
67. Proc. AFIPS 1966 Spring Joint Cornpnt. Conf., Vol. 28.
Spartan Books, New York, pp. 61-78.

10. GL<SER, E. L., COULEUn, J. F., AND OLIVER, G. A. System
design of a computer for time-sharing applications. Proc.
AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Part 1.
Spartan Books, New York, pp. 197-202.

11. GLUCK, S. E. Impact of scratehpad memories in design:
multifunctional scratchpad memories in the Burroughs
B8500. Proc. AFIPS, 1965 Fall Joint Comput. Conf. Vol.
27, Part 1. Spartan Books, New York, pp. 661-666.

12. HOLT, A. W Program organization and record keeping for
dynamic storage allocation. Comm. ACM 4, 10 (Oct. 1961),
422-431.

13. ILIFFE, J. K., AND JODEIT, J. G. A dynamic storage alloca-
tion scheme. Comput. J. 5, 3 (1962) 200-209.

14. KILBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., AND SUM-
NER, F.H. 0ne-level storage system. IEEE Trans. EC 11,
2 (1962) 223-235.

1 5 . - - , HOWARTtt, D. J., PAYEE, R. B., AND SUMNER, F. H.
The Manchester University ATLAS Operating System Part
1: The Internal Organization. Comput. J. 4, 3 (1961) 222-
225.

16. LONERGAN, W., AND KING, P. Design of the B5000 system.
Datamation 7, 5 (1961) 28-32.

17. MAcKENzIE, F .B. Automated secondary storage manage-
men~. Datamation 11, 11 (1965) 24 28.

18. McCuLLOUGH, J. D., SPEIERMAN~ K. H., AND ZURCHER, F. W.
A design for a multiple user multiprocessing system. Proc.
AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Part 1.
Spartan Books, New York, pp. 611-617.

19. McGEe, W.C. On dynamic program relocation. IBM Syst. J.
4, 3 (1965) 184-199.

20. O'NEILL, R.W. Experience using a time-sharing multipro-
gramming system with dynamic address relocation hard-
ware. Proc. AFIPS 1967 Spring Joint Comput. Conf., Vol°
30. Thompson Books, Washington, D. C. pp. 611-621.

21. YYSSOTSKY, V. A., ConnATO, F. J., AND GnAt[AM, R. M.
Structure of the MULTICS supervisor. Proc. AFIPS 1965
Fall Joint Comput. Conf., Vol. 27, Part 1. Spartan Books,
New York, pp. 203-212.

22. WALD, B. Utilization of a multiprocessor in command and
control. Proc. IEEE 5~, 12 (1966) 1885-1888.

23. - - . The descriptor--a definition of the B5000 information
processing system. Burroughs Corp., Detroit, Mich., 1961.

Virtual Memory, Processes, and Sharing in MULTICS
Robert C. Daley and Jack B. Dennis

Massachusetts Institute of Technology, Cambridge, Massachusetts

Some basic concepts involved in the design of the MULTICS
operating system are introduced. MULTICS concepts of
processes, address space, and virtual memory are defined and
the use of paging and segmentation is explained. The
means by which users may share procedures and data is
discussed and the mechanism by which symbolic references are
dynamically transformed into virtual machine addresses is de-
scribed in detail.

KEY WORDS AND PHRASES: virtual memory, information sharing, shared
procedures, data sharing, dynamic linking, segmentation, paging, multi-
programming, storage management, storage hierarchies, file maintenance

CR CATEGORIES: 3.73, 4.32

Presented at an ACM Symposium on Operating System Principles,
Gatlinburg, Tennessee, October 1-4, 1967; revised December, 1967.

This paper is based on notes prepared by J. Dennis for the Uni-
versity of Michigan Summer Conference on Computer and Pro-
gram Organization, June 1966.

The work reported herein was supported in part by Project
MAC, an M.I.T. research project sponsored by the Advanced Re-
search Proiects Agency, Department of Defense, under Office of
Naval Research Contract Nonr-4102(01). Reproduction of this re-
port, in whole or in part, is permitted for any purpose of the United
States Government.

