
PwdIP-Hash
A Lightweight Solution to Phishing and Pharming Attacks

Baber Aslam, Lei Wu and Cliff C. Zou

University of Central Florida, Orlando, FL, USA

Abstract—We present a novel lightweight password-based

solution that safeguards users from Phishing and Pharming

attacks. The proposed authentication relies on a hashed

password, which is the hash value of the user-typed password and

the authentication server’s IP address. The solution rests on the

fact that the server connected by a client using TCP connection

cannot lie about its IP address. If a user is unknowingly directed

to a malicious server (by a Phishing or a Pharming attack), the

password obtained by the malicious server will be the hashed-

password (tied to the malicious server’s IP address) and will not

be usable by the attacker at the real server thus defeating

Phishing/Pharming attack. The proposed solution does not

increase the number of exchanged authentication messages, nor

does it need hardware tokens as required by some previously

proposed solutions. The solution is also safe against denial-of-

service attacks since no state is maintained on server side during

the authentication process. We have prototyped our design both

as a web browser’s plug-in and as a standalone application. A

comprehensive user study was conducted. The results show that

around 95% of users think the proposed solution is easy to use

and manage. Further, around 79% of users have shown
willingness to use the application to protect their passwords.

Keywords- design; web security; usability; Phishing; Pharming;

password authentication

I. INTRODUCTION

Today, every user has multiple online accounts (such as
email, social networking, online banking, remote working etc)
to serve her different needs. All these accounts contain some
personal sensitive information which if stolen can be used by
attackers for monetary or other purposes. Every year millions
of dollars are lost due to Internet related crimes (or Identity
thefts) [1]. Among various identity theft attacks, the major
threats are Phishing and Pharming. Both Phishing and
Pharming aim at stealing a user’s sensitive information by
directing her to a malicious but seemingly legitimate website.
Phishing starts with a spam (but seemingly legitimate) email; it
uses social engineering to obtain user’s sensitive information
either using forms within the email or luring a user to a
malicious (but seemingly legitimate) website via a link within
the email. Pharming, on the other hand, uses Internet (DNS
servers, DNS resolvers, web servers etc) vulnerabilities to
direct a user to a malicious website. Pharming is more
dangerous since a user may be unknowingly taken to a
malicious website even if she types the correct web address.

SSL/TLS is mostly being used to provide authentication
and confidentiality on the Internet. It provides a mechanism to
achieve mutual authentication via certificates. Current
implementations use server side certificates to authenticate a
server whereas client side authentication uses user name and
password. The server side authentication is normally defeated
because of human factor [2], such as a user’s failure to

differentiate between a HTTP and a HTTPS session (either due
to lack of knowledge or due to attack sophistication) or a user’s
dismissal of web browsers’ incorrect-certificate warnings [2].
These are the major reasons for the success of Phishing and
Pharming attacks.

Solutions proposed to guard against these attacks can be
classified as either active or passive. Active solutions, such as
web browser add-ons [3], are not fully secure since they have
false negatives and depend on users to act on the warnings,
which users generally ignore [2]. Passive solutions can be
password-based [4 - 6] or protocol-based [7, 8]. Protocol based
solutions increase the number of messages exchanged between
server and client, thus lengthening the authentication process.
Further, multi-step authentication schemes may be vulnerable
to denial-of-service (DoS) attacks, since the server needs to
maintain state (thus commit its recourses) for each
authenticating client till the completion of authentication. A
number of password-based solutions generate one-time-
passwords using either a hardware token (which increases the
cost and complexity) [4, 5] or a trusted application (that
generates passwords or does authentication on user’s behalf)
[6]. These solutions increase the attack complexity (introducing
timing constraints) but cannot eliminate man-in-the-middle
(MITM) attack possibilities. Some solutions [4 - 6] incorporate
server names to generate server specific passwords, thus
guarding against password-reuse attack (where an attacker
captures a user’s password from a less secure server and uses it
to access other more secure accounts) targeted at users’
behavior of using same passwords for more than one account
[17]. However, these solutions are still vulnerable to Pharming,
MITM or replay attacks (in replay attacks a password captured
from a server is used for a later access to the same server).

