
Breaking the Status Quo: Improving 3D Gesture Recognition with
Spatially Convenient Input Devices

Michael Hoffman∗
University of Central Florida

Paul Varcholik†

University of Central Florida
Joseph J. LaViola Jr.‡

University of Central Florida

ABSTRACT

We present a systematic study on the recognition of 3D gestures
using spatially convenient input devices. Specifically, we exam-
ine the linear acceleration-sensing Nintendo Wii Remote coupled
with the angular velocity-sensing Nintendo Wii MotionPlus. For
the study, we created a 3D gesture database, collecting data on 25
distinct gestures totalling 8500 gestures samples. Our experiment
explores how the number of gestures and the amount of gestures
samples used to train two commonly used machine learning algo-
rithms, a linear and AdaBoost classifier, affect overall recognition
accuracy. We examined these gesture recognition algorithms with
user dependent and user independent training approaches and ex-
plored the affect of using the Wii Remote with and without the Wii
MotionPlus attachment.

Our results show that in the user dependent case, both the Ad-
aBoost and linear classification algorithms can recognize up to 25
gestures at over 90% accuracy, with 15 training samples per ges-
ture, and up to 20 gestures at over 90% accuracy, with only five
training samples per gesture. In particular, all 25 gestures could be
recognized at over 99% accuracy with the linear classifier using 15
training samples per gesture, with the Wii Remote coupled with the
Wii MotionPlus. In addition, both algorithms can recognize up to
nine gestures at over 90% accuracy using a user independent train-
ing database with 100 samples per gesture. The Wii MotionPlus
attachment played a significant role in improving accuracy in both
the user dependent and independent cases.

Index Terms: I.6.3 [Computing Methodologies]: Methodologies
and Techniques—Interaction Techniques; I.5.2 [Pattern Recogni-
tion]: Design Methodology—Classifier Design and Evaluation; K.8
[Computing Milieux]: Personal Computing—Games

1 INTRODUCTION

The use of three-dimensional (3D) gestures is a commonly used
approach for interacting in virtual and augmented environments for
tasks such as navigation, selection, manipulation, and system con-
trol [2]. However, the challenge with using 3D gestures is machine
learning algorithms used to recognize them in real time must be
highly accurate. In addition, samples of these gestures are needed
to train the recognition systems so they are ready for application-
level use. The number of training samples needed is often depen-
dent on how many gestures there are in the gesture set as well as
whether user dependent or user independent gesture recognition is
required.

With the advent of spatially convenient input devices [18], the
ability to use 3D gesture recognition in virtual environments is be-
coming mainstream, especially in the video games domain. Spa-
tially convenient input devices provide

∗e-mail: mhoffman.ucf@gmail.com
†e-mail:pvarchol@ist.ucf.edu
‡e-mail:jjl@eecs.ucf.edu

Figure 1: A user providing data for our 3D gesture database.

• 3D input data; be it incomplete partial, error-prone or condi-
tional

• a range of useful sensors, emitters and interface implements

• an inexpensive cheap, durable, easily configurable and robust
solution.

Although these devices provide 3D input data that can be used for
3D gesture recognition, they often sense motion, using accelerom-
eters and angular rate gyroscopes, rather than actual position and
orientation. Devices that use accelerometers and/or angular rate gy-
roscopes can suffer from compounding errors due to drift, have no
specific frame of reference, and movement rate can produce differ-
ent acceleration and/or velocity profiles for a given gesture. Given
these issues, performing 3D gesture recognition with spatially con-
venient devices can be a challenging task.

The focus of this work is to better understand how accurately
we can recognize 3D gestures using these devices. In particular,
we aim to explore how the relationship between the number of ges-
tures, the amount of training samples, and whether recognition is
user dependent or independent affects overall recognition accuracy.
There have been several attempts made at exploring 3D gesture
recognition using accelerometers and gyroscopes (see Section 2).
However, to the best of our knowledge, there have been no robust,
systematic studies on 3D gesture recognition using spatially conve-
nient devices. Important questions remain regarding these device
types and their ability to adequately recognize a collection of 3D
gestures. By examining these issues, we hope to ultimately answer
the question of how many 3D gestures can these devices recognize
with high accuracy and a minimum amount of training. This knowl-
edge will provide guidelines for 3D user interface developers and
designers on how to best make use of 3D gesture recognition with
spatially convenient devices.

In this paper, we present a systematic study of 3D gesture recog-
nition performance of arguably the most common spatially con-
venient input device, the linear acceleration-sensing Nintendo Wii

Remote (Wiimote) coupled with the angular velocity-sensing Nin-
tendo Wii MotionPlus. We examine recognition accuracy as a func-
tion of the number of gestures in the gesture set and the amount of
training samples used to train the recognition algorithm. To perform
gesture recognition, we implemented two commonly used machine
learning techniques; a linear classifier and a classifier based on the
AdaBoost framework. A 3D gesture database was collected for
training and testing, consisting of 8,500 gesture samples (see Figure
1). We also examined the effect of using the Wii Remote with and
without the Wii MotionPlus attachment and explore recognition ac-
curacy depending on whether a user independent or user dependent
recognizer was employed.