306 C o m m u n i c a t i o n s of the ACM

I n t r o d u c t i o n

In MULTICS [1] (Mul t ip lexed Information and Coin- i!~
puting Service), fu~.damental design decisions were made i! i
so the system would effectively serve the computing needs
of a large community of users with diverse interests,
operating principally from remote terminals. Among the
objectives were these three:

(1) To provide the user with a large machine-inde-
pendent virtual memory, thus placing the responsibility
for the management of physical storage with the system
software. By this means the user is provided with an
address space large enough to eliminate the need for com-
plicated buffering and overlay techniques. Users, therefore, :!i
are relieved of the burden of preplanning the transfer
of information between storage levels, and user programs
become independent of the nature of the various storage
devices in the system.

(2) To permit a degree of progranmfing generality not
previously practical. This includes the ability of one pro-
cedure to use~another procedure knowing only its name,
and without knowledge of its requirements for storage, or
the additional procedures upon which it may in turn cnllo
For example, a user should be able to initiate a computa-

V o l u m e 11 / N u m b e r 5 / May, 1968
!iili

tion merely by specifying the symbolic name of a proce-
dure at which the computation is to start: and by allowing
additional procedures and data to be provided auto-
matically when and if they are needed.

(3) To permit sharing of procedures and data among
users subject only to proper authorization. Sharing of
procedures in core memory is extremely valuable in a
multiplexed system so that the cluttering of auxiliary
storage with myriad copies of routines is avoided, and so
unnecessary information transfers are eliminated. The
sharing of data objects in core memory is necessary to
permit efficient and close interaction between processes.

These objectives led to the design of a computer system
[6] (the General Electric Model 645) embodying the con-
eepts of paging [8] and segmentation [3] on which the
initial implementation of MTJLTICS will run.

In this paper we explain some of the more fundamental
aspects of the ~ULTICS design. The concepts of "process"
and "address space" are defined, some details of the ad-
dressing mechanism are given, and the mechanism by
which "dynamic linking" is accomplished is explained.

Concepts of Process and Address Space

Several interpretations of the term "process" have come
into recent use. The most common usage applies the term
to the activity of a processor in carrying out the compu-
tation specified by a program [4, 5]. In MULTICS, the
concept of process is intimately connected with the con-
cept of address space. Processes stand in one-to-one corre-
spondence with virtual memories. Each process runs in
its own address space, which is established independently
of other address spaces. Processes are run on a processor
at the discretion of the tra~h'c controller module of the
supervisor.

The virtual memory (or address space) of a iViULTICS
process is an ordered set of as many as 214 segments each
consisting of as many as 2 is 36-bit words. The arguments
for providing a generous address space having this struc-
ture have been given by Dennis [3]. Briefly, the motiva-
tion is to avoid the necessity of procedure overlays or the
movement of data within the address space, which gen-
erally lead to naming conflicts and severe difficulties in
sharing information among many processes.

Each segment is a logically distinct unit of information
having attributes of length and access privilege and may
grow or shrink independently of other segments in the
system. For present purposes, we consider two segment
types: (1) data, and (2) procedure. A segment is treated
as procedure if it is intended to be accessed for instruction
fetch by a processor. Other segments (including, e.g., a
source program file) are considered to be data. Instruction
fetch references to procedure segments are allowed, as are
internal data reads. Writing into a procedure segment is
normally considered invalid and is prohibited by the
system. (In certain cases, reading of a procedure segment
by another procedure may also be prohibited while execu-
tion is allowed.) Thus procedure segments are nonself-

modifying or pure procedures. Instruction fetches from
data segments are invalid, and any data segment may be
write protected. The overall design of MULTICS protec-
tion mechanisms is discussed by Graham [7].

segments

virtual
memory

FIG. 1. Virtual memory in a MULTICS process

The size of address space provided to processes makes it
feasible to dispense with files as a separate mechanism for
addressing information held in the computer system. No
distinction need be drawn between files and segments!

