
Following the Grammar with Python
Gary T. Leavens

CS-TR-17-01
February 2017

Keywords: Recursion, programming recursive functions, recursion pattern, inductive definition, BNF
grammar, follow the grammar, functional programming, list recursion, programming languages, concrete
syntax, abstract syntax, helping functions, Python

2001 CR Categories: D.1.1 [Programming Techniques] Applicative (Functional) Programming — de-
sign, theory; D.2.4 [Software Engineering] Coding Tools and Techniques — design, theory; D.3.1 [Program-
ming Languages] Formal Definitions and Theory — syntax; D.3.3 [Programming Languages] Language
Constructs and Features — recursion;

icc iBY: This document is distributed under the terms of the Creative Commons Attribution License, version
2.0, see http://creativecommons.org/licenses/by/2.0/.

Dept of Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA

http://creativecommons.org/licenses/by/2.0/

Following the Grammar with Python

Gary T. Leavens
437D Harris Center (Bldg. 116)

Computer Science, University of Central Florida
4000 Central Florida Blvd., Orlando, FL 32816-2362 USA

leavens@cs.ucf.edu

February 5, 2017

Abstract

This document1 explains what it means to “follow the grammar” when writing recursive programs, for
several kinds of different grammars. It is intended to be used in classes that teach functional programming
using Python, especially those used for teaching introductory programming.

1 Introduction
An important skill in programming is being able to write a program whose structure mimics the structure
of a context-free grammar. This is important for working with programming languages [4, 10], as they are
described by such grammars, but also for many other programming tasks, because recursively-structured data
is fairly common and important. Therefore, the proficient programmer’s motto is “follow the grammar.”
This document attempts to explain what “following the grammar” means, by explaining a series of graduated
examples.

The “follow the grammar” idea was the key insight that allowed computer scientists to build compilers for
complex languages, such as Algol 60. It is fundamental to modern syntax-directed compilation [1]. Indeed
the idea of syntax-directed compilation is another expression of the idea “follow the grammar.” It finds
clear expression in the structure of interpreters used in the Friedman, Wand and Haynes book Essentials of
Programming Languages [4].

The idea of following the grammar is not new and not restricted to programming language work. An
early expression of the idea is Michael Jackson’s method [6], which advocated designing a computation
around the structure of the data in a program. Object-oriented design [2, 11] essentially embodies this idea,
as in object-oriented design the program is organized around the data.

Thus the “follow the grammar” idea has both a long history and wide applicability.

1.1 Grammar Background
To explain the concept of following a grammar precisely, we need a bit of background on grammars.

A context-free grammar consists of several nonterminals (names for sets), each of which is defined by
one or more alternative productions. In a context-free grammar, each production may contain recursive
uses of nonterminals. For example, the context-free grammar in Figure 1 on the following page has five
non-terminals, 〈Stmt〉, 〈StmtList〉, 〈Stmts〉, 〈Var〉, and 〈Exp〉. The nonterminal 〈Stmt〉 has three alternatives
(separated by the vertical bars). The production for 〈Stmt〉 has a call to 〈StmtList〉, which calls Stmts,
which, in turn, recursively calls both 〈Stmts〉 and 〈Stmt〉.

Context-free grammars correspond very closely to Python class declarations. For example, the class
declarations in Figure 2 on the next page correspond directly to the grammar for 〈Stmt〉 above. In the figure,
the declared superclass abc.ABC is used to make sure that Stmt is an abstract base case (hence ABC), and

1 This paper is adapted from a Haskell version [9], which itself is adapted from an Oz version, [8].

1

〈Stmt〉 ::= Skip() | Assign(〈Var〉, 〈Exp〉) | Compound(〈StmtList〉)
〈StmtList〉 ::= [] | [〈Stmts〉]
〈Stmts〉 ::= 〈Stmt〉 | 〈Stmt〉 , 〈Stmts〉
〈Var〉 ::= 〈String〉
〈Exp〉 ::= 〈Integer〉

Figure 1: Example of a context-free grammar.

thus cannot be directly instantiated. New objects can only be made by creating objects of its subtypes Skip,
Assign, or Compound.2

$Id: Stmt.py,v 1.1 2017/01/11 19:57:48 leavens Exp $
import abc # abc means "abstract base class"
class Stmt(abc.ABC):

pass

class Skip(Stmt):
pass

class Assign(Stmt):
def __init__(self, var, exp):

"""var should be a string, exp should be an int"""
self.var = var
self.exp = exp

class Compound(Stmt):
def __init__(self, stmtList):

"""stmtList should be a list of Stmts"""
self.stmtList = stmtList

Figure 2: Classes that implement the grammar for 〈Stmt〉. Note that the __init__ method defines how
a newly created object is initialized. For example, to create an object of type Assign, one executes
Assign(v,e), which creates the object and calls the __init__ method with self as the newly cre-
ated object, var as the value of v, and exp as the value of e.

Examples of Python objects that are instances of this grammar include expressions that generate objects
of one of the subtypes of Stmt, including: Skip(), Assign("spam", 3), Compound([]), and the
following.

Compound([Assign("spam", 3), Assign("spam", 4)])

1.2 Definition of Following the Grammar
Following the grammar means making a set of functions whose structure mimics that of the given grammar
in a certain way. This is explained in the following definition.

2 One could also use case classes as defined in macropy to do this kind of example, but macropy doesn’t seem to work with Python
3 yet.

2

https://github.com/lihaoyi/macropy

Definition 1.1 Consider a context-free grammar, G and a set of functions Prog. We say that Prog follows
the grammar G if:

1. For every nonterminal, 〈X〉, in G, there is a function, fX, in Prog that takes an argument from the set
described by the nonterminal 〈X〉.

2. If a nonterminal 〈X〉 has alternatives, then the corresponding function fX decides between the alterna-
tives offered in 〈X〉’s grammatical productions, and there is (at least) one case in the definition of fX
for each alternative production for 〈X〉.

3. If the nonterminal 〈X〉 has an alternative whose production contains a nonterminal 〈Y〉 that is defined
in the grammar G, then:

(a) the corresponding case in fX has a call to fY, where fY is the function in Prog that handles data
described by the nonterminal 〈Y〉, and

(b) each call from fX to fY passes to fY a part of the data fX received as an argument, including at
least that part described by 〈Y〉.

Since this definition does not prescribe the details of the set of functions, we often say that Prog has an
outline that follows a grammar G if Prog follows G.

We give many examples in the sections that follow.
Following the grammar thus organizes the program around the structure of the data, in much the same way

as one would organize the methods of an object-oriented program in classes, so that each method deals with
data of the class in which it resides. In a well-organized program, each kind of data (i.e., each nonterminal)
has its own function that only handles that kind of data. This organization makes it easy to understand
and modify the program, because if the grammar changes, then the impact on functions is well-defined and
minimized.

A closer object-oriented analogy is to the structure of the methods in the Visitor pattern [5], for a particular
visitor. The story there is the same: each kind of data has a method (the visitor) that handles that particular
kind of data.

