
COP 3223H — Honors Introduction to Programming with C January 25, 2019

Homework 2: Python Interaction and Comparisons
See Webcourses and the syllabus for due dates.

General Directions
This homework should be done individually. Note the grading policy on cooperation carefully if you choose
to work together (which we don’t recommend).
In order to practice for exams, we suggest that you first write out your solution to each problem on paper,
and then check it typing that into the computer.
You should take steps to make your Python code clear, including using symbolic names for important
constants and using helping fucttions or procedures to avoid duplicate code.
Tests that are provided in hw2-tests.zip, which consists of several python files with names of the form
test_f.py, where f is the name of the function you should be writing, and also some other files. Your
function f should go in a file named f.py and the function itself should be named f . These conventions will
make it possible to test using pytest.
Pytest is installed already on the Eustis cluster. If you need help installing pytest on your own machine, see
the course staff or the running Python page.

Running Pytest from the Command Line
After you have pytest installed, and after you have written your solution for a problem that asks for a
function named f , you can run pytest on our tests for f by executing at a command line

pytest test_f.py > f_tests.txt

which puts the output of the testing into the file f_tests.txt.

Running Pytest from within IDLE
You can also run pytest from within IDLE. To do that first edit a test file with IDLE (so that IDLE is running
in the same directory as the directory that contains the files), then from the Run menu select “Run module”
(or press the F5 key), and then execute the following statements:

import pytest
pytest.main(["test_f.py", "--capture=sys"])

which should produce the same output as the command line given above. Then you can copy and past the
test output into the file f_tests.txt to hand in.

What to turn in
For problems that ask you to write a Python procedure, upload your code as an text file with suffix .py, and
also upload the output of running our tests (as an text file with suffix .txt).

Problems
1. (10 points) [Programming] Define a Python procedure, average4(), which reads from stdin and

prompts to and writes on stdout. When run, the average4() procedure prompts for 4 numbers, reads
these 4 numbers in interactively (i.e., one after each prompt). (You can assume that all the inputs are in
the form of positive floating point literals.) Then the procedure prints (on stdout) “average is ”

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP3223H/syllabus.shtml
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml#Pytest
http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

2

(without the quotation marks) and then the average of the 4 numbers (printed as a two place decimal
number).

For example a sample interaction would look as follows, where the text following each question mark
on a line is a user input.

number? 30
number? 60
number? 40
number? 50
average is 45.00

In order to print floating point numbers to two decimal places, you must use the following Python
module, which is provided in the file twoplaces.py (and included in the hw2-tests.zip file).

$Id: twoplaces.py,v 1.1 2017/01/24 20:15:53 leavens Exp $

def twoplaces(num):

"""Return a string that represents num rounded to 2 decimal places."""

return "{:.2f}".format(num)

It is a good idea to run your average4() procedure yourself first, before running our tests, so you can
see what it is doing.

Sample test inputs appear in the files averageTens.in, averageLexus.in, and averageHouse.in, and
tests for this problem are in the file test_average4.py.

Remember to turn in both your file average4.py and the output of running our tests with pytest. Your
code and also the output of running our tests should be submitted to webcourses as text files that you
upload.

2. (10 points) [Programming] Define a Python procedure, oldmacdonald(), which reads from stdin and
prompts to and writes from stdout. When run, the oldmacdonald() procedure prompts for an animal
name and then its sound, reading these in interactively. Then it prints (on stdout) a verse of the song
“Old MacDonald Had a Farm” using that input.

Hint: use sep='' to change the default behavior of the procedure print when you want it to not add a
space between printing its arguments. You can also use + on strings in Python to concatenate two strings
together; for example "cluck"+ "-"+ "cluck" has the string "cluck-cluck" as its value.

For example, an interaction could look like the following, where the text following each question mark
on the first two lines is a user input.

animal name? Chicken
animal sound? cluck
Old MacDonald had a farm,
E-I-E-I-O!
And on this farm he had a Chicken,
E-I-E-I-O!
With a cluck-cluck here,
And a cluck-cluck there.
Here a cluck, there a cluck,
Everywhere a cluck-cluck;
Old MacDonald had a farm,
E-I-E-I-O!

It is a good idea to run your oldmacdonald() procedure yourself first, before running our tests, so you
can see what it is doing.

Sample test inputs appear in the files oldmacdonald1.in, oldmacdonald2.in, oldmacdonald3.in, and
oldmacdonald4.in and tests for this problem are in the file test_oldmacdonald.py.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

3

If your program fails our tests, check your output very carefully. Each character is important.

Remember to turn in both your file oldmacdonald.py and the output of running our tests with pytest.
Your code and also the output of running our tests should be submitted to webcourses as text files that
you upload.

3. (10 points) [Programming] Define a Python procedure, isdescending(), which reads from stdin and
prompts to and writes from stdout. When run, the isdescending() procedure prompts for 4 integers,
reading these in interactively. (You can assume that all integers are given in the form of int literals.)
Then it prints (on stdout) either

Yes, these are in strictly descending order

or the following.

No, these are not in strictly descending order

The Yes output occurs when the numbers entered are in strictly descending order (with each number
strictly less than the one preceding it) and the No output occurs when that is not the case.

For example, here is one interaction, producing a Yes output, where following each question mark on a
line is a user input.

number? 42
number? 27
number?13
number? 7
Yes, these are in strictly descending order

The following is another interaction, producing a No output, where following each question mark on a
line is a user input.

number? 95
number? 13
number? 13
number? 6
No, these are not in strictly descending order

It is a good idea to run your isdescending() procedure yourself first, before running our tests, so you
can see what it is doing.

Sample test inputs appear in the files isdescending1.in, isdescending2.in, isdescending3.in, and
isdescending4.in and tests for this problem are in the file test_isdescending.py.

Remember to turn in both your file isdescending.py and the output of running our tests with pytest.
Your code and also the output of running our tests should be submitted to webcourses as text files that
you upload.

Points
This homework’s total points: 30.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

