
environment.

The next three rules reduce declarations to “declaration
values.” The val declaration binds the value to a fresh la-
bel and adds the binding to the current environment. It also
substitutes the label for the variable x in the subsequent dec-
laration(s) d. We leave the binding in the reduced expression
both to make type preservation easier to prove, and also to
make it easy to extend TinyAspect with a module system
which will need to retain the bindings. The pointcut decla-
ration simply substitutes the pointcut value for the variable
x in subsequent declaration(s).

The around declaration looks up the advised declaration

(η, (fn x:τ => e) v) 7→ (η, {v/x}e)
r-app

η[`] = v1

(η, ` v2) 7→ (η, v1 v2)
r-lookup

` 6∈ domain(η) η′ = [` 7→v] η

(η, val x = v d) 7→ (η′, val x ≡ ` {`/x}d)
r-val

(η, pointcut x = call(`) d) 7→
(η, pointcut x ≡ call(`) {call(`)/x}d)

r-pointcut

v′ = (fn x:τ => {`′/proceed}e)
`′ 6∈ domain(η) η′ = [` 7→v′, `′ 7→η[`]] η

(η, around call(`)(x:τ) = e d) 7→ (η′, d)
r-around

(η, e) 7→ (η′, e′)

(η, C[e]) 7→ η′, C[e′])
r-context

Figure 4: TinyAspect Operational Semantics

` in the current environment. It places the old value for the
binding in a fresh label `′, and then re-binds the original `
to the body of the advice. Inside the advice body, any refer-
ences to the special variable proceed are replaced with `′,
which refers to the original value of the advised declaration.
Thus, all references to the original declaration will now be
redirected to the advice, while the advice can still invoke the
original function by calling proceed.

The last rule shows that reduction can proceed under any
context as defined in Figure 3.

2.3 Typechecking
Figure 5 describes the typechecking rules for

TinyAspect. Our typing judgment for expressions is
of the form Γ;Σ ` e : τ , read, “In variable context Γ and
declaration context Σ expression e has type τ .” Here Γ
maps variable names to types, while Σ maps labels to types
(similar to a store type).

The rules for expressions are standard. We look up the
types for variables and labels in Γ and Σ, respectively. Other
standard rules give types to the () expression, as well as to
functions and applications.

The interesting rules are those for declarations. We give
declaration signatures β to declarations, where β is a se-
quence of variable to type bindings. The base case of an
empty declaration has an empty signature. For val bind-
ings, we ensure that the expression is well-typed at some
type τ , and then typecheck subsequent declarations assum-
ing that the bound variable has that type. Pointcuts are sim-
ilar, but the rule ensures that the expression p is well-typed
as a pointcut denoting calls to a function of type τ1 → τ2.
The around advice rule checks that the declared type of x
matches the argument type in the pointcut, and checks that
the body is well-typed assuming proper types for the vari-
ables x and proceed.

Finally, the judgment Σ ` η states that η is a well-formed
environment with typing Σ whenever all the values in η have
the types given in Σ. This judgment is analogous to store

x:τ ∈ Γ
Γ;Σ ` x : τ

t-var

Γ;Σ ` n : τ1 → τ2

Γ;Σ ` call(n) : pc(τ1 → τ2)
t-pctype

`:τ ∈ Σ
Γ;Σ ` ` : τ

t-label

Γ; Σ ` () : unit
t-unit

Γ, x:τ1; Σ ` e : τ2

Γ;Σ ` fn x:τ1 => e : τ1 → τ2

t-fn

Γ;Σ ` e1 : τ2 → τ1 Γ;Σ ` e2 : τ2

Γ;Σ ` e1 e2 : τ1

t-app

Γ;Σ ` • : •
t-empty

Γ;Σ ` e : τ Γ, x:τ ; Σ ` d : β

Γ;Σ ` val x = e d : (x:τ, β)
t-val

Γ;Σ ` p : pc(τ1 → τ2) Γ, x:pc(τ1 → τ2); Σ ` d : β

Γ;Σ ` pointcut x = p d : (x:pc(τ1 → τ2), β)
t-pc

Γ;Σ ` p : pc(τ1 → τ2) Γ;Σ ` d : β
Γ, x:τ1,proceed:τ1 → τ2; Σ ` e : τ2

Γ;Σ ` around p(x:τ1) = e d : β
t-around

∀`.(Σ[`] = τ ∧ η[`] = v =⇒ •; Σ ` v : τ)

Σ ` η
t-env

Figure 5: TinyAspect Typechecking

typings in languages with references.

2.4 Type Soundness
We now state progress and preservation theorems for

TinyAspect. The theorems quantify over both expressions
and declarations using the metavariable E, and quantify
over types and declaration signatures using the metavariable
T . The progress property states that if an expression is well-
typed, then either it is already a value or it will take a step to
some new expression.

Theorem 1 (Progress)
If •; Σ ` E : T and Σ ` η, then either E is a value
or there exists η′ such that (η, E) 7→ (η′, E′).

Proof: By induction on the derivation of •; Σ ` E : T . �

The type preservation property states that if an expression
is well-typed and it reduces to another expression in a new
environment, then the new expression and environment are
also well-typed.

Theorem 2 (Type Preservation)
If •; Σ ` E : T , Σ ` η, and (η, E) 7→ (η′, E′), then there exists

some Σ′ ⊇ Σ such that •; Σ′ ` E′ : T and Σ′ ` η′.