1.3 Overview
In the following we will consider several different examples of grammars and functions that follow them.
Our exploration is gradual, and based on increasing complexity in the structures of the grammars we treat.
In Section 2, we show how to follow a grammar that only has alternatives. In Section 3, we do the same for
grammars that only have recursion. In Section 4 we add the complication of multiple nonterminals. Finally,
in Section 5 we treat a series of grammars that combine these features.

2 Only Alternatives, No Recursion
The simplest kind of grammar has no recursion, but just has alternatives.

2.1 Temperature Grammar
For example, consider the following grammar for temperatures. In this grammar, all of the alternatives are
base cases.

〈Temperature〉 ::=
Cold

| Warm
| Hot

In Python, this corresponds to the class definitions in Figure 3 on the following page.
Notice that the nonterminal 〈Temperature〉 is translated into the class named Temperature in Python,

and each of the alternatives in this grammar is translated into a very simple class (Cold, Warm, and Hot) of
the so that each of these can be instances.

3

$Id: Temperature.py,v 1.1 2017/01/08 18:27:14 Gary Exp $
import abc
class Temperature(abc.ABC):

pass
class Cold(Temperature):

pass
class Warm(Temperature):

pass
class Hot(Temperature):

pass

Figure 3: Classes that implement the grammar for 〈Temperature〉.

2.1.1 Example

A function that takes a Temperature as an argument will have the outline typified by the following example.

$Id: selectOuterWear.py,v 1.1 2017/01/08 18:24:23 Gary Exp Gary $
from Temperature import *
def selectOuterWear(temp):

"""return description of appropriate outerwear for temp"""
if (isinstance(temp,Hot)): return "none"
elif (isinstance(temp,Warm)): return "wind breaker"
else: #(isinstance(temp,Cold))

return "down jacket"

Notice that there are three alternatives in the grammar, and so there are three cases in the function, each of
which corresponds to a condition tested in the body of the function. There is no recursion in the Temperature
grammar, so there is no recursion in the function.

The following file tests the above selectOuterWear function.

$Id: test_selectOuterWear.py,v 1.1 2017/01/08 18:24:06 Gary Exp $
from selectOuterWear import selectOuterWear
from Temperature import *

def test_selectOuterWear():
assert selectOuterWear(Hot()) == "none"
assert selectOuterWear(Warm()) == "wind breaker"
assert selectOuterWear(Cold()) == "down jacket"

4

2.1.2 isFreezing Exercise

Which of the following has a correct outline for a function isFreezing that takes a Temperature
argument, returns a bool result, and follows the grammar for Temperature?

1. from Temperature import *
def isFreezing(temp):

if (isinstance(temp,Hot)):
return False

else:
return isFreezing(temp-1)

2. from Temperature import *
def isFreezing(temp):

if (temp == []):
return False

else:
return isinstance(temp,Cold) or isFreezing(temp[1:])

3. from Temperature import *
def isFreezing(temp):

if (isinstance(temp,Hot)): return False
elif (isinstance(temp,Warm)): return False
else:

return True

4. from Temperature import *
def isFreezing(temp):

if (isinstance(temp,Cold)):
return isFreezing(temp)

elif (isinstance(temp,Hot)):
return not isFreezing(temp)

else:
return True

Answer:3.Notethat1and4haverecursion,whichdonotfollowthegrammarinthiscase,sincethegrammarisnotrecursive.

2.2 Color Grammar Exercises
Consider another example with simple alternatives and no recursion

〈Color〉 ::= Red | Yellow | Green | Blue

and which corresponds to the following Python class hierarchy.

$Id: Color.py,v 1.1 2017/01/09 13:22:16 leavens Exp $
import abc
class Color(abc.ABC): pass
class Red(Color): pass
class Yellow(Color): pass
class Green(Color): pass
class Blue(Color): pass

Write a function equalColor that takes two Colors and returns True just when they are the same. For
example equalColor(Red(), Red()) would be True. (Note that because == in Python compares
object identities, an expression such as Red() == Red() returns False, which is the wrong answer.)

5

3 Only Recursion, No Alternatives
Another kind of grammar is one that just has recursion, but no alternatives.

3.1 Infinite Sequence Grammar
The following is an example of a grammar with no alternatives, which is a grammar of infinite Integer
sequences.

〈ISeq〉 ::= ISeq(〈int〉, 〈ISeq〉)

The above corresponds to the Python class in Figure 4, with the tail() method added for convenience.

$Id: ISeq.py,v 1.2 2017/01/10 15:05:17 leavens Exp $
class ISeq:

def __init__(self, val, rest):
"""val should be an int, and

rest should be a zero-argument function that returns an ISeq."""
self.val = val
self.rest = rest

def tail(self):
return self.rest()

Figure 4: The class ISeq of infinite sequences.

In Python one can create such infinite sequences using zero-argument lambdas (anonymous functions) as
the second argument to an ISeq, as shown in Figure 5 on the following page.

3.1.1 Example

A function iSeqMap, shown in Figure 6 on page 8 takes a function f (which itself takes a single argument
and returns it) and an ISeq seq, that applies f to each element of seq and returns an ISeq of the results
in the same order as the arguments in seq. Note how iSeqMap follows the above grammar.

Following the grammar in this example means that the function does something with the argument n and
makes a recursive call on the tail of ns, which is an ISeq. In this example, there is no base case or stopping
condition, because the grammar has no alternatives to allow one to stop, which is why it is so helpful that
functions in Python are lazy by default.

Although this example does not have a stopping condition, other functions that work on this grammar
might allow stopping when some condition holds, as in the next example.

Figure 7 on page 9 contains some tests of iSeqMap.

6

$Id: test_ISeq.py,v 1.4 2017/02/02 03:21:14 leavens Exp $
from ISeq import *
from math import isclose
an infinite sequence of ones
ones = ISeq(1, (lambda : ones))

def nats_from(n):
"""The sequence of natural numbers starting at n"""
return ISeq(n, (lambda : nats_from(n+1)))

the natural numbers
nats = nats_from(0)

def halves_from(n):
"""The infinite sequence of fractions 1/2**0, 1/2**1, 1/2**2, 1/2**3, etc."""
return ISeq(1/2**n, (lambda : halves_from(n+1)))

the sequence 1, 0.5, 0.25, 0.125, ...
halves = halves_from(0)

def test_ISeq():
"""tests for ISeq basics."""
assert ones.val == 1
assert ones.tail().tail().val == 1
assert nth_elem(ones, 5) == 1
assert nth_elem(ones, 99) == 1
assert nats.val == 0
assert nats.tail().val == 1
assert nats.tail().tail().val == 2
assert isclose(halves.val, 1.0)
assert isclose(halves.tail().val, 0.5)

def nth_elem(seq, n):
"""Return the nth (counted from 0) element of the infinite sequence seq"""
if (n == 0):

return seq.val
else:

return nth_elem(seq.tail(), n-1)

def test_nth_elem():
"""Tests that use nth_elem to look at other elements in the sequence."""
assert nth_elem(nats, 0) == 0
assert nth_elem(nats, 1) == 1
assert nth_elem(nats, 2) == 2
assert nth_elem(nats, 99) == 99
assert isclose(nth_elem(halves, 2), 0.25)
assert isclose(nth_elem(halves, 3), 0.125)
assert isclose(nth_elem(halves, 10), 1/2**10)

Figure 5: Testing for the ISeq type.