The directory structure [2] is a hierarchical arrangement
of directories that associates at least one Symbolic name
(but perhaps many) with each segment. These names
have meaning that is invariant over all processes in exist-
ence. Figure 1 portrays the concept of a process as a
virtual memory made up of segments selected from the
directory structure.

Addressing

The Generalized Address. Each word in the address
space of a process is identified by a generalized address. As
shown in Figure 2, a generalized address consists of two
parts--a segment number and a word number. The address-
ing mechanisms of the processor are designed so that a
process may make effective reference to a word by means
of its generalized address when the word has an assigned
location in main memory. Together with supervisor soft-
ware, these mechanisms make reference by generalized

FiG. 2. The generalized address

address, effective regardless of where the word might
reside in the storage hierarchy by placing it in main
memory when needed. Thus the generalized address is a
location-independent means of identifying information. In

Volume 11 / Number 5 / May, 1968 Communications of the ACM 307

tile following paragraphs we explain how generalized
addresses are formed in the processor and give a brief
discussion of how they are made effective.

Fro. 3.

X ~ - -] lAP I]

i ~] - - I IeP I I
• " • I L P I I

ISP I 1
]A
Io

Processor registers for address formatiCm

called the segme~t tag selects orie of the base registers if
the ezternal flag is on. The effective address computed
from the address field of the instruction by the usual
indexing procedure is added to the word number portion
of the selected base to obtMn the desired generalized
address. This operation is illustrated by Figure 6 arid is
used to reference all information outside the current pro-
cedure segment. If the e:cternal flag is off, then the gener-
alized address is the segment number taken from the pro-
cedure base register coupled with an effective word num-
ber computed as before. This mechanism is used for interna!
reference by a procedure to fetch constants or for trans-
fer of control.

Ad&vss Formation. Each processor of the computer
system (Figure 3) has an accumulator A, a multiplier/
quotient Q, eight index registers X0, X1, . . . , X7, and a
program counter PC, which serve conventional functions.
For the implementation of generalized addressing and
intersegment linking, a descriptor base register, a procedure
base register, and four base pair registers are included in
each processor. The function of the descriptor base register
will be discussed in a later paragraph since it does not
participate in generalized address formation. The proce-
dure base register always contains the segment number of
the procedure being executed. Each of the four base pair
registers (called simply base registers in the sequel) holds
a complete generalized address (segment number/word
number pair) and is named according to its specific func-
tion in MULTICS:

base pair designation function
0 a_}.) argument pointer
1 b__p base pointer
2 1~ linkage pointer
3 s p_ stack pointer

The functions of these pointers will become clear when
the linkage mechanism is explained.

The instruction format of the processor is given in
Figure 4. Instructions are executed sequentially except
where a transfer of control occurs. Hence, the program
counter is normally advanced by one during the execution
of each instruction.

address external f log

segmentl tog [operationl code oddrissing mode

I I I I I I
FIG. 4. Ins t ruc t ion fo rmat

When the processor l~quires an instruction word from
memory, the corresponding generalized address is the
segment number in the procedure base register coupled
with the word number in the program counter (Figure 5).
For data references, a field in the instruction format

3 0 8 C o m m u n i c a t i o n s o f t h e ACM

Fro. 5.

generalized address

I segment number I word number

IPc I I P a R]

Address formation for instruction fetch

i
I

generalized -address
I segment number I

19
((

segment number I word number ~J

base register

W

word number

)
- -]
reg.

FIG. 6. Address formation for data access

Indirect Addressing. As will be seen when the linkage
mechanism is discussed, a method of indirect address;dig
in terms of generalized addresses is very valuable. In the
processor the addressing mode field of instructions may
indicate tha t indirect addressing is to be used. In this
case, the generalized address, formed as explained above
for data references, is used to fetch a pair of 36-bit words
which is interpreted as shown in Figure 7. If the address
mode field of the first word contains the code it__~ (indirect

FiG. 7.

generalized address

I segment number I *ord number I

word number mode

Interpretation of word paiL- as indirect address

Volume l I / Number 5 / May, 196g

~() ~segment), the segment number and word number
fields are combined to produce a new generalized address.
This address is augmented by indexing according to the
mode field of the second word of the pair. ~ urther redirect
addressing may also be specified.