Proof: By induction on the derivation of (η, E) 7→ (η′, E′).
The proof relies on a standard substitution and weakening
lemmas. �

Together, progress and type preservation imply type
soundness. Soundness means that there is no way that
a well-typed TinyAspect program can get stuck or “go
wrong” because it gets into some bad state.

3. Open Modules
In this section, we explore one possible way to define a

module system for aspects. The following section models
our proposed module system in TinyAspect, providing an
initial evaluation of the core language design, and gaining
insight into the potential benefits of our module system.

3.1 Motivation
In his seminal paper, Parnas laid out the classic theory

of information hiding: developers should break a system
into modules in order to hide information that is likely to
change [17]. Thus if change is anticipated with reasonable
accuracy, the system can be evolved with local rather than
global system modifications, easing many software mainte-
nance tasks. Furthermore, the correctness of each module
can be verified in isolation from other modules, allowing de-
velopers to work independently on different sub-problems.

Unfortunately, developers do not always respect the in-
formation hiding boundaries of modules–it is often tempt-
ing to reach across the boundary for temporary convenience,
while causing more serious long-term evolution problems.
Thus, encapsulation mechanisms such as Java’s packages
and public/private data members were developed to give
programmers compiler support for enforcing information
hiding boundaries.

The central insight behind aspect-oriented programming
is that conventional modularity and encapsulation mecha-
nisms are not flexible enough to capture many concerns that
are likely to change. These concerns cannot be effectively
hidden behind information-hiding boundaries, because they
are scattered in many placed throughout the system and
tangled together with unrelated code. Aspect-oriented pro-
gramming systems provide mechanisms for modularizing a
more diverse set of concerns. However, few aspect-oriented
programming projects have addressed the problem of pro-
viding an encapsulation facility for aspect-oriented program-
ming.

3.2 Existing Encapsulation Approaches
The most widely-used AOP system, AspectJ, leaves Java’s

existing encapsulation mechanisms largely unchanged [11].
AspectJ provides new programming mechanisms that cap-
ture concerns which crosscut Java’s class and package struc-
ture. Because these mechanisms can reach across encapsula-
tion boundaries, AspectJ does not enforce information hiding
between aspects and other code.

For example, Figure 6 shows how an aspect can depend
on the implementation details of another module. The fig-
ure shows two different Shape subclasses, one represent-
ing points and another representing rectangles. Both classes
have a method moveBy, which moves the rectangles on the
screen. An assurance aspect checks certain invariants of

package shape;

public class Point extends Shape {
public void moveBy(int dx, int dy) {

x += dx; y += dy;
...

}

public class Rectangle extends Shape {
public void moveBy(int dx, int dy) {

p1x += dx; p1y += dy;
p2x += dx; p2y += dy;

...
}

package assure;

aspect AssureShapeInvariants {
pointcut moves():

call(void shape.Shape+.moveBy(..));

after(): moves() {
scene.checkInvariants();

}
}

Figure 6: In this AspectJ code, the correctness of the
shape invariants aspect depends on the implementation
of the shapes. If the implementation is changed so that
Rectangle uses Point to hold its coordinates, then the
invariants will be checked in the middle of a moveBy oper-
ation, possibly leading to a spurious invariant failure.

the scene every time a shape moves. The aspect is trig-
gered by a pointcut made up of all calls to the moveBy func-
tion in shapes. We assume the assurance aspect is checking
application-level invariants, rather than invariants specific to
the shape package, and therefore it is defined in a package
of its own.

Unfortunately, this aspect is tightly coupled to the imple-
mentation details of the shape package, and will break if
these implementation details are changed. For example, con-
sider what happens if the rectangle is modified to store its
coordinates as a pair of points, rather than two pairs of in-
teger values. The body of Rectangle.moveBy would be
changed to read:

p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

Now the moves pointcut will be invoked not only when
the Rectangle moves, but also when its constituent points
move. Thus, the scene invariants will be checked in the mid-
dle of the rectangle’s moveBy operation. Since the scene in-
variants need not be true in the intermediate state of motion,
this additional checking could lead to spurious invariant fail-
ures.

The aspect in Figure 6 violates the information hiding
boundary of the shape package by placing advice on
method calls within the package. This means that the imple-
mentor of shape cannot freely switch between semantically
equivalent implementations of Rectangle, because the ex-

ternal aspect may break if the implementation is changed.
Because the aspect violates information hiding, evolving the
shape package becomes more difficult and error prone.

AspectJ is not the only system in which aspects can violate
information hiding boundaries. Other aspect-oriented pro-
gramming systems that support method interception, such
as Hyper/J [19] and ComposeJ [23], share the issue. Even
recent proposals describing module systems for AOP allow
these kinds of violations [13, 6].

Clearly the programmer of the assurance aspect could
have written the aspect to be more robust to this kind of
change. However, the whole point of an encapsulation sys-
tem is to protect the programmer from violating information
hiding boundaries. In the rest of this paper, we explore a
proposed module system that is able to enforce information
hiding, while preserving much of the expressiveness of ex-
isting aspect-oriented programming systems.

3.3 Overview
We propose Open Modules, a new module system for

aspect-oriented programs that is intended to be open to
aspect-oriented extension but modular in that the implemen-
tation details of a module are hidden. The goals of openness
and modularity are in tension, and so we try to achieve a
compromise between them.