7

$Id: iSeqMap.py,v 1.1 2017/01/10 15:05:17 leavens Exp $
from ISeq import *

def iSeqMap(f, seq):
"""Apply the function f to each element of the infinite sequence seq,

returning a new infinite sequence.
The function f operates on elements of the sequence individually."""

return ISeq(f(seq.val), (lambda : iSeqMap(f, seq.tail())))

Figure 6: The function iSeqMap that maps a function over ISeqs.

8

$Id: test_iSeqMap.py,v 1.3 2017/02/02 03:21:14 leavens Exp $
from ISeq import *
from iSeqMap import *
from test_ISeq import ones, nats, halves, nth_elem
from math import isclose
def ident(n):

"""Return the argument unchanged. This is the identity function."""
return n

def inc(n):
"""Return the successor of the argument."""
return n+1

def test_iSeqMap_ident():
"""Tests of iSeqMap usng the ident (identity) function."""
onesmapped = iSeqMap(ident, ones)
assert onesmapped.val == 1
assert nth_elem(onesmapped, 101) == 1

def test_iSeqMap_inc():
"""Tests of iSeqMap using the inc function."""
twos = iSeqMap(inc, ones)
assert twos.val == 2
assert nth_elem(twos, 500) == 2
ints = iSeqMap(inc, nats)
assert ints.val == 1
assert nth_elem(ints,5) == 6
assert nth_elem(ints,70) == 71
fours = iSeqMap(inc, iSeqMap(inc, iSeqMap(inc, ones)))
assert fours.val == 4
assert nth_elem(fours, 321) == 4
oneplus = iSeqMap(inc, halves)
assert oneplus.val == 2
assert isclose(nth_elem(oneplus,2), 1.25)
assert isclose(nth_elem(oneplus,3), 1.125)

def test_iSeqMap_lambdas():
"""Tests of iSeqMap using lambdas."""
Note that (lambda n: n+1) is the same function as inc
threes = iSeqMap((lambda n: n+1), iSeqMap(inc, ones))
assert threes.val == 3
assert nth_elem(threes, 333) == 3
squares = iSeqMap((lambda n: n*n), nats)
assert nth_elem(nats, 3) == 3
assert nth_elem(squares, 3) == 9
assert nth_elem(squares, 27) == 27*27
negs = iSeqMap((lambda n: -n), nats)
assert nth_elem(negs, 3) == -3
assert nth_elem(negs, 28) == -28

Figure 7: Testing for iSeqMap, which shows how it can be used.

9

3.1.2 AnyNegative Exercise

Which of the following has a correct outline for a function anyNegative that takes as an argument an
ISeq whose elements are numbers, and returns a bool that is True just when some element of the given
sequence is a negative number. (Note that it is not required that the function terminate if no element is
negative.)

1. def anyNegative(seq):
if (seq == []):

return False
else:

return anyNegative(seq.tail())

2. def anyNegative2(seq):
return (seq.val < 0) or anyNegative(seq.tail())

3. def anyNegative2(seq):
return anyNegative(seq.tail())

4. def anyNegative(seq):
if (isinstance(seq, Cold))

return True
else:

return False

5. def anyNegative(seq):
if (seq.val < 0):

return True
else:

return anyNegative(seq.tail())

Answer:Both2and5arecorrect.Notethat3ignoresthefirstandhenceallelements.

3.1.3 Filter Infinite Sequence Exercise

Write a function filterISeq that takes a predicate, pred (which itself takes an integer and returns a
bool) and an ISeq (which contains integers), and which returns an ISeq of all elements in seq for which
pred returns True when applied to the element. Elements retained are left in their original order. For
example:

filterISeq((lambda n: n \% 2 == 0), nats)

would return an ISeq that contains the even integers (0, 2, 4, 6, 8, etc.).

4 Multiple Nonterminals
When the grammar has multiple nonterminals, there should be a function for each nonterminal in the gram-
mar, and the recursive calls between these functions should correspond to the recursive uses of nonterminals
in the grammar. That is, when a production for a nonterminal, 〈X〉, uses another nonterminal, 〈Y〉, there
should be a call from the function for 〈X〉 to the function for 〈Y〉 that passes an instance of 〈Y〉 as an argu-
ment.

10

4.1 Rectangle Grammar
Consider the following grammar for Rectangles and Points.

〈Rectangle〉 ::= Rectangle(〈Point〉, 〈Point〉)
〈Point〉 ::= Point(〈int〉, 〈int〉)

The Python class definitions that correspond to the above grammar are shown in Figure 8.

$Id: Rectangle.py,v 1.2 2017/02/05 02:54:57 leavens Exp $
class Rectangle():

def __init__(self, ul, lr):
"""Initialize self so the the upper left point is ul, and
the lower right point is lr. Both args should be Points."""
self.ul = ul
self.lr = lr

def __eq__(self, r2):
"""Return True just when self is equivalent to r2 structurally"""
return self.ul == r2.ul and self.lr == r2.lr

def __repr__(self):
"""Return a string representing this rectangle."""
return "Rectangle(" + repr(self.ul) + ", " + repr(self.lr) + ")"

class Point():
def __init__(self, x, y):

"""Initialize self with the x and y coordinates of the point"""
self.x = x
self.y = y

def __eq__(self, p2):
"""Return True just when self is equivalent to p2 structurally"""
return self.x == p2.x and self.y == p2.y

def __repr__(self):
"""Return a string representing this point."""
return "Point(" + repr(self.x) + ", " + repr(self.y) + ")"

Figure 8: The classes Rectangle and Point. The methods named __eq__() define what == means for
objects of that class. Thus the uses of == from Rectangle’s __eq__() method call Point’s __eq__()
method. The methods named __repr__() define what a printed representation of objects of that type
looks like. This representation is printed by the Python interpreter and can also be obtained by the expression
repr(o) for an object o; thus the calls to repr() in the definition of Rectangle’s __repr__() method
call the __repr__() method in class Point.

4.1.1 Example

To follow this grammar when writing a function like moveUp that takes a Rectangle and an int and
returns a new Rectangle one would structure the code into two functions, one for each of the two types (i.e.,
nonterminals), as shown in Figure 9 on the following page. Since the type (i.e., production) for Rectangle
uses the type Point twice, the function moveUp calls the moveUpPoint function twice, once on each of
the points in the Rectangle. Note that the arguments to these functions are parts of the Integer described by
the corresponding nonterminals.

11

$Id: moveUp.py,v 1.1 2017/01/11 19:57:48 leavens Exp $
from Rectangle import *
def moveUp(rect, delta):

"""rect is a Rectangle and delta is an integer amount to move upwards"""
return Rectangle(moveUpPoint(rect.ul, delta),

moveUpPoint(rect.lr, delta))

def moveUpPoint(pt, delta):
"""pt is a Point and delta is an integer amount to move upwards"""
return Point(pt.x, pt.y + delta)

Figure 9: The two functions that move Rectangles and Points up.