The Descriptor Segment. Implementation of a memory
access specified by a generalized address calls for an
associative mechanism that will yield the main memory
lactation of any word within main memory when a seg-
ment number/word number combination is supplied. A
direct use of associative hardware was impossible to
justify in view of the other possibilities available.

The means chosen to implement the generalized address
for a process is essentially a two-step hardware table
look-up procedure as illustrated by Figure 8. The segment
number portion of the generalized address is used as an
index to perform a table look-up in an array called the
descriptor segment of the associated process. This descriptor
segment contains a descriptor for each segment that the
process may reference by generalized address. Each
descriptor contains information that enables the address-
ing meehatfism to locate the segment and information
that establishes the appropriate mode of protectioa of the
segment for this process.

[segment number I word number J
x y

descriptor information
segment segment

Fro. 8. Addressing by generalized address

The descriptor base register is used by the processor to
locate the descriptor segment of the process in execution.
Note that since segment numbers and word numbers are
nonlocation dependent data, the only location dependent
information contained in the processor registers shown in
Figure 3 is in the descriptor base register. This fact greatly
simplifies the bookkeeping required by the system in carry-
ing out reallocation activity. In fact, switching a processor
from one process to another involves little more than
swapping processor register status and substituting a
new descriptor base.

In practice this implementation requires that segment
numbers be assigned starting from zero and continuing
successively for the segments of procedure and data re-
quired by each process. An immediate consequence is that

the same segment will, in general, be identified by different
segment numbers in different processes.

Paging. Both information segments and descriptor
segments may become sufficiently large enough to make
paging desirable in order to simplify storage allocation
problems in main memory. Paging allows noncontiguous
blocks of main memory to be referenced as a logically
contiguous set of generalized addresses. The mapping of
generalized addresses into absolute memory locations is
done by the system and is transparent to the user.

Paging is implemented by means of page tables in main
memory which provide for trapping in ease a page is not
present in main memory. The page tables also contain
control bits that record access and modification of pages
for use by storage allocation procedures. A srnall associa-
tive memory is built into each processor so that most
references to page tables or descriptor segments may be
bypassed.

Intersegment Linking and Addressing

The ability of many users to share access to procedure
and data information and the power of being able to
construct complex procedures by building on the work of
others are two prime desiderata of multiprocess computer
systems. The potential value of these features to the
advancement of computer applications should not be
underestimated. The design of a system around the notion
of a generalized, location-independent address is an essen-
tial ingredient in meeting these objectives. I t remains to
show how the sharing of data and procedure segments
and the building of programs out of component procedure
segments earl be implemented within the framework of
the MVLTICS addressing mechanisms just described. In
particular we must show how references to external data
(and procedure) segments occurring within a shared pro-
eedure segment can be correctly interpreted for each of
possibly many processes running concurrently.

Requirements. Necessary properties of a satisfactory
intersegment addressing arrangement include the following:

(1) Procedure segments must be pure; that is, their
execution must not cause a single word of their con-
tent to be modified.

Pure procedure .is a recognized requirement for general
sharing of procedure information.

(2) It must be possible for a process to call a routine by
its symbolic name without having made prior arrange-
ments for its use.

This means that the subroutine (which could invoke in
turn an arbitrarily large collection of other procedures)
must be able to provide space for its data, must, be able
to reference any needed data object, and must be able to
call on further routines that may be unknown to its caller.

(3) Segments of procedure must be invariant to the
recompilation of other segments.

Volume 11 / Number 5 / May, 1968 Communica t ions of the ACM 309

This requirement has the following implication: The
values of identifiers that denote addresses within a seg-
ment which may change with recompilation must not
appear in the content of any other segment.