The principle behind the design of Open Modules is that
interfaces should mediate the interaction between the imple-
mentation of a module and its clients, even in the presence
of aspects. Our system can capture crosscutting concerns in
much the same way as previous aspect-oriented program-
ming systems; the only difference is that some pointcuts may
have to be moved from the aspect code to the interface of the
module being advised.

For example, the assurance aspect in Figure 6 would be
prohibited by our system as written, because the aspect’s
pointcut potentially includes calls that are within the private
implementation of the shape package. However, the aspect
could be re-written in one of two ways to be compatible with
Open Modules.

In the first solution, the pointcut in the aspect would ad-
ditionally specify that it captures only calls from outside the
shape package:

pointcut moves():
call(void shape.Shape+.moveBy(..))
&& !within(shape.*);

This solution fits with Open Modules because it advises
only incoming calls to the interface of the package; the as-
pect is decoupled from the implementation, permitting im-
plementation changes like the one discussed in the previous
subsection.

In the second solution, the pointcut in the aspect would
be moved to the shape module, and then referenced by the
aspect:

after(): shape.Shape.moves() { ... }

In this case, the pointcut becomes part of the interface of
the shape package, again decoupling the aspect from the
package’s implementation. If that implementation changes,
the maintainer of the module has the responsibility to main-
tain the semantics of the pointcut so that external aspects are
unaffected by the change.

This second solution, called pointcut interfaces, was orig-
inally proposed by Gudmundson and Kiczales as an engi-
neering technique that can ease software evolution by de-
coupling an aspect from the code that it advises [8]. It is also
related to the Demeter project’s use of traversal strategies to
isolate an aspect from the code that it advises [16].

We now provide a more technical definition for Open
Modules, which can be used to distinguish our contribution
from previous work:

Definition [Open Modules]: A module system that:

• allows external aspects to advise external calls to functions
in the interface of a module

• allows external aspects to advise pointcuts in the interface of
a module

• does not allow external aspects to advise calls from within
a module to other functions within the module (including
exported functions).

3.4 Expressiveness
Like the Gudmundson and Kiczales proposal on which

they are based [8], Open Modules sacrifice some amount of
obliviousness [7] in order to support better information hid-
ing. Base code is not completely oblivious to aspects, because
the author of a module must expose relevant internal events

in pointcuts so that aspects can advise them1. However, our
design still preserves important cases of obliviousness:

• While a module can expose interesting implementa-
tion events in pointcuts, it is oblivious to which aspects
might be interested in those events.

• Pointcuts in the interface of a module can be defined
non-invasively with respect to the rest of the module’s
implementation, using the same pointcut operations
available in other AOP languages.

• A module is completely oblivious to aspects that only
advise external calls to its interface.

A possible concern is that the strategy of adding a point-
cut to the interface of a base module may be impossible
if the source code for that module cannot be changed. In
this case, the modularity benefits of Open Modules can be
achieved with environmental support for associating an ex-
ternal pointcut with the base module. If the base module is
updated, the maintainer of the pointcut is responsible for re-
checking the pointcut to ensure that its semantics have not
been invalidated by the changes to the base module.

Experiment. In a companion paper, we performed a micro-
experiment applying the ideas of Open Modules to Space-
War, a small demonstration application distributed with As-
pectJ. The experiment was far too small to provide defini-
tive results. However, we found that Open Modules support

1We note that many in the AOP community feel “oblivi-
ousness” is too strong a term, preferring a notion of “non-
invasiveness” that is compatible with our proposal. See
for example posts to the aosd-discuss mailing list by Dean
Wempler and Gregor Kiczales in August 2003, available at
aosd.net.

Names n ::= . . . | m.x

Declarations d ::= . . . | structure x = m d

Modules m ::= n
| struct d end
| m :> σ
| functor(x:σ) => m
| m1 m2

Types τ, σ ::= . . . | sig β end

Decl. values dv ::= . . . | structure x = � d

Module values mv ::= struct dv end
| functor(x:σ) => m

Contexts C ::= . . . | structure x = � d
| structure x ≡ mv �

| struct � end | � :> σ
| � m2 | mv �

Figure 7: Module System Syntax, Values, and Contexts

nearly all of the aspects in this program with no changes or
only minor changes to the code [2].

The only concern our system could not handle was an ex-
tremely invasive debugging aspect. Debugging is an inher-
ently non-modular activity, so we view it as a positive sign
that our module system does not support it. In a practical
system, debugging can be supported either through external
tools, or through a compiler flag that makes an exception to
the encapsulation rules during debugging activity.

Comparison to non-AOP techniques. One way to evaluate
the expressiveness of Open Modules is to compare them to
non-AOP alternatives. One alternative is using wrappers in-
stead of aspects to intercept the incoming calls to a module,
and using callbacks instead of pointcuts in the module’s in-
terface. The aspect-oriented nature of Open Modules pro-
vides several advantages over the wrapper and callback so-
lution:

• Open Modules are compatible with the quantification [7]
constructs of languages like AspectJ, so that many
functions can be advised with a single declaration.
Implementing similar functionality with conventional
wrappers–which do not support quantification–is far
more tedious because a wrapper must be explicitly ap-
plied to each function.

• In Open Modules, a single, locally-defined aspect can
implement a crosscutting concern by non-locally ex-
tending the interface of a number of modules. Wrap-
pers cannot capture these concerns in a modular
way, because each target module must be individually
wrapped.