4.1.2 DoubleRect Exercise

Which of the following is a correct outline of a function doubleRect(rect) that takes a Rectangle as
an argument and returns a Rectangle, and which that follows the grammar for Rectangles?

1. def doubleRect(rect):
return Rectangle(doubleRect(rect.ul), doubleRect(rect.lr))

2. def doubleRect(rect):
return Rectangle(Point(rect.ul.x, rect.ul.y * 2), rect.lr)

3. def doubleRect(rect):
return Rectangle(doubleRect(rect.ul), rect.lr)

def doubleRect(p):
return Point(p.x, p.y * 2)

4. def doubleRect(rect):
return Rectangle(doublePointY(rect.ul), rect.lr)

def doublePointY(pnt):
return Point(pnt.x, pnt.y * 2)

Answer:4.Notethat1goesintoaninfiniteloop.Also2whileitworks,doesnotfollowtheruleabouthavingonefunctionpertype,sincethereisnofunctionforPointsgiven.Thecorrectansweris4,whichfollowsthegrammar.

4.1.3 ShrinkRect Exercise

Write a function, shrinkRect(rect, factor) that takes a Rectangle, rect, and a Number factor
(which is greater than or equal to 1) and returns a new rectangle whose sides are smaller than those of rect
by factor, but with the same upper left point as rect. Tests for shrinkRect appear in Figure 10 on the
next page.

4.2 Multiple Nonterminal Exercise
Suppose you have a grammar with 10 nonterminals, how many functions would be contained in an outline
that followed that grammar?

12

$Id: test_shrinkRect.py,v 1.1 2017/02/05 02:54:57 leavens Exp $
from Rectangle import *
from shrinkRect import *
from math import isclose
def closeRect(r1, r2):

return closePoint(r1.ul, r2.ul) and closePoint(r1.lr, r2.lr)

def closePoint(p1, p2):
return isclose(p1.x, p2.x) and isclose(p1.y, p2.y)

def test_shrinkRect():
r = Rectangle(Point(0,0), Point(-5,-6))
rs = shrinkRect(r,3)
assert closeRect(rs, Rectangle(Point(0,0), Point(-5/3, -6/3)))
rs10 = shrinkRect(r,10)
assert closeRect(rs10, Rectangle(Point(0,0), Point(-5/10, -6/10)))

Figure 10: Tests for the shrinkRect problem.

5 Combination of Different Grammar Types
Most interesting examples of grammars involve a combination of the three types discussed above. That is,
there are alternatives, and recursions, and multiple nonterminals.

To start, we consider only examples that involve two of these features. The grammar for flat (Lisp) lists
and the grammar for “binary trees” both involve only one nonterminal, but have alternatives and recursion.
The grammar for “sales data” has all three features: alternatives, recursions, and multiple nonterminals.

5.1 Flat Lists as in Lisp
The grammar for flat lists, as in Lisp, is simpler than other combinations, as it has alternatives and recursion,
but only one nonterminal. A grammar for flat lists of elements of type t is as follows.

〈list(t)〉 ::= Nil() | Cons(〈t〉, 〈list(t)〉)

where 〈t〉 is the nonterminal that generates elements of type t.
The above grammar means we are not interested in the structure of the 〈t〉 elements of the lists; that is the

sense in which the list is “flat.”
Lisp lists are similar to, but not the same as, the built-in lists in Python. They correspond more closely to

the classes defined in Figure 11 on the following page. (In the figure the method __str__() is similar to
__repr__(), but is supposed to produce a string suitable for printing. The expression str(o) calls o’s
__str__() method, as does the built-in print function in Python. Note that the implementation of the
__str__()method in class Cons uses a helping method, elements_str, to produce a comma separated
string showing all the elements of the list; this method follows the grammar for non-empty Lisp lists, as every
Cons instance is a non-empty list. Another thing to note about the figure is that the implementation of
the __eq__() method in class Cons is recursive, since the last call to == (on the tails of the lists) calls
the __eq__() method. You should convince yourself that the implementation of this __eq__() method
follows the grammar for Lisp lists; indeed it is an example of simultaneous recursion.)

Note that since Lisp lists are objects, the methods that operate on them, such as isEmpty() are invoked
in an object-oriented fashion, with a receiver expression (e.g., the object being tested, which is passed as
the self argument), followed by a dot (.), followed by the method name, and the rest of the arguments in
parentheses. See the tests for Lisp lists are found in Figure 12 on page 15, as well as the way the code is
written in Figure 11 on the following page itself.

13

$Id: LispList.py,v 1.4 2017/02/05 22:21:24 leavens Exp $
import abc
class LispList(abc.ABC):

pass
class Nil(LispList):

def __init__(self):
"""Initialize this empty list"""
pass

def __eq__(self, lst):
"""Return True just when lst is also an instance of Nil."""
return isinstance(lst, Nil)

def __repr__(self):
"""Return a string representing this Nil instance."""
return "Nil()"

def __str__(self):
"""Return a string showing the elements of self."""
return "[]"

def isEmpty(self):
"""Return whether this list is empty."""
return True

class Cons(LispList):
def __init__(self, hd, tl):

"""Initialize this Cons with head hd and tail tl."""
self.car = hd
self.cdr = tl

def __eq__(self, lst):
"""Return True just when self is structurally equivalent to lst."""
return isinstance(lst, Cons) and lst.first() == self.first() \

and lst.tail() == self.tail()
def __repr__(self):

"""Return a string representing this list."""
return "Cons(" + repr(self.first()) + ", " + repr(self.tail()) + ")"

def elements_str(self):
"""Return a string of the elements of self, separated by commas."""
if self.tail().isEmpty():

return str(self.first())
else:

return str(self.first()) + ", " + self.tail().elements_str()
def __str__(self):

"""Return a string showing the elements of self."""
return "[" + self.elements_str() + "]"

def isEmpty(self):
"""Return whether this list is empty."""
return False

def first(self):
"""Return the first element of this list."""
return self.car

def tail(self):
"""Return the rest of this list."""
return self.cdr

Figure 11: Classes that implement lists as in Lisp, in the file LispList.py. See the text for more explana-
tion.

14

$Id: test_LispList.py,v 1.1 2017/02/05 02:54:57 leavens Exp $
from LispList import *
def test_nil():

"""Tests only using Nil."""
nil = Nil()
assert nil == nil
assert repr(nil) == 'Nil()'
assert str(nil) == '[]'
assert nil.isEmpty()

def test_cons():
"""Tests that use Cons."""
nil = Nil()
lst = Cons(1, Cons(2, Cons(3, nil)))
assert lst == lst
assert Cons(4, lst) == Cons(4, lst)
assert lst != nil
assert lst != Cons(5, lst)
assert lst != lst.tail()
assert repr(lst) == "Cons(1, Cons(2, Cons(3, Nil())))"
assert str(lst) == "[1, 2, 3]"
assert repr(lst.tail()) == "Cons(2, Cons(3, Nil()))"
assert lst.tail().first() == 2
assert lst.first() == 1
assert lst.tail().tail().first() == 3
assert lst.tail().tail().tail() == nil
assert not lst.isEmpty()
assert not lst.tail().isEmpty()

Figure 12: Tests for the LispList module.