In the next section, we examine related work on using linear ac-
celerometers and angular rate gyroscopes in 3D gesture recognition.
Section 3 presents a brief description of the two machine learning
algorithms we tested and their associated feature set. Section 4 de-
scribes the gesture set we used for testing followed by Section 5
which describes our study. Sections 6 and 7 present our study re-
sults and a discussion. Finally, Section 8 concludes the paper.

2 RELATED WORK

3D gesture recognition in virtual and augmented environments has
been an important research topic over the years. Although there has
been a significant amount of work on recognizing 3D gestures using
traditional position and orientation tracking devices [3, 10, 16, 17],
the use of accelerometer and gyroscope-based devices for 3D
gesture recognition has been sparse. Beedkar and Shah exper-
imented with classifying four gestures using a Hidden Markov
Model (HMM). The accelerometer data was gathered using numer-
ous TAIYO SPP Bluetooth Accelerometer devices attached to the
hands and feet of the participants. They concluded that 25 training
samples per gesture were needed in order to achieve 96% accu-
racy [1]. Kratz also used HMMs to classify a small gesture set [7].
Kratz detailed experiments for game play input using five gestures
over a range of 1 to 40 training samples. In their experiments, they
utilized accelerometer data from a Wiimote as input for the clas-
sifier. The results showed a significant overall increase in average
accuracy, 23% to 93%, when using between 1 and 10 training sam-
ples. As the number of samples increased from 10 to 40 a less than
linear increase was achieved, leaving the authors to conclude that
15 samples at 93% recognition was an ideal configuration. This
work tested a relatively small amount of gestures and concluded
that at least 15 samples were needed to achieve sufficient accuracy.

Pylvanainen applied HMMs to a slightly larger set of 10 ges-
tures [11]. Both gesture dependent and independent training was
conducted with data collected from a hand held mobile device con-
taining accelerometers. The gesture dependent results suggested
that only three training samples per gesture were needed to obtain
96.76% accuracy. While the gesture independent tests required a to-
tal of 21 (three samples from each of the seven participants) training
samples per gesture to reach 99.76% accuracy. Pylvanainen does
note that the higher accuracy seen in the user independent test was
unexpected but representative of the minimal training samples used
in the dependent experiment. Rehm used a Wiimote to recognize
3D gestures based on cultural specific interactions [12]. They con-
ducted both user dependent and user independent experiments on
a digit gesture set (10 gestures), a German emblem gesture set (7
gestures), and a VCR control gesture set (8 gestures) using Nearest
Neighbor and Näive Bayes classifiers. For the digit gesture set, they
claim accuracy as high as 100% for the nearest neighbor classifier
in both the user dependent and independent cases and 58% accuracy
for the Näive Bayes classifier in the user independent case. Accu-
racy for the German emblem gesture was 94% and 88% for Near-
est Neighbor and Näive Bayes respectively in the user dependent
case. For the VCR control gesture set, recognition accuracy was
approximately 99% for both the Näive Bayes and Nearest Neigh-

bor classifiers in the user dependent case. Mäntyjärvi also looked
at 3D gesture recognition with 8 gestures using HMMs and found
recognition accuracy in the high 90s as well [9].

Work has been done that has used similar gestures to the gestures
we use in our experiments. Schlomer and colleagues experimented
with classifying five gestures performed with the Wiimote using
HMMs. The gesture dependent results show that using 10 samples
for training and the remaining five for recognition, resulted in clas-
sification accuracy between 85 to 95%. For the gestures Square,
Circle and Z (also used in our study), the mean accuracy of 88.8%,
86.6%, and 94.3% were shown respectively [15]. Similarly, and
most relevant to our work, Kallio’s collection of 16 gestures had 6
gestures in common with our set: Line to Right, Line to Left, Line
Up, Line Down, Triangle, Parry (although Kallio mentions them by
a different name). However, the 16 gestures can be broken up into
four distinct gestures in four different orientations. The gestures
are composed of time series data obtained from three acceleration
sensors placed in a small wireless device. Then, by using HMMs,
this work showed accuracy levels nearing 90%, with less than 10
training samples per gesture. However once the number of train-
ing samples was increased to 20, accuracy levels rose to over 95%.
Kallio also discussed classification confusion between the Line to
Right and Parry gestures when providing two samples for train-
ing [6]. To the best of our knowledge, this paper presents the first
3D gesture recognition study using the Wiimote and Wii Motion-
Plus attachment that examines recognition accuracy for up to 25
distinct gestures.

3 MACHINE LEARNING ALGORITHMS

To explore 3D gesture recognition performance using the Wiimote
and Wii MotionPlus, we chose to examine two different machine
learning algorithms, a simple linear classifier and a classifier based
on the AdaBoost framework. Although there are a large variety
of machine learning algorithms we could have used [4], we chose
these two because of their ease of implementation, the fact that they
both are feature-based, and that they have been shown to create
accurate recognizers using a small amount of training data in other
domains [8, 13]. For both algorithms, we adapted them to work
with 3D gesture data.