• Callbacks are invasive with respect to the implemen-
tation of a module because the implementation must
explicitly invoke the callback at the appropriate points.
In contrast, pointcut interfaces are non-invasive in that
the pointcut is defined orthogonally to the rest of the
module’s implementation, thus providing better sup-
port for separation of concerns.

structure Cache =
functor(X : sig f : pc(int->int) end) =>

struct
around X.f(x:int) = ...

(* same definition as before *)
end

structure Math = struct
val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

structure cacheFib =
Cache (struct

pointcut f = call(fib)
end)

end :> sig
fib : int->int

end

Figure 8: Fibonacci with Open Modules

These advantages illustrate how the quantification and
non-invasive extension provided by Open Modules distin-
guish our proposal from solutions that do not use aspects [7].

4. Formalization of Open Modules
We now extend TinyAspect to model Open Modules.

Our module system is modeled closely after that of ML, pro-
viding a familiar concrete syntax and benefiting from the de-
sign of an already advanced module system.

Figure 7 shows the new syntax for modules. Names in-
clude both simple variables x and qualified names m.x,
where m is a module expression. Declarations can include
structure bindings, and types are extended with module sig-
natures of the form sig β end, where β is the list of variable
to type bindings in the module signature.

First-order module expressions include a name, a struct
with a list of declarations, and an expression m :> σ that
seals a module with a signature, hiding elements not listed
in the signature. The expression functor(x:σ) => m de-
scribes a functor that takes a module x with signature σ as
an argument, and returns the module m which may depend
on x. Functor application is written like function application,
using the form m1 m2.

Our module system does not include abstract types, and
so the abstraction property we enforce is one of implemen-
tation independence, not representation independence. The
underlying problem is the same in both cases: external as-
pects should not be able to observe the internal behavior of
module functions. Thus, we conjecture that our solution to
the implementation independence problem will also enforce
representation independence once abstract types are added
in standard ways [15].

4.1 Fibonacci Revisited
Figure 8 shows how a more reusable caching aspect could

be defined using functors. The Cache functor accepts a mod-
ule that has a single element f that is a pointcut of calls to

structure shape = struct
val createShape = fn ...
val moveBy = fn ...
val animate = fn ...
...
pointcut moves = call(moveBy)

end :> sig
createShape : Description -> Shape
moveBy : (Shape,Location) -> unit
animate : (Shape,Path) -> unit
...
moves : pc((Shape,Location)->unit)

end

Figure 9: A shape library that exposes a position change
pointcut

some function with signature int->int. The around ad-
vice then advises the pointcut from the argument module X.

The fib function is now encapsulated inside the Math
module. The module implements caching by instantiating
the Cache module with a structure that binds the pointcut
f to calls to fib. Finally, the Math module is sealed with a
signature that exposes only the fib function to clients.

4.2 Sealing
Our module sealing operation has an effect both at the type

system level and at the operational level. At the type level, it
hides all members of a module that are not in the signature
σ–in this respect, it is similar to sealing in ML’s module sys-
tem. However, sealing also has an operational effect, hiding
internal calls within the module so that clients cannot advise
them unless the module explicitly exports the corresponding
pointcut.

For example, in Figure 8, clients of the Math module
would not be able to tell whether or not caching had been
applied, even if they placed advice on Math.fib. Because
Math has been sealed, external advice to Math.fib would
only be invoked on external calls to the function, not on in-
ternal, recursive calls. This ensures that clients cannot be af-
fected if the implementation of the module is changed, for
example, by adding or removing caching.

The strategy used to protect information hiding in our for-
mal system is slightly different from the informal strategy
presented in Section 3. There we were assuming the seman-
tics of AspectJ, and so in order to avoid capturing internal
calls we had to explicitly say !within(shape.*) in the
pointcut. In the formal system, we provide a cleaner solu-
tion, where once a module is sealed, externally defined point-
cuts automatically include the limitation to external calls.

4.3 Exposing Semantic Events with Pointcuts
Figure 9 shows how the shape example described above

could be modeled in TinyAspect. Clients of the shape li-
brary cannot advise internal functions, because the module is
sealed. To allow clients to observe internal but semantically
important events like the motion of animated shapes, the
module exposes these events in its signature as the moves
pointcut. Clients can advise this pointcut without depend-
ing on the internals of the shape module. If the module’s
implementation is later changed, the moves pointcut must

bind x ≡ v ∈ dv

(η, struct dv end.x) 7→ (η, v)
r-path

(η, structure x = mv d) 7→
(η, structure x ≡ mv {mv/x}d)

r-structure

(η, (functor(x:σ) => m1) m2) 7→ (η, {m2/x}m1)
r-fapp

seal(η, dv, β) = (η′, dseal)

(η, struct dv end :> sig β end)
7→ (η′, struct dseal end)

r-seal

seal(η, •, •) = (η, •)
s-empty

seal(η, d, β) = (η′, d′)

seal(η, bind x ≡ v d, β) = (η′, d′)
s-omit

seal(η, d, β) = (η′, d′) η′′ = [` 7→v] η′ ` 6∈ domain(η′)

seal(η,val x ≡ v d, (x:τ, β)) = (η′′,val x ≡ ` d′)
s-v

seal(η, d, β) = (η′, d′)

seal(η,pointcut x ≡ call(`) d, (x:pc(τ), β))
= (η′,pointcut x ≡ call(`) d′)

s-p

seal(η, ds, βs) = (η′, d′

s) seal(η′, d, β) = (η′′, d′)

seal(η,structure x ≡ struct ds end d,
(x:sig βs end, β))

= (η′′,structure x ≡ struct d′

s end d′)

s-s

seal(η, d, β) = (η′, d′)

seal(η,structure x ≡ functor(y:σy) => m d, (x:σ, β))
= (η′,structure x ≡ functor(y:σy) => m d′)

s-f

Figure 10: Module System Operational Semantics

also be changed to ensure that client aspects are not affected.
Thus, sealing enforces the abstraction boundary between

a module and its clients, allowing programmers to reason
about and change them independently. However, our system
still allows a module to export semantically important inter-
nal events, allowing clients to extend or observe the mod-
ule’s behavior in a principled way.