In this paper we present a new passive password-based
solution. The proposed authentication relies on a hashed
password, which is the hash value of user-typed password and
the authentication server’s IP-address. The solution rests on the
fact that the server connected by a client using TCP connection
cannot lie about its IP address. In case of MITM, it will be the
attacker’s IP address since it will be acting as authentication
server to the client. Thus the hashed password tied to attacker’s
IP address will not be usable by the attacker on the actual
authentication server. In this way, the solution not only
prevents exposure of a user’s real password to a malicious
server, but also prevents MITM attack even if users dismiss
browser’s security warnings. The proposed solution does not
increase the number of authentication messages exchanged, nor
requires hardware tokens. The solution is also safe against DoS
attacks since no state is maintained on server side during the
authentication process.

We have prototyped our design both as a web browser
plug-in and as a standalone application. We also carried out a

comprehensive user study of our implementation. The study
has shown that the design is easy to use and users have shown
their strong willingness to use the design if a version for their
favorite browser is available.

The rest of the paper is organized as follows. Section II
presents the proposed solution, section III gives the
implementation details of our solution, section IV discusses the
user study and finally section V presents the conclusion.

II. PROPOSED SOLUTION

In this paper, our focus is on attacks that target user’s login
credentials, i.e., username and password. A mechanism that is
safe from MITM attack can withstand other attacks (such as
replay attack, password reuse attack, etc); therefore we assume
attackers are capable of launching MITM attack. A user/client
may be directed to a MITM (attacker) server via various
Phishing/Pharming techniques.

The paper does not solve attacks where a user enters her
personal sensitive data (other than username and password) in
form fields within emails or when visiting malicious/
masquerading servers. The paper does not address dynamic-
Pharming attacks in which an attacker dynamically changes the
IP address returned for a particular domain name and exploits
name-based same origin policy to hijack a session after
authentication [9]. Further, the solution does not offer
protection against malwares, spywares, key-loggers etc running
on a user’s computer.

A. Basic Idea

Typically (not going in SSL/TLS details), when a
user/client wants to access his account (e.g., email), she
initiates an http connection (either by entering the URL or
clicking on a link) to the server (e.g., gmail.com). The URL is
resolved to an IP address and a TCP connection request is sent
to the server. The server responds by sending the login page
and its certificate. The client’s web browser authenticates the
server (or generates security warnings). The user then enters
her credentials (e.g., username and password) which are then
sent to the server through SSL/TLS tunnel. The server verifies
the credentials to complete the login process.

Therefore, in order to initiate and complete the login, a
client must be able to know the IP address of the authentication
server because of the underlying TCP connection. We can
safely assume that the IP address of authentication server does
not change during the authentication process (e.g., load
balancing will not be conducted during the authentication
process). This means, for a given session, we can associate a
particular IP to the authentication server. We use this property
to generate the secure password that is tied to the IP address of
the authentication server. If the user is somehow directed to a
malicious server by a Phishing or Pharming attack, the
password obtained by the malicious server will be tied to the
malicious server’s IP address and will not be usable at the real
server, and hence, the attack will be defeated.

B. Assumptions

We assume that an attacker does not have access to the real
server’s private key or any other secret that is used to store the
passwords on server machines. We also assume that a user has
already registered with the real server and the server knows the

user’s login credentials. The server can employ methods to
guard against stolen credentials attacks such as encrypting the
credentials with its private key etc.

C. Proposed Solution

Several notations/functions that we will use in the formal
description of our solution are summarized in Table I.

TABLE I. NOTATIONS AND DESCRIPTIONS

Notations Descriptions
C Client/User

S Server

IPS Server IP-address

NS Nonce generated by Server

PH Hash value of user-typed password P

CertS Cerificate of server S, defined by its key pair (K+, K-).

(K+, K-) Public and private key pair of server

EK{M} An encryption function on message M using the key K

HK(M) A secure hash function using key K on message M

The proposed process of authentication for a client/user (C)
authenticating with a server (S) is described below (Fig. 1).

• Client requests the login page (sets up a TCP connection).

• Server generates nonce (NS), encrypts NS with its private
key (K

-
) - EK

-
{NS}.

• Server sends its certificate (CertS) and EK
-
{NS} to client.

The Server then discards EK
-
{NS}.

• Client, using a secure hash function HK() with key K,
computes hashed password PH = HK(P); where
K=HK+(NS | IPS), P is password, IPS is Server’s IP address,
and (x | y) defines concatenation of x and y. Client then
encrypts PH with Server’s public key (K

+
) - EK

+
{PH}.