3.1 Linear Classifier
The linear classifier we used is based on Rubine’s gesture recog-
nition algorithm [13]. Given a feature vector �f , associated with a
given 3D gesture g in a gesture alphabet C, a linear evaluation func-
tion is derived over the features. The linear evaluation function is
given as

gc = wc0 +
F

∑
i=1

wci fi (1)

where 0 ≤ c < C, F is the number of features, and wci are the
weights for each feature associated with each gesture in C. The
classification of the correct gesture g is the c that maximizes gc.

Training of this classifier is done by finding the weights wci from
the gesture samples. First, a feature vector mean �fc is calculated
using

f̄ci =
1

Ec

Ec−1

∑
e=0

fcei (2)

where fcei is the ith feature of the eth example of gesture c and
0 ≤ e < Ec where Ec is the number of training samples for gesture
c. The sample covariance matrix for gesture c is

Σci j =
Ec−1

∑
e=0

(fcei − f̄ci)(fce j − ¯fc j). (3)

The Σci j are averaged to create a common covariance matrix

Σi j =

C−1
∑

c=0
Σci j

−C+
C−1
∑

c=0
Ec

. (4)

The inversion of Σi j then lets us calculate the appropriate weights
for the linear evaluation functions,

wc j =
F

∑
i=1

(Σ−1)i j f̄ci (5)

and

wc0 =−1
2

F

∑
i=1

wci f̄ci (6)

where 1 ≤ j ≤ F .

3.2 AdaBoost Classifier
The AdaBoost algorithm we used is based on LaViola’s pairwise
AdaBoost classifier [8]. AdaBoost [14] takes a series of weak or
base classifiers and calls them repeatedly in a series of rounds on
training data to generate a sequence of weak hypotheses. Each
weak hypothesis has a weight associated with it that is updated
after each round, based on its performance on the training set. A
separate set of weights are used to bias the training set so that the
importance of incorrectly classified examples are increased. Thus,
the weak learners can focus on them in successive rounds. A linear
combination of the weak hypotheses and their weights are used to
make a strong hypothesis for classification.

More formally, for each unique 3D gesture pair, our algorithm
takes as input training set (�x1,y1), ...,(�xm,ym), where each �xi, rep-
resents a feature vector containing J features. Each yi labels�xi using
label set Y = {−1,1}, and m is the total number of training samples.
Since we are using a pairwise approach, our algorithm needs to train
all unique pairs of gestures. For each unique pair, the AdaBoost al-
gorithm is called on a set of weak learners, one for each feature dis-
cussed in Section 3.3. We chose this approach because we found,
based on empirical observation, that our features can discriminate
between different 3D gesture pairs effectively. We wanted the fea-
tures to be the weak learners rather than having the weak learners
act on the features themselves. Thus, each weak learner Cj uses the
jth element in the �xi training samples, which is noted by �xi(j) for
1 ≤ j ≤ J.

3.2.1 Weak Learner Formulation
We use weak learners that employ a simple weighted distance
metric, breaking (�x1,y1), ...,(�xm,ym) into two parts correspond-
ing to the training samples for each gesture in the gesture pair.
Assuming the training samples are consecutive for each ges-
ture, we separate (�x1,y1), ...,(�xm,ym) into (�x1,y1), ...,(�xn,yn) and
(�xn+1,yn+1), ...,(�xm,ym) and define D1(i) for i = 1, ...,n and D2(i)
for i = n+1, ...,m to be training weights for each gesture. Note that
in our formulation, D1 and D2 are the training weights calculated
in the AdaBoost algorithm (see Section 3.2.2).

For each weak learner Cj in each feature vector�xi(j) in the train-
ing set, the weighted averages are then calculated as

μ j1 =
∑n

k=1 xk(j)D1(k)

∑n
l=1 D1(l)

(7)

and

μ j2 =
∑m

k=n+1 xk(j)D2(k)

∑m
l=n+1 D2(l)

. (8)

These averages are used to generate the weak hypotheses used in
the AdaBoost training algorithm. If a given feature value for a can-
didate gesture is closer to μ j1, the candidate is labeled as a 1, oth-
erwise the candidate is labeled as a −1. If the feature value is an
equal distance away from μ j1 and μ j2, we simply choose to label
the gesture as a 1. Note that it is possible for the results of a partic-
ular weak classifier to obtain less than 50% accuracy. If this occurs
the weak learner is reversed so that the first gesture receives a −1
and second gesture receives a 1. This reversal lets us use the weak
learner’s output to the fullest extent.

3.2.2 AdaBoost Algorithm
For each round t = 1, ...,T ∗ J where T is the number of iterations
over the J weak learners, the algorithm generates a weak hypothe-
sis ht : X →{−1,1} from weak learner Cj and the training weights
Dt(i) where j = mod(t −1,J)+1 and i = 1, ...,m. This formulation
lets us iterate over the J weak learners and still conform to the Ad-
aBoost framework [14]. Indeed, the AdaBoost formulation allows
us to select weak classifiers from different families at different iter-
ations.