Making a Segment Known. Meeting condition (1)
requires that a segment be callable by a process even if
no position in the descriptor segment of the process has
been reserved for the segment. Hence a mechanism is
provided in the system for assigning a position in the
descriptor segment (a segment number) when the process
first makes reference to the segment by means of its sym-
bolic name. We call this operation making the segment
known to the process. Once a segment is known, the
process may reference it by its segment number.

The pattern of descriptor segment assignment will be
different for each process. Therefore it is not possible, in
general, for the system to assign a unique segment number
to a shared routine or data object. This fact is a major
consideration in the design of the linking mechanism. In
the following paragraphs we describe a scheme for imple-
menting the linkage of segments that meets the require-
ments stated above.

It is worth emphasizing that this discussion has nothing
to do with the memory management problem that the
supervisor faces in deciding where in the storage hierarchy
information should reside. All information involved in the
linkage mechanism is, as will be seen, referenced by gen-
eralized addresses which are made effective by the mecha-
nisms described earlier. The fact that pages of the seg-
ments referred to in the following discussion may be in or
out of main memory at the time a process requires access
to them is irrelevant.

Linkage Data. Before a segment becomes known to a
process the segment may only be referenced by means of
a symbolic path name [2] which permanently identifies
the segment within the directory structure. Since the
segment number used to reference a particular segment is
process dependent, segment numbers may not appear
internally in pure procedure code. For this reason, a sea-

ment is identified within a procedure segment by a sym-
bolic segment reference name. Before a procedure can cont-
plete an external segment reference, the reference name
must be translated into a path name by means of a direc-
tory searching algorithm and the desired segment made
known to the process. Once the segment has become
known to the process, we wish to substitute the eKicient
addressing mechanism based on the generalized address
for tile time-consuming operation of searching the direc-
tory structure.

Consider a procedure segment P that makes reference
to a word at location x within data segment D, as illus-
trated in Figure 9. In assembly language this would be
written as:

OPB < D > fix]

The angle brackets indicate that the enclosed character
string is the reference name of some segment. This name
will be used to search the directory structure the first
time segment P is referenced by a process. The square
brackets indicate that the enclosed character string is a
symbolic address within an external segment. Since by
requirement (3) we" wish segment P to be invariant to
recompilation of D, only the symbolic address ix] may
appear in P. Furthermore, we wish to delay the evaluation
of ix] until a reference to it is actually made in the running
of a process.

The following problem arises: Initially process a in
executing procedure P may reference (D}I ix] only by
symbolic segment name and symbolic external address.
After segment D has been made known to process a, and
a first reference has been effected, we wish to make further
references by the generalized address d ~ ~lx. The question
is: How can we make the transition from symbolic refer-
ence to generalized addressing without altering the con-
tent of segment P?

It should be clear that a change must' be made some
place that can effect the change in addressing mechanism.
Further, ~he data that is changed must participate i~
every reference to the information. We call the informa-
tion that is Mtered in value to make this transition
the link data for linking segment P to symbolic address

P

FIG. 9. An intersegment reference by procedure P FIG. 10.

L a D

x

('ndicotes
indirect oddressing

Linkage of P to D I x for process o~

310 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / Number 5 / May, 1968

(D)i Ix] in process ce. The collection of link data for all
external references originating i~, segment P is called the
linkage .section of procedure P.

Link data is private data of its process because whether
P is linked to D[x for process c~ is entirely independent of
whether the same is true for any other process. Therefore,
whenever a procedure segment is made Mmwn to a process,
a copy of the procedure's linkage section is made as a
segment within that process. In certain cases the linkage
sections of several procedures are combined into a single
linkage segment private to the process.