4.4 Open Modules Operational Semantics
Figure 10 shows the operational semantics for Open Mod-

ules. In the rules, module values mv mean either a struct
with declaration values dv or a functor. The path lookup rule
finds the selected binding within the declarations of the mod-
ule. We assume that bound names are distinct in this rule; it
is easy to ensure this by renaming variables appropriately.
Because modules cannot be advised, there is no need to cre-
ate labels for structure declarations; we can just substitute the
structure value for the variable in subsequent declarations.
The rule for functor application also uses substitution.

The rule for sealing uses an auxiliary judgment, seal, to
generate a fresh set of labels for the bindings exposed in the
signature. This fresh set of labels insures that clients can af-

Γ;Σ ` m : sig β end x:τ ∈ β

Γ;Σ ` m.x : τ
t-name

Γ;Σ ` m : σ Γ, x:σ; Σ ` d : β

Γ; Σ ` structure x = m d : (x:σ, β)
t-structure

Γ;Σ ` d : β

Γ;Σ ` struct d end : sig β end
t-struct

Γ;Σ ` m : σm σm <: σ

Γ;Σ ` m :> σ : σ
t-seal

Γ, x:σ1; Σ ` m : σ2

Γ; Σ ` functor(x:σ1) => m : σ1 → σ2

t-functor

Γ;Σ ` m1 : σ1 → σ Γ; Σ ` m2 : σ2 σ2 <: σ1

Γ;Σ ` m1 m2 : σ
t-fapp

Figure 11: Open Modules Typechecking

fect external calls to module functions by advising the new
labels, but cannot advise calls that are internal to the sealed
module.

At the bottom of the diagram are the rules defining the
sealing operation. The operation accepts an old environment
η, a list of declarations d, and the sealing declaration signa-
ture β. The operation computes a new environment η′ and
new list of declarations d′. The rules are structured accord-
ing to the first declaration in the list; each rule handles the
first declaration and appeals recursively to the definition of
sealing to handle the remaining declarations.

An empty list of declarations can be sealed with the empty
signature, resulting in another empty list of declarations and
an unchanged environment η. The second rule allows a
declaration bind x ≡ v (where bind represents one of val,
pointcut, or struct) to be omitted from the signature, so
that clients cannot see it at all. The rule for sealing a value
declaration generates a fresh label `, maps that to the old
value of the variable binding in η, and returns a declaration
mapping the variable to `. Client advice to the new label `
will affect only external calls, since internal references still
refer to the old label which clients cannot change. The rule
for pointcuts passes the pointcut value through to clients un-
changed, allowing clients to advise the label referred to in the
pointcut. Finally, the rules for structure declarations recur-
sively seal any internal struct declarations, but leave functors
unchanged.

4.5 Typechecking
The typechecking rules, shown in Figure 11, are largely

standard. Qualified names are typed based on the binding in
the signature of the module m. Structure bindings are given a
declaration signature based on the signature σ of the bound
module. The rule for struct simply puts a sig wrapper
around the declaration signature. The rules for sealing and
functor application allow a module to be passed into a con-
text where a supertype of its signature is expected.

Figure 12 shows the definition of signature subtyping.
Subtyping is reflexive and transitive. Subtype signatures
may have additional bindings, and the signatures of con-
stituent bindings are covariant. Finally, the subtyping rule

σ <: σ sub-reflex

σ <: σ′ σ′ <: σ′′

σ <: σ′′
sub-trans

β <: β′

sig β end <: sig β′ end
sub-sig

β <: β′

x : τ, β <: β′
sub-omit

β <: β′ τ <: τ ′

x : τ, β <: x : τ ′, β′
sub-decl

σ′

1 <: σ1 σ2 <: σ′

2

σ1 → σ2 <: σ′

1 → σ′

2

sub-contra

Figure 12: Signature Subtyping

for functor types is contravariant.

4.6 Type Soundness
When extended with Open Modules, TinyAspect enjoys

the same type soundness property that the base system has.
The theorems and proofs are similar, and so we omit them.

5. Abstraction
The example programs in Section 3 are helpful for under-

standing the benefits of TinyAspect’s module system at an
intuitive level. However, we would like to be able to point
to a concrete property that enables separate reasoning about
the clients and implementation of a module.

Reynolds’ abstraction property [18] fits these requirements
in a natural way. Intuitively, the abstraction property states
that if two module implementations are semantically equiv-
alent, no client can tell the difference between the two. This
property has two important benefits for software engineer-
ing. First of all, it enables reasoning about the properties of
a module in isolation. For example, if one implementation
of a module is known to be correct, we can prove that a sec-
ond implementation is correct by showing that it is semanti-
cally equivalent to the first implementation. Second, the ab-
straction property ensures that the implementation of a mod-
ule can be changed to a semantically equivalent one without
affecting clients. Thus, the abstraction property helps pro-
grammers to more effectively hide information that is likely
to change, as suggested in Parnas’ classic paper [17].