Initially, Dt(i) are set equally to 1
m , where m is the number of

training examples for the gesture pair. However, with each iteration
the training weights of incorrectly classified examples are increased
so the weak learners can focus on them. The strength of a weak
hypothesis is measured by its error

εt = Pri∼Dt [ht(�xi(j)) �= yi] = ∑
i:ht (�xi(j)) �=yi

Dt(i). (9)

Given a weak hypothesis, the algorithm measures its importance
using the parameter

αt =
1
2

ln
(

1− εt

εt

)
. (10)

With αt , the distribution Dt is updated using the rule

Dt+1(i) =
Dt(i)exp(−αt yiht(�xi(j)))

Zt
(11)

where Zt is a normalization factor ensuring that Dt+1 is a probabil-
ity distribution. This rule increases the weight of samples misclas-
sified by ht so that subsequent weak learners will focus on more dif-
ficult samples. Once the algorithm has gone through T ∗ J rounds,
a final hypothesis

H(x) = sgn

(
T∗J

∑
t=1

αtht(x)

)
(12)

is used to classify gestures where αt is the weight of the weak
learner from round t, and ht is the weak hypothesis from round t. If
H(x) is positive, the new gesture is labeled with the first gesture in
the pair and if H(x) is negative it is labeled with the second gesture
in the pair.

These strong hypotheses are computed for each pairwise recog-
nizer with the labels and strong hypothesis scores tabulated. To
combine the results from each strong hypothesis we use the ap-
proach suggested by Friedman [5]; the correct classification for the
new gesture is simply the one that wins the most pairwise compar-
isons. If there is a tie, then the raw scores from the strong hypothe-
ses are used and the one of greatest absolute value breaks the tie.

3.3 Feature Set
We based the features used in the linear and AdaBoost classifier on
Rubine’s feature set [13]. Since Rubine’s features were designed
for 2D gestures using the mouse or stylus, we extended them to
work for 3D gestures. The Wiimote and Wii MotionPlus sense lin-
ear acceleration and angular velocity respectively. Although we

could have derived acceleration and angular velocity-specific fea-
tures for our study, we chose to make an underlying assumption to
treat the acceleration and angular velocity data as position informa-
tion in 3D space. This assumption made it easy to adapt Rubine’s
feature set to the 3D domain and the derivative information from
the Wiimote and Wii MotionPlus.

The first feature in the set, quantifies the total duration of the ges-
ture in milliseconds, followed by features for the maximum, mini-
mum, mean and median values of x,y and z. Next we analyzed the
coordinates in 2D space by using the sine and cosine of the starting
angle in the XY and the sine of the starting angle in the XZ plane
as features. Then the feature set included features with the sine and
cosine of the angle from the first to last points in the XY and the
sine of the angle from the first to last points in the XZ plane. After
that, features for the total angle traversed in the XY and XZ planes,
plus the absolute value and squared value of that angle, completed
the features set which analyzes a planar surface. Finally, the length
of the diagonal of the bounding volume, the Euclidian distance be-
tween the first and last points, the total distance traveled by the
gesture and the maximum acceleration squared fulfill Rubine’s list.

Initially, we used this feature set for both the Wiimote and the
Wii MotionPlus1, totaling 58 features used in the two classifiers.
However, after some initial pilot runs, we discovered singular com-
mon covariance matrices were forming with the linear classifier.
A singular common covariance matrix cause the matrix inverse
needed to find the weights for the linear evaluation functions im-
possible. We found that these singular matrices were formed when
trying to use the feature set with the Wii MotionPlus attachment.
Because of this problem, we had to cull the MotionPlus feature set
to use only the minimum and maximum x, y, and z values, the mean
x, y, and z, values, and the median x, y, and z values. Thus, 29 fea-
tures were used when running the experiments with the Wiimote
and 41 features were used when running experiments with the Wi-
imote coupled with the Wii MotionPlus.

4 GESTURE SET

As Section 2 suggests, the majority of the work on 3D gesture
recognition with accelerometer and gyroscope-based input devices
contain experiments using only four to 10 unique gestures. In or-
der to better understand how many gestures these types of devices
can accurately recognize and how many training samples would be
needed to do so, we chose to more than double that set and use
25 gestures. The gestures, depicted graphically in Figure 2, are
performed by holding the Wiimote in various orientations. For a
majority of the gestures, the orientation and rotation are the same
for both left and right handed users. The only exceptions are the
gestures Tennis Swing, Golf Swing, Parry, and Lasso. The gestures
Tennis Swing and Golf Swing are performed on either the left or
right side of the user, corresponding to the hand that holds the Wi-
imote. For the Parry gesture, a left handed person will move the
Wiimote towards the right, while a right handed person will move
the Wiimote towards the left. Finally, the Lasso gesture requires a
left and right handed user to rotate in opposite directions, clockwise
versus counterclockwise, respectively.

We developed this gesture set by examining existing video
games that make use of 3D spatial interaction, specifically from
the Nintendo Wii gaming console. We examined a variety of differ-
ent games from different genres including sports games, first person
shooters, fighting games, and cooking games. Although the gesture
set is game specific, it is general enough to work in a wide vari-
ety of virtual and augmented reality applications. Initially, we fo-
cused on simple movements such as line to the right and line to the
left which could be applied to various actions. From there, slightly
more complex gestures were added which involved closed figures

1The Wii MotionPlus used maximum angular velocity squared instead
of maximum acceleration squared.

such as the square, triangle and circle. With this group, we add user
variations in velocity, duration and distance traversed. Finally the
last set of maneuvers allowed for more freedom in body movement
in an effort to help disambiguate gestures during feature analysis.
Examples of these gestures include golf swing, whip and lasso.