15

5.1.1 Examples of Recursion over Flat (Lisp) Lists

The lcopy(lst) function, shown in Figure 13, demonstrates the form of functions that follow the grammar
for flat (Lisp) lists. They test to see if the list argument is empty, and if so return some constant, otherwise
they use the .first() and .tail() methods to access the first element of the list and the tail of the
list, and combine some operation (in this case doing nothing) on the first element with a recursive call to the
function to process the rest of the list.

from LispList import *
def lcopy(lst):

"""Return a copy, in new storage, of lst."""
if lst.isEmpty():

return Nil()
else:

return Cons(lst.first(), lcopy(lst.tail()))

Figure 13: The function lcopy that copies a Lisp list.

Tests for lcopy are shown in Figure 14.

from LispList import *
from lcopy import *
def test_lcopy():

"""Tests for lcopy."""
nil = Nil()
assert lcopy(nil) == Nil()
lst = Cons("every", Cons("day", nil))
assert lcopy(lst) == lst
assert lcopy(lcopy(lst)) == lst

Figure 14: Tests for lcopy.

A more useful example that follows the grammar for flat (Lisp) Lists is the incAll(lst) function,
which takes a list lst all of whose elements are numbers, and returns a new list that is like lst, but with
each number incremented. See Figure 15.

from LispList import *
def incAll(lst):

"""Requires lst is a list of numbers.
Ensures result is a new list that is just like lst,
but with each number incremented."""
if lst.isEmpty():

return Nil()
else:

return Cons(lst.first()+1, incAll(lst.tail()))

Figure 15: The function incAll.

Some simple tests for incAll are shown in Figure 16 on the following page.

16

$Id: test_incAll.py,v 1.1 2017/02/05 05:02:43 leavens Exp $
from LispList import *
from incAll import *
def test_incAll():

nil = Nil()
lst = Cons(3, Cons(2, Cons(2, Cons(3, nil))))
assert incAll(nil) == nil
assert incAll(lst) == Cons(4, Cons(3, Cons(3, Cons(4, nil))))

Figure 16: Tests for incAll.

A generalization of this pattern is given in the function lmap(f,lst), shown in Figure 17. This
function takes a function f (which itself takes an argument of some type t and returns a value of some type
s), and a Lisp list of elements of type t, lst, and returns a Lisp list of elements of type s, which is the result
of applying f to each element of lst, is a paradigmatic example of following the grammar for flat lists.

from LispList import *
def lmap(f, lst):

if lst.isEmpty():
return Nil() # or return lst

else:
return Cons(f(lst.first()), lmap(f, lst.tail()))

Figure 17: The lmap function for flat (Lisp) lists.

17

The way in which functions are passed to lmap is shown in Figure 18. Note that the assignment
inc = (lambda i: i+1) is a shorthand way to define a function that could be written

def inc(i):
return i+1

The lambda expression creates a function (without a name) that behaves like inc above.

$Id: test_lmap.py,v 1.2 2017/02/05 05:02:43 leavens Exp $
from LispList import *
from lmap import *
def test_lmap():

nil = Nil()
to10 = Cons(0, Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, \

Cons(6, Cons(7, Cons(8, Cons(9, nil))))))))))
from1to10 = Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, \

Cons(6, Cons(7, Cons(8, Cons(9, Cons(10, nil))))))))))
odds = Cons(1, Cons(3, Cons(5, Cons(7, Cons(9, nil)))))
evens = Cons(0, Cons(2, Cons(4, Cons(6, Cons(8, nil)))))
inc = (lambda i: i+1)
assert lmap(inc, to10) == from1to10
assert lmap(inc, evens) == odds
double = (lambda n: 2*n)
assert lmap(double, evens) == Cons(0, Cons(4, Cons(8, Cons(12, Cons(16, nil)))))
assert lmap(double, lmap(double, odds)) == Cons(4, Cons(12, Cons(20, Cons(28, Cons(36, nil)))))
assert lmap(inc, lmap(double, evens)) == Cons(1, Cons(5, Cons(9, Cons(13, Cons(17, nil)))))

Figure 18: Tests for lmap, showing how it is used.

5.2 SumList Example
Students sometimes overgeneralize the pattern of recursion over flat lists and think that always returning
Nil() in the base case is the right thing to do. But this example shows that this is not always right. The
example is a function sumList(lst) that takes a list of numbers, lst, and returns the total of all the
numbers in that list, added together. Note how the code in Figure 19 follows the grammar for flat (Lisp) lists.

$Id: sumList.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from LispList import *
def sumList(lst):

"""Return the sum of the Lisp list of numbers, lst."""
if lst.isEmpty():

return 0
else:

return lst.first() + sumList(lst.tail())

Figure 19: The function sumList that follows the grammar for flat (Lisp) lists.

Tests for sumList are found in Figure 20 on the following page.

18

$Id: test_sumList.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from LispList import *
from sumList import *
def test_sumList():

"""Tests for sumList."""
nil = Nil()
assert sumList(nil) == 0
assert sumList(Cons(1, Cons(10, nil))) == 11
assert sumList(Cons(32, Cons(23, Cons(100, nil)))) == 155
assert sumList(Cons(1, Cons(1, Cons(1, Cons(1, nil))))) == 4

Figure 20: Tests for sumList.

5.3 Take Example
Sometimes integers and lists jointly control a recursion. This is demonstrated by the function take(lst,
n) in Figure 21. This function returns the first n elements of lst. In this example, in the recursive calls the
list argument gets smaller and the argument n also gets smaller. This is an example of simultaneous recursion,
as the function is recursing on both the list and the number arguments. Note that the base case test checks to
see if either the list has run out or if the number has reached 0, and either of these stops the recursion.

$Id: take.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from LispList import *
def take(lst, n):

"""Return the first n elements of Lisp list lst as a Lisp list."""
if lst.isEmpty() or n <= 0:

return Nil()
else:

return Cons(lst.first(), take(lst.tail(), n-1))

Figure 21: The function take that simultaneously recurses on a list and an integer.

Tests for take are found in Figure 22 on the following page. Note that these tests use a helping function,
fromTo, that recurses on its (first) integer argument and produces a list. The figure also contains tests for
fromTo.

19

$Id: test_take.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from LispList import *
from take import *
def test_take():

"""Testing for the take function."""
to10 = fromTo(1,10)
to100 = fromTo(1, 100)
assert take(to10, 5) == fromTo(1,5)
assert take(to100, 23) == fromTo(1, 23)

def fromTo(start, end):
"""Return a list of the form Cons(start, Cons(start+1, ..., Cons(end, Nil())))."""
if start > end:

return Nil()
else:

return Cons(start, fromTo(start+1, end))

def test_fromTo():
"""Testing for fromTo()."""
assert fromTo(1, 3) == Cons(1, Cons(2, Cons(3, Nil())))
assert fromTo(4,4) == Cons(4, Nil())
assert fromTo(0,5) == Cons(0, Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Nil()))))))

Figure 22: Tests for take, and fromTo, with code for a helping function fromTo.