In TinyAspect, we can state the abstraction property as
follows. If two modules m and m′ are observationally equiv-
alent and have module signature σ, then for all client decla-
rations d that are well-typed assuming that some variable x
has type σ, the client behaves identically when executed with
either module.

Intuitively, two modules are observationally equivalent if
all of the bound functions and values in the module are
equivalent. Two functions are equivalent if they always pro-
duce equivalent results given equivalent arguments, even if

Λ ` (η, V) ' (η′, V ′) : T

Λ ` (η, V) ∼= (η′, V ′) : T

(η1, E1)
Λ
7→

∗

(η′

1, E
′

1) (η2, E2)
Λ
7→

∗

(η′

2, E
′

2)
Λ′ ` (η′

1, E
′

1) ∼= (η′

2, E
′

2) : T
(Λ′ − Λ) ∩ domain(η1 ∪ η2) = ∅

Λ ` (η1, E1) ∼= (η2, E2) : T

Λ ` (η1, C1[η1[`] v1]) ∼= (η2, C2[η2[`] v2]) : T

Λ ` (η1, C1[` v1]) ∼= (η2, C2[` v2]) : T

(η, E) and (η′, E′) diverge following the rules above

Λ ` (η, E) ∼= (η′, E′) : T

Figure 14: TinyAspect Observational Equivalence for Ex-
pressions

a client advises other functions exported by the module. This il-
lustrates the importance of using sealing to limit the scope
of client advice. If two modules are sealed, then they can
be proved equivalent assuming that clients can only advise
the exported pointcuts. In this sense, module sealing enables
separate reasoning that would be impossible otherwise.

5.1 Formalizing Abstraction
We can define abstraction formally using judgments for

observational equivalence of values, written
Λ ` (η, V) ' (η′, V ′) : T and read, “In the context of a set of
visible labels Λ, value V in environment η is observationally
equivalent to value V ′ in environment η′ at type T . A similar
judgment of the form Λ ` (η, E) ∼= (η′, E′) : T is used for
observationally equivalent expressions. The judgments de-
pend on the set of labels Λ that are visible and thus capable
of being advised; in order for two values to be observation-
ally equivalent, they must use these labels in the same way.

The main rules for observational equivalence of values are
defined in Figure 13. Most of the rules are straightforward–
for example, there is only one unit value, so all values of type
unit are equivalent.

The most interesting rule is the one for function values.
Two function values are equivalent if for any observationally
equivalent argument values v1 and v2, they produce equiva-
lent results. Note that the rule for observational equivalence
for function values includes both syntactic functions and la-
bels that denote functions. A similar rule is used for obser-
vational equivalence of functors.

Two val declarations are equivalent if they bind the same
variable to the same label (since labels are generated fresh
for each declaration we can always choose them to be equal
when we are proving equivalence), and the label is equiva-
lent in the two environments η and η′. Since the label ex-
posed by the val declaration is visible, it must be in Λ. Point-
cut and structure declarations just check the equality of their
components. All three declaration forms ensure that subse-
quent declarations are also equivalent; we assume that the
empty declaration • is equivalent to itself. Finally, two first-
order modules are equivalent if the declarations inside them
are also equivalent.

Figure 14 shows the rules for observational equivalence
of expressions. Two expressions are equivalent if they are

Λ ` (η1, v) ' (η2, v) : unit

Λ ` (η1, v1) ' (η2, v2) : τ ′ → τ iff for all v′

1, v
′

2

such that Λ ` (η1, v
′

1) ' (η2, v
′

2) : τ ′

we have Λ ` (η1, v1 v′

1) ∼= (η2, v2 v′

2) : τ

Λ ` (η,val x ≡ ` dv) ' (η′,val x ≡ ` d′

v) : (x:τ, β) iff ` ∈ Λ, Λ ` (η, `) ' (η′, `) : τ ,
and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,pointcut x ≡ call(`) dv) '
(η′,pointcut x ≡ call(`) d′

v) : (x:pc(τ), β) iff ` ∈ Λ and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,structure x ≡ mv dv) ' iff Λ ` (η, mv) ' (η′, m′

v) : σ,
(η′,structure x ≡ m′

v d′

v) : (x:σ, β) and Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η,struct dv end) ' (η′,struct d′

v end) : sig β end iff Λ ` (η, dv) ' (η′, d′

v) : β

Λ ` (η, mv) ' (η′, m′

v) : σ1 → σ2 iff for all m1

v, m2

v such that Λ ` (η, m1

v) ' (η′, m2

v) : σ1

we have Λ ` (η1, mv m1

v) ∼= (η2, m
′

v m2

v) : σ2

Figure 13: TinyAspect Observational Equivalence for Values

equivalent values. Otherwise, the expressions must be bisim-
ilar with respect to the set of labels in Λ. That is, they must
look up the same sequence of labels in Λ while either diverg-
ing or reducing to observationally equivalent values (since
client aspects can use advice to observe lookups to labels in
Λ).