5 3D GESTURE DATA COLLECTION

Machine learning algorithms such as the linear and AdaBoost clas-
sifiers need data to train on. In order for the algorithms to learn
and then recognize gestures, we created a gesture database to use
in both training and testing. We recruited 17 participants (4 female
and 13 male) from the University of Central Florida, of which four
men were left handed, to provide the gesture samples. Each partic-
ipant had experience using the Nintendo Wii gaming console, with
two participants doing so on a weekly basis.

Several steps were taken to ensure that participants provided
good gestures samples. First, they were given a brief overview of
the Wiimote gesture data collection interface and a demonstration
of how to interact with the application. After the demonstration,
participants were presented with an introduction screen asking them
to choose what hand they would hold the Wiimote with to perform
the gestures. This decision also told the application to present either
left or right-handed gesture demonstration videos. Next, an orienta-
tion window (see Figure 3) was displayed to help participants learn
how to perform the gestures before data collection began. Each of
the 25 gestures are randomly listed on the left hand side of the win-
dow to reduce the order effect due to fatigue. Participants moved
through the list of gestures using the up and down buttons on the
Wiimote. At any time, participants could view a video demonstrat-
ing how to perform a gesture by pressing the Wiimote’s right but-
ton. These videos demonstrated how to hold the Wiimote in the
proper orientation in addition to showing how to actually perform
the motion of the gesture. Before the gesture collection experiment
began, an orientation phase required participants to perform and
commit one sample for each gesture. This reduced the order effect
due to the learning curve. To perform a gesture, particpants pressed
and held down the Wiimote’s ”B” button to make a gesture. After
participants released the ”B” button, they could either commit the
gesture by pressing the Wiimote’s ”A” button or redo the gesture
by pressing and holding the ”B” button and performing the gesture
again. This feature enabled participants to redo gesture samples
they were not happy with. Once a gesture sample is committed
to the database, the system pauses for two seconds, preventing the
start of an additional sample. This delay between samples allows
participants to reset the Wiimote position for the next gesture sam-
ple. In addition, the delay prevents the user from trying to game
the system by quickly performing the same gesture with little to no
regard of matching the previous samples of that gesture.

After participants created one sample for each of the 25 gestures,
they entered data collection mode. The only difference between ori-
entation mode and data collection mode is the amount of samples
which need to be committed. When participants commit a training
sample for a particular gesture, a counter is decremented and dis-
played. A message saying the collection process for a given gesture
is complete is shown after 20 samples have been entered for a ges-
ture. This message indicates to the participant that they can move
on to providing data for a remaining gesture. A total of 20 samples
for each gesture, or 500 samples in all, is required for a full user
training set. In total, 8,500 gesture samples were collected2. Each
data collection session lasted from 30-45 minutes.

6 3D GESTURE RECOGNITION EXPERIMENTS

With the 3D gesture database, we were able to run a series of exper-
iments to examine both learning algorithms in terms of user depen-

2The gesture database can be downloaded at
http://www.eecs.ucf.edu/isuelab/downloads.php.

Figure 2: Illustration showing the 25 gestures used in our study are performed with a Wiimote. For compound movements the green arrows
show the initial movement and the orange arrows show the remaining movements.

dent and user independent recognition. The primary metric ana-
lyzed in our experiments is gesture classification accuracy, while
having the over-arching goal of maximizing the number of ges-
tures correctly recognized at varying degrees of training the ma-
chine learning algorithms. For both the dependent and independent
experiments, the linear and AdaBoost classifiers were tested using
the Wiimote data only and using the Wiimote in conjunction with
the Wii MotionPlus attachment. Thus, our experiments attempted
to answer the following questions for both the user dependent and
independent cases:

• How many of the 25 gestures can each classifier recognize
with accuracy over 90%?

• How many training samples are needed per gesture to achieve
over 90% recognition accuracy?

• How much accuracy improvement is gained from using the
Wii MotionPlus device?

• Which classifier performs better?

• Which gestures in our gesture set cause recognition accuracy
degradation?

6.1 User Dependent Recognition Results

For the user dependent recognition experiments, we used a subset
of samples for each gesture from a single user to train the machine
learning algorithms and the remaining samples to test the recogniz-
ers. This approach is equivalent to having a user provide samples
to the recognizer up front, so the algorithm can be tailored to that
particular user. For each user dependent test, two categories of ex-
periments were created: classification over all 25 gestures and find-
ing the maximum recognition accuracy rate over as many gestures
as possible. Both categories were then broken into three experi-
ments providing 5, 10, or 15 training samples per gesture with the
remaining samples used for testing accuracy. Each experiment was
executed on all four of the classifiers mentioned earlier. The exper-
iment set was conducted on each of the 17 participant’s data.