20

5.3.1 ExtractNames Exercise

Which, if any, of the following is a correct outline for a function extractNames(records), that takes
a Lisp list of pairs of names and addresses, written ("Jane Doe", "1 Elm St.") in Python, with the
name first in the pair, that follows the grammar for flat lists? List all that have a correct outline for recursion
over flat lists. (Note: we are mainly asking whether these have the right outline, but having the wrong outline
will cause them not to work as they should.) Note that the function name(rec) returns the name from a
pair of a name and an address.

1. def extractNames(records):
return Cons(name(records.first()), extractNames(records.tail()))

2. def extractNames(records):
if records.isEmpty():

return Nil()
else:

return Cons(name(records.first()), extractNames(records.tail()))

3. def extractNames(records):
if records.isEmpty():

return records
else:

return Cons(name(records.first()), extractNames(records.tail()))

4. def extractNames(records):
if records.isEmpty():

return records
else:

return Cons(name(records.first()), records.tail())

5. def extractNames(records):
if records == []:

return []
else:

return [name(records[0])] + extractNames(records[1:])

6. from lmap import *
def extractNames(records):

return lmap(name, records)

Answer:2,3,6.In6,thelmapfunctionisfollowingthegrammaronbehalfofextractNames.Notethat5followsthegrammarofPythonlists,nottheLispliststhatarecalledforintheproblem.

5.3.2 DeleteListing Exercise

Which, if any, of the following is a correct outline for a function deleteListing(name,records)
that takes a string, name, and a Lisp list, records of pairs of names and addresses, and that follows the
grammar for flat lists? List all that have a correct outline for recursion over flat lists.

(Again we assume that there is a function name the returns a name from a person record.)

1. def deleteListing(nm, records):
if records.isEmpty():

return Nil()
else:

21

fst = records.first()
if name(fst) == nm:

return deleteListing(nm, records.tail())
else:

return Cons(fst, deleteListing(nm, records.tail()))

2. def deleteListing(nm, records):
if records.isEmpty():

return Nil()
else:

fst = records.first()
return deleteListing(nm, records.tail()) \

if name(fst) == nm \
else Cons(fst, deleteListing(nm, records.tail()))

3. def deleteListing(nm, records):
fst = records.first()
if name(fst) == nm:

return deleteListing(nm, records.tail())
else:

return Cons(fst, deleteListing(nm, records.tail()))

4. def deleteListing(nm, records):
fst = records.first()
return Cons(fst, deleteListing(nm, records.tail()))

5. def deleteListing(nm, records):
fst = records.first()
return deleteListing(nm, Cons(fst, records.tail()))

6. def deleteListing(nm, records):
ret = []
for (n,a) in records:

if nm != a:
ret = ret.append([(n,a)]

return ret

Answer:1and2(whichusesanifexpression)followthegrammar.Notethat3and4havenobasecase.6doesn’tfollowthegrammarforLisplists.

5.4 Binary Trees
For purposes of this paper, a “binary tree” is an instance of the class BinTree shown in Figure 23 on the
next page. This set of classes corresponds to the following grammar, where t is some type.

〈BinTree(t)〉 ::= EmptyTree() | Branch(〈t〉, 〈BinTree(t)〉, 〈BinTree(t)〉)

The binary tree grammar has only one nonterminal, but has more recursion than the grammar for flat lists.
Thus functions that follow its grammar have more recursive calls than functions that follow the grammar for
flat lists.

5.4.1 Example

An example function that follows the above grammar is doubleTree(tr), which takes a binary tree of
numbers and returns a binary tree of numbers; it is shown in Figure 24 on page 24. Notice that in the else
case the function makes two recursive calls, one on the left subtree and one on the right subtree.

Tests for doubleTree are shown in Figure 25 on page 24.

22

$Id: BinTree.py,v 1.3 2017/02/05 22:21:24 leavens Exp $
import abc
class BinTree(abc.ABC):

pass
class EmptyTree(BinTree):

def __init__(self):
"""Initialize this empty tree."""
pass

def __eq__(self, tr):
"""Return True just when tr is also an empty tree."""
return isinstance(tr, EmptyTree)

def __repr__(self):
"""Return a string representing this EmptyTree instance."""
return "EmptyTree()"

def __str__(self):
"""Return a string showing the elements of self."""
return "{}"

def isEmpty(self):
"""Return whether this tree is empty."""
return True

class Branch(BinTree):
def __init__(self, value, left, right):

"""Initialize this Branch with the given value and with the given
left and right subtrees."""
self.val = value
self.lft = left
self.rght = right

def __eq__(self, tr):
"""Return True just when self is structurally equivalent to tr."""
return isinstance(tr, Branch) and tr.value() == self.value() \

and tr.left() == self.left() and tr.right() == self.right()
def __repr__(self):

"""Return a string representing this tree."""
return "Branch(" + repr(self.value()) + ", " + repr(self.left()) \

+ ", " + repr(self.right()) + ")"
def __str__(self):

"""Return a string showing the elements of self."""
return "{value: " + str(self.value()) + ", left: " + str(self.left()) \

+ ", right: " + str(self.right()) + "}"
def isEmpty(self):

"""Return whether this tree is empty."""
return False

def value(self):
"""Return the value in the root of self."""
return self.val

def left(self):
"""Return the left subtree of self."""
return self.lft

def right(self):
"""Return the right subtree of self."""
return self.rght

Figure 23: Binary tree classes. BinTree is an abstract class, with subtypes EmtpyTree and Branch.

23

$Id: doubleTree.py,v 1.1 2017/02/05 17:32:30 leavens Exp $
from BinTree import *
def doubleTree(tr):

if tr.isEmpty():
return EmptyTree()

else:
return Branch(2 * tr.value(), doubleTree(tr.left()), doubleTree(tr.right()))

Figure 24: The function doubleTree, which follows the grammar for binary trees.

$Id: test_doubleTree.py,v 1.1 2017/02/05 17:33:23 leavens Exp $
from BinTree import *
from doubleTree import *
def test_doubleTree():

et = EmptyTree()
one = Branch(1, et, et)
two = Branch(2, et, et)
three = Branch(3, one, two)
four = Branch(4, three, et)
assert doubleTree(et) == et
assert doubleTree(one) == two
six = Branch(6, two, Branch(4, et, et))
assert doubleTree(three) == six
assert doubleTree(four) == Branch(8, six, et)

Figure 25: Testing for the function doubleTree.

24

5.4.2 SumTree Exercise

Which, if any, of the following is a correct outline, that follows the grammar for binary trees, for a function
sumTree, (tr) that takes a binary tree of numbers, tr, as an argument, and returns the sum of all of the
numbers in tr?

1. def sumTree(tr):
if tr.isEmpty():

return 0
else:

return tr.value() + sumTree(tr.left()) + sumTree(tr.right())

2. def sumTree(tr):
return tr.value() + sumTree(tr.left()) + sumTree(tr.right())

3. def sumTree(tr):
ret = 0
for i in tr:

ret += i
return ret

4. def sumTree(tr):
if tr.isEmpty():

return EmptyTree()
else:

return Branch(tr.value(), sumTree(tr.right()))

5. def sumTree(tr):
if tr.isEmpty():

return Nil()
else:

return tr.first() + sumTree(tr.tail())

6. def sumTree(tr):
return sumTree(tr.left()) + sumTree(tr.right())

Answer:1istheonlyonethatfollowsthegrammar.