We formalize this with three rules. The first allows two ex-
pressions to take any number of steps that does not include

looking up a label in Λ (using the evaluation relation
Λ
7→

∗

which is identical to 7→∗ except that the rule r-lookup may not
be applied to any label in Λ). The second allows two expres-
sions to lookup the same label in Λ. The third allows compu-
tation to diverge according to the first two rules, rather than
terminating with a value.

Now that we have defined observational equivalence, we
can state the abstraction theorem:

Theorem 3 (Abstraction)
If Λ ` (•, mv) ∼= (•, m′

v) : σ, then for all d such that
x:σ; • ` d : β we have Λ ` (•,structure x = mv d) ∼=
(•, structure x = m′

v d) : (x:σ, β)

For space reasons, we give only a brief sketch of the proof
of abstraction. More details are available in a companion
technical report [1]. The proof uses a structural congruence
property: the expressions are structurally equal except for
closed values, which are observationally equivalent. A key
lemma states that structural congruence is preserved by re-
duction.

We then observe that the two programs being compared
are initially structurally congruent. By the lemma, they ei-
ther remain structurally congruent indefinitely, correspond-
ing to the divergence case of observational equivalence, or
else they eventually reduce to values which are observation-
ally equivalent.

5.2 Applying Abstraction
The abstraction theorem can be used to show that two dif-

ferent implementations of a module are equivalent and thus
interchangeable. For example, Figure 15 shows two defini-
tions of the Fibonacci function. The first one uses recursion

structure Fib1 = struct
val fib = fn x:int => 1
around call(fib) (x:int) =

if (x > 2)
then fib(x-1) + fib(x-2)
else proceed x

end :> sig
fib : int->int

end

structure Fib2 = struct
val helper = fn x:int => 1
around call(helper) (x:int) =

if (x > 2)
then helper(x-1) + helper(x-2)
else proceed x

val fib = fn x:int => helper x
end :> sig

fib : int->int
end

Figure 15: Two equivalent modules that define the Fi-
bonacci function

directly to compute the result, while the second one invokes
a helper function. Since we have sealed both modules, it is
easy to prove that they are equivalent. Clients can only ad-
vise the fresh label exported by the sealed modules, which
doesn’t affect the internal semantics of the module at all.
Therefore, we can prove that the modules are equivalent by
showing that the fib functions always return the same value
when passed the same argument. A simple proof by induc-
tion on the argument value will suffice.

However, if we did not use TinyAspect’s sealing opera-
tion on these modules but instead used a more conventional
module system to hide the helper function in Fib2, we
would be unable to prove the modules equivalent. In this
case, a client could advice fib, which would capture the re-
cursive calls in module Fib1 but not in module Fib2. Thus,
the client’s behavior would depend on the module’s imple-

mentation.
This example shows that the properties of the module seal-

ing operation are crucial for formal reasoning about aspect-
oriented systems. Sealing is also important for more infor-
mal kinds of reasoning, for example allowing engineers to
change the internals of a module with some assurance that
clients will not be affected.

The Fibonacci example is simplistic in that it does not ex-
port any pointcuts to clients. However, similar equivalence
properties can be proven in the presence of pointcuts, if it
can be shown that two modules always treat their exported
pointcut labels in an identical way, as defined by the obser-
vational equivalence relation.

6. Related Work
Formal Models. Walker et al. model aspects using an
expression-oriented functional language that includes the
lambda calculus, labeled join points, and advice [21]. They
show that their model is type-safe, but they model around
advice using a low-level exception construct and so their
soundness theorem includes the possibility that the pro-
gram could terminate with an uncaught exception error.
TinyAspect guarantees both type safety and a lack of run-
time errors because it models advice with high-level con-
structs similar to those in existing aspect-oriented program-
ming languages. In addition, the declarative, source-level
nature of TinyAspect allows us to easily explore modular-
ity and prove an abstraction result.

Jagadeesan et al. describe an object-oriented aspect cal-
culus modeling many of the features of AspectJ [10]. Their
formal model is much richer than ours, capturing complex
pointcuts and different forms of advice in a rich subset of
Java. TinyAspect is intentionally much more minimal than
their aspect calculus, so that it is easy to investigate language
extensions such as a module system and prove properties
such as abstraction.

In other work on formal systems for aspect-oriented pro-
gramming, Lämmel provides a big-step semantics for a
method-call interception extension to object-oriented lan-
guages [12]. Wand et al. give an untyped, denotational se-
mantics for advice advice and dynamic join points [22]. Ma-
suhara and Kiczales describe a general model of crosscutting
structure, using implementations in Scheme to give seman-
tics to the model [14]. Tucker and Krishnamurthi show how
scoped continuation marks can be used in untyped higher-
order functional languages to provide static and dynamic as-
pects [20].

Aspects and Modules. Dantas and Walker are currently
extending the calculus of Walker et al. to support a mod-
ule system [6]. Their type system includes a novel feature
for controlling whether advice can read or change the ar-
guments and results of advised functions. In their design,
pointcuts are first-class, providing more flexibility compared
to the second-class pointcuts in TinyAspect. This design
choice breaks abstraction and thus separate reasoning, how-
ever, because it means that a pointcut can escape from a mod-
ule even if it is not explicitly exported in the module’s inter-
face. In their system, functions can only be advised if this is
planned in advance; in contrast, TinyAspect allows advice
on all function declarations, providing unplanned extensibil-
ity without compromising abstraction.