The results of trying to recognize all 25 gestures in each experi-
ment are shown in Figure 4. We analyzed this data using a 3 way re-
peated measures ANOVA and found significance for the number of
training samples (F2,15 = 17.47, p < 0.01), the classification algo-
rithm (F1,16 = 119.42, p < 0.01), and the use of the Wii MotionPlus
data (F1,16 = 8.23, p < 0.05). To further analyze the data, we also
ran pairwise t tests. The most notable observation is the high level
of accuracy across all experiments. In particular, the linear clas-
sifier gave a mean accuracy value of 93.6% using only 5 training

Figure 3: The gesture collection window that each participant inter-
acted with in order to provide 20 samples for each of the the 25 ges-
tures.

samples for each gesture and 98.5% using 15 training samples per
gesture (t16 = −5.78, p < 0.01). Furthermore, the linear classifier
outperformed AdaBoost in every situation by at least 3% (see Ta-
ble 1 for the statistical results). Another important result shown in
Figure 4 is the role of the Wii MotionPlus in both recognition algo-
rithms. The Wii MotionPlus significantly increased the recognition
accuracy for the linear classifier to 95.5% using 5 training samples
(t16 = −2.81, p < 0.05) per gesture and 99.2% using 15 training
samples per gesture (t16 = −2.54, p < 0.05). For AdaBoost, the
change in accuracy was negligible.

While these accuracy levels are good for some applications, we
wanted to know how many and even more importantly, which ges-
tures, would need to be removed from the classification set in order
to improve recognition results. To begin this examination, the set of
gestures frequently recognized incorrectly from the previous three
experiment categories were removed. Within this set we noticed a
few gestures with similar attributes such as Tennis Swing and Golf
Swing or Square and Triangle. These gesture pairs involve similar
movement which caused the classifiers to misidentify each type as
the other. Once the poorly classified gestures were extracted the
accuracy results easily increased to above 98%. We systematically
added each of the removed gestures back into gesture set on a case
by case basis, leaving one gesture from each similar pairing out in
order to improve the recognition on the other included gesture from
each pair. The results are shown in Figure 5. As with the previous
experiment, we ran a 3 way repeated measures ANOVA as well as t
tests and found significant results for the training sample/number of
gestures pairs (F2,15 = 5.01, p < 0.05), the classification algorithm
(F1,16 = 48.55, p < 0.01), and the use of the Wii MotionPlus data
(F1,16 = 9.69, p < 0.01).

Figure 4: The average recognition results for the user dependent
experiments over all 25 gestures. The results are grouped by the
number of training samples (5, 10, or 15) provided for each gesture
within an experiment. A single user dependent experiment utilized
two classifiers (linear and AdaBoost), each executing with either the
Wiimote or Wiimote + MotionPlus input device producing four accu-
racy values.

Figure 5: The average recognition results for the user dependent
experiments over a varying number of gestures. The goal of this
experiment was to recognize, with high accuracy, as many gestures
as possible with different levels of training. The results are grouped
by the number of training samples (5, 10, or 15) provided for each
gesture within an experiment. A single user dependent experiment
utilized two classifiers (linear and AdaBoost), each executing with
either the Wiimote or Wiimote + MotionPlus input device producing
four accuracy values.

In the experiment using 5 training samples, the gestures For-
ward, Golf Swing, Spike, Triangle and Line to Left were removed,
thereby producing over 93.5% accuracy for AdaBoost and over
96.3% for the linear classifier. Once the number of training sam-
ples was increased to 10, the set of removed gestures included
only Spike and Triangle. This experiment yielded higher accuracy
with the linear classifier (t16 = −1.90, p = 0.075) and AdaBoost
(t16 = −1.07, p = 0.3), but these results were not significant. Fi-
nally, since the recognition rates for 15 training samples were al-
ready greater than 95%, no gestures were removed during this last
test. These results show that recognition accuracy rates as high as
97% can be achieved for 20 gestures using only 5 samples per ges-
ture and 98% for 23 gestures using 10 samples per gesture with the
Wiimote coupled with the Wii MotionPlus attachment. In fact, for
the linear classifier, the recognizer obtained significantly higher ac-
curacy using the Wii MotionPlus attachment in the 5 training sam-
ple/20 gesture case (t16 =−2.32, p< 0.05) and the 10 training sam-
ple/23 gesture case (t16 =−2.18, p < 0.05).

Comparison Test Statistic P Value
Linear5 - Ada5 t16 = 7.17 p < 0.01

LinearMP5 - AdaMP5 t16 = 8.36 p < 0.01
Linear10 - Ada10 t16 = 6.48 p < 0.01

LinearMP10 - AdaMP10 t16 = 6.54 p < 0.01
Linear15 - Ada15 t16 = 7.69 p < 0.01

LinearMP15 - AdaMP15 t16 = 7.16 p < 0.01

Table 1: Results from a set of t-tests showing significance differences
between the linear classifier and AdaBoost indicating the linear clas-
sifier outperforms AdaBoost in our test cases. Note that under the
comparison column, MP stands for whether the Wii MotionPlus was
used and the number represents how many samples were used for
training the algorithms.