Linking. Figure 10 shows segments P, D and the
linkage section L, for P in process a. To implement refer-
ence to DIx from within segment P will require two refer-
ences by generalized address--one to access the pertinent
link data in L,, and one to fetch the word addressed in
segment D. Realization of this minimum number of
references implies use of the indirect addressing feature of
the processor. Thus the link data for an established link
will be an indirect word pair containing the generalized

(a)

nter to <O>l[x]

(~) D# a its
x rno~e

FIG. 11. S ta tes of l~he l ink d a t a

address D ~,[x (Figure l la). Before the link is estab-
lished, an attempt by a process of computation a to
reference D[x through the link must lead to a trap of the
process and transfer of control to the system routines
that will establish the link and continue operation of the
process. For this purpose a special form of indirect word
pair is used which causes the desired trap. In Figure 11b
this is indicated by the code fl in the addressing mode
field of the pair. The segment number and word number
fields of the indirect word can then be used to inform
supervisory routines of the place to look to find the sym-
bolic address (D}l[x] associated with the link. This
address must be translated into a generalized address to
establish the link. The operation of changing the link
data to establish a link is called linking.

It is desirable to keep the procedure segment P self-
contained if at all possible. Consequently the symbolic
address {D}[[x] pointed to by the unestablished link
should be part of the procedure segment P. Two look-up
operations are required on the part of supervisory routines
to establish the link. The symbolic reference name D
must be associated with a specific segment through a
search in the directory structure, and this segment must

V o l u m e 11 / N u m b e r 5 / May , 1968

be made known to the process if a segment number has
not already been assigned.

The word number corresponding to the symbolic word
name x must also be determined. The set of associations
between symbolic word names and word numbers for a
segment is its symbol table and is part of the segment. Thus,
in our example, a list of word numbers corresponding to
symbolic word names that may appear in references to
segment D from other segments is included as part of
segment D at a standard position known to the system.
This list is searched by a system routine to find the word
number required to establish a link.

The Link Pointer. A remaining question is: How does
a process produce the generalized address L ~ ,Iw required
to access the link data? One might suppose that word
address w could be fixed permanently at the time proce-
dure segment P was created. This is not possible because
the set of segments required by each process that might
share use of procedure P will in general be unrelated: If
the linkage sections of several procedures were placed in
a single segment, assigning a fixed position to a link for
all processes would produce intolerable conflicts. On the
other hand, the code by which an intersegment reference is
represented in segment P must be fixed and identical for
all computations to meet the pure procedure constraint.
Any data that allow different addresses to be formed from
fixed code must reside in processor registers. By this
argument we see the necessity of associating a linkage
pointer with each process. The linkage pointer is a gener-
alized address that resides in a dedicated base register
(designated lp). As shown in Figure 12, it is the origin

L# ,Is of the portion of a linkage segment that contains
the links for intersegment references made from the seg-
ment being executed.

References to external segments are coded relative to
the link pointer and have the form shown in Figure 12.
The displacement k is determined by the coding of P and
is invariant with respect to the process using P.

Procedure Call and Return. The coding used to traus-
fer control to a subprocedure and the subsequent return
of control must meet the requirements of programming
generality. In particular, no assumptions may be made
regarding the detailed coding of either t he calling or
called procedure other than those aspects uniformly es-
tablished by convention. Conventions for four aspects of
subroutine calling are relatively familiar:

(1) Transmission of arguments.
(2) Arranging for return of control.
(3) Saving and restoring processor state.
(4) Allocating private storage for the called procedure.

Item (4) is necessary in MULTICS because of the pure
procedure requirement, and the generality requirement
which forbids prior arrangement of a called procedure's
storage needs. This private storage is supplied by asso-
ciating the stack segment with each process in which a
frame of private storage is reserved at each procedure call.

C o m m u n i c a t i o n s of t h e ACM 311

The frame is released upon return of control. This mecha-
nism is implemented by the stack pointer (designated
sp) which is the generalized address of the stack frame
origin for the procedure in operation. The use of the
stack segment makes every procedure in MULT[CS
automatically reeursive by associating separate stack
frames with successive entries into the same procedure.
Due to the pure procedure requirement, only fixed argu-
ments that do not depend on segment numbers may ap-
pear in procedure segments. Pointers and variable argu-
ments must be placed in the stack segment, the linkage
segment, or elsewhere. So that the language designer
may have his choice of implementation, the argument
pointer (designated ap) is at procedure entry the generaJ-

ized address of the list of arguments for the called proce-
dure.