Lieberherr et al. describe Aspectual Collaborations, a con-

struct that allows programmers to write aspects and code
in separate modules and then compose them together into a
third module [13]. Since they propose a full aspect-oriented
language, their system is much richer and more flexible than
ours, but its semantics are not formally defined. Their mod-
ule system does not encapsulate internal calls to exported
functions, and thus does not enforce the abstraction property.

Other researchers have studies ways of achieving modu-
lar reasoning without the use of explicit module systems.
For example, the Eclipse plugin for AspectJ includes a
view showing which aspects affect each line of source code.
Clifton and Leavens propose engineering techniques that
reduce dependencies between concerns in aspect-oriented
code [4].

Our module system is based on that of standard ML [15].
TinyAspect’s sealing construct is similar to the freeze op-
erator in the module calculus of Ancona and Zucca, which
closes a module to extension [3].

The name Open Modules indicates that modules are open
to advice on functions and pointcuts exposed in their inter-
face. Open Classes is a related term indicating that classes
are open to the addition of new methods [5].

7. Future Work
In future work, we plan to extend the module system pre-

sented here to support recursive modules and abstract data
types, as well as supporting modules that can be loaded and
instantiated at run time. We would like to extend the base
language with polymorphism, references, and objects; en-
forcing abstraction in the context of these features is an open
problem. Based on this foundation, we intend to design and
implement a user-level language with aspect-oriented fea-
tures, including richer mechanisms for pointcuts and advice.

8. Conclusion
This paper described TinyAspect, a minimal core lan-

guage for reasoning about aspect-oriented programming
systems. TinyAspect is a source-level language that sup-
ports declarative aspects. We have given a small-step opera-
tional semantics to the language and proven that its type sys-
tem is sound. We have described a proposed module system
for aspects, formalized the module system as an extension to
TinyAspect, and proved that the module system enforces
abstraction. Abstraction ensures that clients cannot affect or
depend on the internal implementation details of a module.
As a result, programmers can both separate concerns in their
code and reason about those concerns separately.

9. Acknowledgments
I thank Ralf Lämmel, Karl Lieberherr, David Walker, Curtis

Clifton, Derek Dreyer, Todd Millstein, Robert Harper, and
the anonymous reviewers for comments and conversations
on an earlier draft of this paper.

10. REFERENCES
[1] J. Aldrich. Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming. Carnegie
Mellon Technical Report CMU-ISRI-04-108, available at
http://www.cs.cmu.edu/˜aldrich/aosd/, March 2004.

[2] J. Aldrich. Open Modules: Reconciling Extensibility
and Information Hiding. In AOSD workshop on Software

Engineering Properties of Languages for Aspect
Technologies (SPLAT ’04), March 2004.

[3] D. Ancona and E. Zucca. A Calculus of Module
Systems. Journal of Functional Programming,
12(2):91–132, March 2002.

[4] C. Clifton and G. T. Leavens. Observers and Assistants:
A Proposal for Modular Aspect-Oriented Reasoning. In
Foundations of Aspect Languages, April 2002.

[5] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for Java. In
Object-Oriented Programming Systems, Languages, and
Applications, October 2000.

[6] D. S. Dantas and D. Walker. Aspects, Information
Hiding and Modularity. Unpublished manuscript,
2003.

[7] R. E. Filman and D. P. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness. In
Advanced Separation of Concerns, October 2000.

[8] S. Gudmundson and G. Kiczales. Addressing Practical
Software Development Issues in AspectJ with a
Pointcut Interface. In Advanced Separation of Concerns,
July 2001.

[9] A. Igarashi, B. Pierce, and P. Wadler. Featherwieght
Java: a Minimal Core Calculus for Java and GJ. In
Object-Oriented Programming Systems, Languages, and
Applications, November 1999.

[10] R. Jagadeesan, A. Jeffrey, and J. Riely. An Untyped
Calculus of Aspect-Oriented Programs. In European
Conference on Object-Oriented Programming, July 2003.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of AspectJ.
In European Conference on Object-Oriented Programming,
June 2001.

[12] R. Lämmel. A Semantical Approach to Method-Call
Interception. In Aspect-Oriented Software Development,
Apr. 2002.

[13] K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual
Collaborations: Combining Modules and Aspects. The
Computer Journal, 46(5):542–565, September 2003.

[14] H. Masuhara and G. Kiczales. Modeling Crosscutting
in Aspect-Oriented Mechanisms. In European Conference
on Object-Oriented Programming, July 2003.

[15] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). MIT Press,
Cambridge, Massachusetts, 1997.

[16] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In Reflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns,
September 2001.

[17] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053–1058, December 1972.

[18] J. C. Reynolds. Types, Abstraction, and Parametric
Polymorphism. In Information Processing, 1983.

[19] P. Tarr, H. Ossher, W. Herrison, and S. M. Sutton. N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. In Interntional Conference on Software
Engineering, May 1999.

[20] D. B. Tucker and S. Krishnamurthi. Pointcuts and
Advice in Higher-Order Languages. In Aspect-Oriented

Software Development, March 2003.

[21] D. Walker, S. Zdancewic, and J. Ligatti. A Theory of
Aspects. In International Conference on Functional
Programming, 2003.

[22] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for
Advice and Dynamic Join Points in Aspect-Oriented
Programming. Transactions on Programming Languages
and Systems, To Appear 2003.

[23] J. C. Wichman. ComposeJ - The Development of a
Preprocessor to Facilitate Composition Filters in the
Java Language. Masters Thesis, University of Twente,
1999.