6.2 User Independent Recognition Results

Figure 6: The average recognition results for the user independent
experiments over a varying number of gestures. The goal of this
experiment was to recognize, with high accuracy, as many gestures
as possible when given different levels of training. The results are
grouped by the number of user training samples (100,200, or 300)
per gesture used for training within an experiment. These numbers
are analogous to using 5, 10, and 15 users’ data for training. A sin-
gle user independent experiment utilized two classifiers (linear and
AdaBoost), each executing with either the Wiimote or Wiimote + Mo-
tionPlus input device producing four accuracy values.

For the user independent recognition experiments, we used a
subset of the 17 user study gesture data files for training. From the
remaining files, recognition is performed and reported on a per user
basis. This approach is equivalent to having the recognizers trained
on a gesture database and having new users simply walk up and use
the system. The benefit of this approach is there is no pre-defined
training needed for each user at a potential cost in recognition ac-
curacy. We ran three tests in this experiment, using data from 5,
10, and 15 users from our gesture database for training with the re-
maining user data for testing. As in the user dependent study, each
scenario was executed on all four of the classifiers mentioned ear-
lier. Note that for the independent recognition results, we did not
perform any statistical analysis on the data because we did not have
an equal number of samples for each condition and the sample size
for the 15 user case as two small (only two test samples). As part of
future work, we plan to perform cross validation on the data to deal
with this problem so proper statistical comparisons can be made.

The results, shown in Figure 6, shows that the linear classifier
outperforms AdaBoost by at least 3% and using the Wii Motion-
Plus attachment improved recognition for only the linear classifier.
However, unlike in the user dependent tests, the Wii MotionPlus
slightly hindered AdaBoost accuracy. After removing the poorly

classified gestures, we followed the reintroduction method we used
for the user dependent tests. The linear classifier was able to rec-
ognize a total of 9, 10, and 13 gestures with mean accuracy values
of 95.6%, 97.6%, and 98.3% respectively using the Wiimote cou-
pled with the Wii MotionPlus attachment. The gestures enabled for
the 5 user training set included Forward, Stop, Open Door, Parry,
Chop, Circle, Line to Right, Line Up and Stab. When using the
10 user training set, the Twister and Square gestures were added
while maintaining slightly higher accuracy levels. On the other
hand, the gesture Open Door was removed because the newly in-
troduced training data increased confusion among samples of that
type. Finally, for the 15 user training set, the gestures Open Door
(again), Infinity, Zorro and Line Down were added but the Twister
gesture was removed.

7 DISCUSSION AND FUTURE WORK

From our experiments, we can see that 25 3D gestures can be rec-
ognized using the Wiimote coupled with the Wii MotionPlus at-
tachment at over 99% accuracy in the user dependent case using
15 training samples per gesture. This result significantly improves
upon the results in the existing literature in terms of the total num-
ber of gestures that can be accurately recognized using a spatially
convenient input device. There is, of course, a tradeoff between ac-
curacy and the amount of time needed to enter training samples in
the user dependent case. 15 training samples per gesture might be
too time consuming for a particular application. As an alternative,
the results for 5 training samples per gesture only shows a small
accuracy degradation. For the user independent case, we can see
the accuracy improves and the number of gestures that can reliably
be recognized also increases as the number of training samples in-
creases. Although the overall recognition accuracy and the number
of gestures was higher in the dependent case (as expected), the in-
dependent recognizer still provides strong accuracy results.

Comparing the two classifiers in the experiments shows the lin-
ear classifier consistently outperforms the AdaBoost classifier. This
is somewhat counterintuitive given the AdaBoost classifier is a
more sophisticated technique. However, as we discussed in Sec-
tion 3.3, the linear classifier can suffer from the singular matrix
problem which can limit its utility when new features that could
improve accuracy are added.

With the Wii MotionPlus, we also tried to adjust for gyroscopic
drift in data. Our attempt at calibration involved setting the Wi-
imote coupled with the MotionPlus device on a table with the but-
tons down for approximately 10 seconds, followed by storing a snap
shot of the roll, pitch and yaw values. That snapshot was then used
as a point of reference for future collection points. However, using
those offsets caused decreased accuracy in AdaBoost and singular
matrices in the linear classifier leading to the use of raw gyroscope
data instead.

The results from our experiments show there are other interest-
ing areas for future work. First, it would be interesting to see if
more than 25 gestures could be reliably recognized using the Wi-
imote and Wii MotionPlus attachment and how many training sam-
ples would be needed, in the user dependent and independent cases,
to achieve similar accuracy values reported in our current experi-
ments. Second, for our user independent case, it is still unclear how
far we can go toward increasing the number of gestures recognized
at accuracy levels in the 95 to 98% range. It would be interesting
to increase the amount of training data from more users to deter-
mine when an accuracy fall off would occur. Third, given the prob-
lems we encountered with the Wii MotionPlus device, determining
the most appropriate calibration method could lead to even higher
accuracy numbers. Finally, it is still unclear why the AdaBoost
classifier did not perform as well as the linear classifier across our
experiments. Thus, it would be interesting to explore the two al-
gorithms further to determine what the cause is for the AdaBoost

classifier to have inferior performance.