5.4.3 ReduceTree Exercise

Write a function, reduceTree(tr, f, z), which for some types t and s, takes a binary tree whose
elements have type t, tr, a function f (which takes 3 arguments, a value of type t, and two values of type s,
and which returns a value of type s), and a value z of type s, and which returns a value of type s that satisfies
the following equations, for all functions (of the type described above) f, values z of type s, values v of type
t, and BinTree(t) values tl and tr:

reduceTree(EmptyTree(),f,z) = z

reduceTree(Branch(v,tl,tr),f,z) = f(v, reduceTree(tl,f,z), reduceTree(tr,f,z))

Tests that demonstrate how reduceTree could be used are shown in the Figure 26 on the following
page.

25

$Id: test_reduceTree.py,v 1.1 2017/02/05 18:17:22 leavens Exp $
from BinTree import *
from reduceTree import *
def test_reduceTree():

et = EmptyTree()
one = Branch(1, et, et)
two = Branch(2, et, et)
three = Branch(3, one, two)
four = Branch(4, three, et)
six = Branch(6, two, Branch(4, et, et))
add3 adds its 3 arguments
add3 = (lambda v, tlv, trv: v + tlv + trv)
mkBr is the same as the Branch() function
mkBr = (lambda v, tlv, trv: Branch(v, tlv, trv))
sumTree adds all the numbers in a given tree of numbers
sumTree = (lambda tr: reduceTree(tr, add3, 0))
copyTree makes a new copy of the given tree
copyTree = (lambda tr: reduceTree(tr, mkBr, EmptyTree()))
assert sumTree(et) == 0
assert sumTree(one) == 1
assert sumTree(three) == 6
assert sumTree(four) == 10
assert sumTree(six) == 12
assert copyTree(six) == six
assert copyTree(four) == four
the lambda below acts like the built-in max() function for 3 arguments
assert reduceTree(six, (lambda v, tlv, trv: max(v,tlv,trv)), 0) == 6

Figure 26: Tests for reduceTree.

5.4.4 Design Your own BinTree Problem Exercise

Design another problem for the type BinTree. Give an English explanation, and some tests. Then solve
your problem, first on paper, then on the computer.

5.5 Sales Data
The grammar for SalesData is shown in Figure 27. It has a single nonterminal, but two alternatives, each
of which contains a Lisp list.

〈SalesData〉 ::= Store(〈String〉, 〈LispList(int)〉)
| Group(〈String〉, 〈LispList(SalesData)〉)

Figure 27: The grammar for SalesData.

The grammar for 〈String〉 is the same as for Python; the strings in this grammar represent names of stores
or groups. The grammar corresponds to the class declarations given in Figure 28 on the following page. (Note
that SalesData itself is an abstract base class.)

26

$Id: SalesData.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
import abc
class SalesData(abc.ABC):

pass
class Store(SalesData):

def __init__(self, address, amounts):
"""Requires address is a string, amounts is a Lisp list of ints.
Effect: initialize self with address and amounts."""
self.addr = address
self.amts = amounts

def __eq__(self, sd):
"""Return True just when sd is structurally equal to self."""
return isinstance(sd, Store) and sd.address() == self.address() \

and sd.amounts() == self.amounts()

def __repr__(self):
"""Return a string representation of self."""
return "Store(" + repr(self.address()) + ", " + repr(self.amounts()) + ")"

def address(self):
"""Return the address of this store."""
return self.addr

def amounts(self):
"""Return a Lisp list of the amounts of sales from this store."""
return self.amts

class Group(SalesData):
def __init__(self, gname, members):

"""Requires gname is a string and members is a Lisp list of SalesData.
Effect: initialize this group with the given name and members."""
self.gnm = gname
self.mbrs = members

def __eq__(self, sd):
"""Return True just when sd is structurally equal to self."""
return isinstance(sd, Group) and sd.gname() == self.gname() \

and sd.members() == self.members()

def __repr__(self):
"""Return a string representation of self."""
return "Group(" + repr(self.gname()) + ", " + repr(self.members()) + ")"

def gname(self):
"""Return the name of this group."""
return self.gnm

def members(self):
"""Return the Lisp list of sales data for this group."""
return self.mbrs

Figure 28: The type SalesData and its subtypes Store and Group.

27

5.5.1 NormalizeSalesData Example

The grammar for sales data is interesting in that both of its alternatives contain a different kind of list. Since
the different lists play different roles in the sales data grammar, it is thus especially important to follow the
grammar in the sense that only data of type SalesData should be passed to functions that work on that
type, and no lists should be passed to such functions.

The reason this is important is illustrated by the following example. Suppose we want to write a function
normalizeSalesData(sd), that takes a sales Data value sd and returns a result that is just like sd,
except that in each store record, each address string is put into ALL CAPITAL LETTERS and the amounts
list is trimmed to be just the first 5 elements of the argument’s list, and in each group record, the name field
is put into all capital letters, and each of the members is also normalized.

Figure 29 (which uses the code in Figure 30 on the following page) gives some examples of how this
program is supposed to work.

$Id: test_normalizeSalesData.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from normalizeSalesData import *
from normalizeSalesDataTesting import *
def test_normalizeSalesData():

"""Testing for normalizeSalesData."""
normalizeSalesDataTesting(normalizeSalesData)

Figure 29: Testing for the function normalizeSalesData. These tests import from
normalizeSalesData and then pass the function to the code in Figure 30 on the following page.

We suggest that you try to write out a solution for this problem before looking at our solution.
Correct code for normalizeSalesData() is shown in Figure 31 on page 30. This follows the gram-

mar in that it only passes sales data to the function normalizeSalesData. Note that lists of characters
and numbers are handled by helper functions capitalize, map, and the built-in function take. Can you
see why this code works correctly? (Note, the code uses take from Figure 21 on page 19 as a helping
function.)

Another way to write normalizeSalesData() correctly is to use the lmap function (from Figure 17
on page 17) to map normalizeSalesData() over the list of members in a group. This is shown in
Figure 32 on page 30. This still follows the grammar, because lmap is following the grammar for lists of
sales data values. Thus the code has the same execution pattern as in Figure 31 on page 30; the only difference
is that the call to lmap is used instead of normalizeList.