In addition to these conventional requirements, the
method of dynamic linking just described introduces one
new problem: When process a, in executing procedure P,
transfers control to procedure Q, the value of linkage

L~

'[--t

I i 1.1
FIG. 12. Addressing the link data

pointer must be changed to the generalized address of
the linkage section for procedure Q. Since the new value
of the linkage pointer contains a segment number, it is
private data of process a and cannot be placed in segment
P o r Q .

This problem requires a somewhat modified form of
intersegment linkage from that used for data references.
Since it is desirable that. the machine code necessary to
load the linkage pointer for a procedure segment be as-
sociated with that segment, the following solution was
adopted. For each external entry point within a procedure
segment, two additional instructions are placed in the
procedure's linkage section at compilation time. The first
instruction loads the linkage pointer with the appro-
priate value at procedure entry, and the second instruc-
tion transfers control to the entry point in the called
procedure segment. Thus in establishing the link for an
external procedure call, the generalized indirect address
placed in the calling procedure's link data points to the
corresponding instruction pair in the linkage section of
the procedure being called. When control passes to the

linkage segment during an external procedure call, the
segment number portion of the desired linkage poi~ter is
easily obtained from the procedure base register, since
the process is now executing in the desired linkage seg-
ment.

P lin ko~:, s;ction

lpp - - -- lpQ

<O>I[e] \ ['~RA~ I ~ - l Ipo I p - -

] [TRAL~

linkage see*ion Q
' o ' ° !]

Fla. 13. Linkage mechanism for procedure entry

Figure 13 depicts the linkage mechanism required for
an external procedure call from procedure P to segment
Q at entry point e. The solid lines indicate the individual
steps taken through indirect addresses, while the dashed
lines indicate resulting flow of control.

In executing a call to an external procedure, the caller's
machine conditions, including the procedure base register
and program counter, are saved in the stack segment by
the caller. Return from the called procedure can thus be
effected by simply restoring the caller's machine condi-
tions from the stack segment.

Acknowledgments. The evolution of the concepts pre-
sented in this paper represents the efforts of many mem-
bers of the MULTICS programming staff. However, the
authors wish to express particular appreciation of the
work of F. J. Corbato and R. M. Graham in developing
the basic design of the MULTmS linkage mechanism.

REFERENCES

i. CORBATO, F. J., AND VYSSOTSKY, V.A. Introduction and over-
view of the MULTICS system. Proe. AFIPS 1965 Fall
Joint Comput. Conf., Vol. 27, Part I. Spartan Books, New
York, pp. 185-197.

2. DALEY, R. C., AND NEUMANN, P. G. A general purpose file
system for secondary storage. Proc. AFIPS 1965 Fall Joint
Comput. Conf., Vol. 27, Part 1. Spartan Books, New York, pp.
213-229.

3. DENNIS, J. B. Segmentation and the desiggt of multipro-
grammed computer systems. J. ACM 12, 4 (Oat. 1965),
589-602.

4. - - , AND VAN I~IoRN, U .C . Programming semant ics for multi-
programmed computations. Comm. ACM 9, 3 (Oct. 1966),
143-155.

5. DIJKSTR~, E . W . Cooperating sequential processes. Techno-
logical U., Eindhoven, The Netherlands.

6. GLASER, E. L., COULEUR, J. F., AND OLIVER, (.J.A. System
design of a computer for time sharing applications. Proe.
AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Part. 1.
Spartan Books, New York, pp. 197-202.

7. GRAHAM, R. M. Protection in an information processing
utility. Comm. ACM 11, 5 (May 1968), 36.5-369.

8. I4~ILBURN, W., EDWARDS, D., LANIGAN, M . , AND SUMNER, F.
One level storage system. IEEE Trans. EC-11,2 (April 1962),
223-235.

9. SALTZER, J .H. Traffic control in a multiplexed computer sys-
tem. Tech. Rep. No. MAC-TR-30 (Ph.D. thesis), Project
MAC, MIT, Cambridge, Mass., 1964.

312 Communica t ions of tile ACM Volume ll / Number 5 / May, 1968