8 CONCLUSION

We have presented a systematic study on 3D gesture recognition
with spatially convenient input devices. In particular, we exam-
ined the linear acceleration sensing Nintendo Wii Remote and the
angular velocity sensing Wii MotionPlus to determine how many
gestures could be recognized with a high degree of accuracy We
created a 3D gesture database, collecting data on 25 distinct ges-
tures totalling 8500 gestures samples and used this data to compare
two machine learning algorithms, a linear and AdaBoost classifier,
varying the number of gestures samples use to train them. We ex-
amined both user dependent and user independent recognition con-
figurations and found that in the user dependent case, all 25 gestures
could be recognized at over 99% accuracy with the linear classifier,
using 15 training samples per gesture with the Wii Remote cou-
pled with the Wii MotionPlus. We also found that this combination
could recognize up to 13 gestures at over 98% accuracy in the user
independent case using 300 training samples per gesture. Although
our work focused on the Wiimote input device, we believe our re-
sults are applicable to other accelerometer and gyroscope-based in-
put devices such as cell phones. We also believe that there is still
more work to do to improve the number of gestures and the recog-
nition accuracy of spatially convenient devices.

ACKNOWLEDGEMENTS

This work is supported in part by NSF CAREER award IIS-
0845921 and NSF Award IIS-0856045. We wish to thank the
anonymous reviewers for their valuable suggestions.

REFERENCES

[1] K. Beedkar and D. Shah. Accelerometer based
gesture recognition for real time applications,
http://www.cc.gatech.edu/grads/d/dhanik/project/Accel.pdf, 2008.

[2] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev. 3D User In-
terfaces: Theory and Practice. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

[3] G. Caridakis, K. Karpouzis, C. Pateritsas, A. Drosopoulos, A. Stafy-
lopatis, and S. Kollias. Hand trajectory-based gesture recognition us-
ing self-organizing feature maps and markov models. 2008 IEEE In-
ternational Conference on Multimedia & Expo (ICME), 2008.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John
Wiley and Sons, 2001.

[5] J. H. Friedman. Another approach to polychotomous classification.
Technical report, Department of Statistics, Stanford University, 1996.

[6] S. Kallio, J. Kela, and J. Mantyjarvi. Online gesture recognition sys-
tem for mobile interaction. In Systems, Man and Cybernetics, 2003.
IEEE International Conference on, pages 2070– 2076. IEEE, 2003.

[7] L. Kratz, M. Smith, and F. J. Lee. Wiizards: 3d gesture recognition
for game play input. In Future Play ’07: Proceedings of the 2007 con-
ference on Future Play, pages 209–212, New York, NY, USA, 2007.
ACM.

[8] J. J. LaViola and R. C. Zeleznik. A practical approach for writer-
dependent symbol recognition using a writer-independent symbol rec-
ognizer. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(11):1917–1926, 2007.

[9] J. Mäntyjärvi, J. Kela, P. Korpipää, and S. Kallio. Enabling fast and
effortless customisation in accelerometer based gesture interaction. In
MUM ’04: Proceedings of the 3rd international conference on Mobile
and ubiquitous multimedia, pages 25–31, New York, NY, USA, 2004.
ACM.

[10] S. Perrin, Á. Cassinelli, and M. Ishikawa. Gesture recognition using
laser-based tracking system. In FGR, pages 541–546, 2004.

[11] T. Pylvänäinen. Accelerometer based gesture recognition using con-
tinuous hmms. Pattern Recognition and Image Analysis, pages 639–
646, 2005.

[12] M. Rehm, N. Bee, and E. André. Wave like an egyptian: accelerome-
ter based gesture recognition for culture specific interactions. In BCS-
HCI ’08: Proceedings of the 22nd British HCI Group Annual Con-
ference on HCI 2008, pages 13–22, Swinton, UK, UK, 2008. British
Computer Society.

[13] D. Rubine. Specifying gestures by example. In SIGGRAPH ’91: Pro-
ceedings of the 18th annual conference on Computer graphics and
interactive techniques, pages 329–337, New York, NY, USA, 1991.
ACM.

[14] R. E. Schapire. A brief introduction to boosting. In IJCAI ’99: Pro-
ceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1401–1406, San Francisco, CA, USA, 1999. Mor-
gan Kaufmann Publishers Inc.

[15] T. Schlömer, B. Poppinga, N. Henze, and S. Boll. Gesture recognition
with a wii controller. In TEI ’08: Proceedings of the 2nd international
conference on Tangible and embedded interaction, pages 11–14, New
York, NY, USA, 2008. ACM.

[16] M. Turk. Gesture recognition. Handbook of Virtual Environments,
pages 223–238, 2001.

[17] M. Vafadar and A. Behrad. Human hand gesture recognition using
motion orientation histogram for interaction of handicapped persons
with computer. In ICISP ’08: Proceedings of the 3rd international
conference on Image and Signal Processing, pages 378–385, Berlin,
Heidelberg, 2008. Springer-Verlag.

[18] C. Wingrave, B. Williamson, P. Varcholik, J. Rose, A. Miller, E. Char-
bonneau, J. Bott, and J. LaViola. Wii remote and beyond: Using spa-
tially convenient devices for 3duis. IEEE Computer Graphics and
Applications, 30(2), 2010.