28

$Id: normalizeSalesDataTesting.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from SalesData import *
from normalizeSalesData import *
from LispList import *
def normalizeSalesDataTesting(fun):

"""Testing for fun, which is supposed to implement
the specification for normalizeSalesData."""
some data...
hundreds = Cons(101, Cons(102, Cons(103, Cons(104, Cons(105, Cons(106, Nil()))))))
hundreds5 = Cons(101, Cons(102, Cons(103, Cons(104, Cons(105, Nil())))))
ones = Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Cons(6, Cons(7, Cons(8, Cons(9, Nil())))))))))
ones5 = Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Nil())))))
ats = Store("3223 Alafaya Trail Rd.", hundreds)

idr = Store("3502 International Dr.", ones)
targetfl = Group("Target Florida", Cons(idr, Cons(ats, Nil())))
powof2 = Cons(1, Cons(2, Cons(4, Cons(8, Nil()))))
binary = Store("1024 Binary Ave.", powof2)
primes = Cons(2, Cons(3, Cons(5, Cons(7, Cons(9, Cons(11, Nil()))))))
primes5 = Cons(2, Cons(3, Cons(5, Cons(7, Cons(9, Nil())))))
logical = Store("256 Logical Blvd.", primes)
targetia = Group("Target Iowa", Cons(binary, Cons(logical, Nil())))
target = Group("Target usa", Cons(targetfl, Cons(targetia, Nil())))
now for the tests...
assert fun(ats) == Store("3223 ALAFAYA TRAIL RD.", hundreds5)
assert fun(idr) == Store("3502 INTERNATIONAL DR.", ones5)
nfl = fun(targetfl)
assert nfl == Group("TARGET FLORIDA", Cons(fun(idr), \

Cons(fun(ats), Nil())))
nia = fun(targetia)
assert nia == Group("TARGET IOWA", Cons(fun(binary), \

Cons(fun(logical), Nil())))
assert fun(target) == Group("TARGET USA", Cons(nfl, Cons(nia, Nil())))

Figure 30: Testing code that does the testing for normalizeSalesData passed in as the func-
tion argument fun. This allows these tests to be used for several different implementations of
normalizeSalesData without repeating this code.

29

$Id: normalizeSalesData.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from SalesData import *
from LispList import *
from take import take
def normalizeSalesData(sd):

"""Return a similar SalesData object as sd,
but with each address or group name capitalized."""
if isinstance(sd, Store):

return Store(capitalize(sd.address()), take(sd.amounts(), 5))
else: # it's a Group

return Group(capitalize(sd.gname()), normalizeList(sd.members()))

def normalizeList(lst):
"""Requries: lst is a Lisp list of SalesData.
Ensures: result is the same as lst but with each SalesData item normalized."""
if lst.isEmpty():

return Nil()
else:

return Cons(normalizeSalesData(lst.first()), \
normalizeList(lst.tail()))

def capitalize(s):
"""Return the string s with all lowercase characters made into uppercase."""
return str.upper(s)

Figure 31: The function normalizeSalesData, which follows the Sales Data grammar.

$Id: normalizeSalesData_lmap.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from SalesData import *
from lmap import lmap # mapping for Lisp lists
from take import take
def normalizeSalesData(sd):

if isinstance(sd, Store):
str.upper converts a string to uppercase
return Store(str.upper(sd.address()), take(sd.amounts(), 5))

else: # it's a Group
return Group(str.upper(sd.gname()), lmap(normalizeSalesData, sd.members()))

Figure 32: The function normalizeSalesData, which follows the Sales Data grammar. This implemen-
tation uses lmap from Figure 17 on page 17.

30

Now consider the implementation of normalizeSalesData shown in Figure 33, which attempts to
solve the same problem. This does not follow the grammar, but resembles programs that some students try
to write because they don’t want to use helper functions. Although it still correctly uses take, all other lists
are handled by making all recursive calls to itself. These recursive calls do not follow the grammar, because
they pass lists to a function that is supposed to receive Sales Data records. Ask yourself this: how does the
code make sure that it only calls methods on sd that are defined for by the class of sd? The code only
works because it does dynamic type tests, using isinstance(), and because Python does not type check
code before running it. Unlike the good versions of normalizeSalesData shown above, this bad version
cannot be used as a pattern to follow in other (statically typed) programming languages.

$Id: normalizeSalesDataBad.py,v 1.1 2017/02/05 22:21:24 leavens Exp $
from SalesData import *
from LispList import *
from take import take
def normalizeSalesData(sd):

"""Return a similar SalesData object as sd,
but with each address or group name capitalized."""
if isinstance(sd, Store):

return Store(str.upper(sd.address()), take(sd.amounts(), 5))
elif isinstance(sd, Group):

return Group(capitalize(sd.gname()), normalizeSalesData(sd.members()))
elif sd.isEmpty():

return Nil()
else:

normalizeSalesData(sd.first(), normalizeSalesData(sd.tail()))

Figure 33: The function NormalizeSalesDataBad, which does not follow the Sales Data grammar.

Acknowledgments
Thanks to Faraz Hussain for corrections to the Oz version of this paper [8], and to Brian Patterson and Daniel
Patanroi for comments on drafts of a Scheme version of this paper [7]. Earlier versions were supported
in part by NSF grants CCF-0428078, CCF-0429567, CNS 07-09217, and CCF-08-16350, CCF-0916715,
0916350, 1017262, 1017334, and 1228695. This version was supported in part by NSF grants CCF0916715
and CCF1017262.

References
[1] R. Sethi A. V. Aho and J. D. Ullman. Compilers. Principles, Techniques and Tools. Addison-Wesley,

1986.

[2] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. SIMULA Begin. Auer-
bach Publishers, Philadelphia, Penn., 1973.

[3] Daniel P. Friedman and Matthias Felleisen. The Little Schemer. MIT Press, fourth edition, 1996.

[4] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Programming Languages.
The MIT Press, New York, NY, second edition, 2001.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

31

[6] Michael A. Jackson. Principles of Program Design. Academic Press, London, 1975.

[7] Gary T. Leavens. Following the grammar. Technical Report 05-02a, Department of Computer Sci-
ence, Iowa State University, Ames, Iowa, 50011, January 2006. Available by anonymous ftp from
ftp.cs.iastate.edu.

[8] Gary T. Leavens. Following the grammar. Technical Report CS-TR-07-10b, School of EECS, University
of Central Florida, Orlando, FL, 32816-2362, November 2007.

[9] Gary T. Leavens. Following the grammar with Haskell. Technical Report CS-TR-13-01, Dept. of EECS,
University of Central Florida, Orlando, FL, 32816-2362, January 2013.

[10] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The
MIT Press, Cambridge, Mass., 2004.

[11] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Software.
Prentice-Hall, Englewood Cliffs, NJ 07632, 1990.

32

	Introduction
	Grammar Background
	Definition of Following the Grammar
	Overview

	Only Alternatives, No Recursion
	Temperature Grammar
	Example
	isFreezing Exercise

	Color Grammar Exercises

	Only Recursion, No Alternatives
	Infinite Sequence Grammar
	Example
	AnyNegative Exercise
	Filter Infinite Sequence Exercise

	Multiple Nonterminals
	Rectangle Grammar
	Example
	DoubleRect Exercise
	ShrinkRect Exercise

	Multiple Nonterminal Exercise

	Combination of Different Grammar Types
	Flat Lists as in Lisp
	Examples of Recursion over Flat (Lisp) Lists

	SumList Example
	Take Example
	ExtractNames Exercise
	DeleteListing Exercise

	Binary Trees
	Example
	SumTree Exercise
	ReduceTree Exercise
	Design Your own BinTree Problem Exercise

	Sales Data
	NormalizeSalesData Example