• Client sends EK
+
{PH} and EK

-
{NS} to Server.

• Server also generates hashed password PHS using its saved
Client’s password P, nonce NS decrypted from the received
EK

-
{NS}, and its IP address IPS, then verifies with the

received PH.

1 C Set up TCP connection

2 S Generate NS , compute EK
-{NS}

3 S → C : EK
-{NS}, CertS

4 C Compute K= HK+ (NS | IPS); PH = HK (P); EK
+{ PH }

5 C → S : EK
+{ PH }, EK

-{NS}

6 S Compute K= HK+ (NS | IPS); PHS = HK (P);
Verify (PHS = PH)

Figure 1. Authentication process between a client and a server

If the client is connected to a MITM/malicious server (with
IP address IPA) and fails to differentiate it from the actual
server, then the attacker will send CertA and EK

-
{NS} (received

from actual server) to client, client will send PH based on IPA

and NS. In this case when the attacker relays received PH to the
actual server, the authentication will fail because the actual
server has a different IP address from IPA.

The presented authentication scheme generates onetime
server specific passwords thus guarding against password reuse
attacks targeted at user’s behavior of using the same password
for different accounts [17]. Time stamps can also be
incorporated to prevent replay attacks. The solution will require
modifications on both client and server sides.

D. Features of the Proposed PwdIP-Hash Theme

The solution does not require additional hardware tokens,
does not increase the number of authentication steps and does

not require an authentication server to maintain any state
during authentication. Therefore, it is economical, light weight
and immune to multi-transaction based DoS attacks. The
solution does not require users to identify malicious activity or
to act on security warnings, thus making it effective even if a
user is unknowledgeable and dismisses all warnings generated
by a web browser.

The solution will also work in single-sign-on cases, where
the authentication is done by one central server on behalf of
different servers. Here, the IP address of the authentication
server will be used instead of the server with which a user has
an account. Further the solution will also work for clients using
NAT to access the authentication server, since NAT only
modifies the “from” field of the client’s packets and does not
modify the IP address of the authentication server.

E. Comparison with Similar Approaches

Quite a few solutions have also used server’s identification
(such as domain name or IP address) in authentication process
[6-8, 10, 16]. [8] incorporates server’s IP address to guard
against Phishing, however, it inherits SPEKE’s vulnerabilities
[11, 12, 13]. [6, 7, 10, 16] generate server specific passwords
from one master password and server’s domain name by using
some hash functions. This eases a user’s burden to remember
different passwords for all of her accounts and also addresses
the password-reuse attack; however, these solutions have many
other issues, which are listed below:

1) Vulnerable to Pharming and replay attacks: Use of
server’s domain name to generate passwords may be helpful in
guarding against Phishing attacks but it does not address
Pharming attacks where only the IP address can identify a
malicious server and not the domain name. Further, the the
solutions are also vulnerable to replay attack.

2) Incompatible generated passwords: Different servers
have different security requirements on length/composition of
passwords; this may make the generated passwords
inacceptable. The solution [6] of using a configuration file to
define each and every server’s requirements is not scalable.

3) Master password - a single point of failure: If a master
password is compromised due to social engineering or other
methods then all associated accounts will be compromised.
Whereas our solution does not use the master password so loss
of password will have limited damage.

4) Difficult transition from unmanaged to managed
passwords: A user needs to manually change the passwords for
all the servers for which she intends using one of the previous
solutions. Whereas in our solution a user needs not to change
the passwords when she starts using our solution.

5) Difficult password change process: The passwords are
generated from one master password therefore a password
change may require changing the master password. This means
all other passwords will also change so the user needs to
manually update all passwords at once. Whereas in our solution
the user can easily change the password of one account without
affecting her other accounts.

6) Same passwords will be generated for different websites
that share the same domain name/host (e.g.
sites.google.com/site/abc, sites.google.com/site/xyz, etc). This
is because these solutions only use the domain names and not
the URLs in password generation.

III. IMPLEMENTATION

A. Design Considerations

We considered two possible options for implementing the
proposed authentication scheme: as a standalone application
and as a browser plug-in/add-on. The third possible option of
modifying the login page was discarded due to its obvious
security drawbacks [6]. For initial tests/trials we restricted
ourselves to Microsoft’s browser – Internet Explorer.

Visual feedbacks or cues are a very important feature of
any application; they help users to make a mental model of
how the application works and also to improve chances of
correct operation of an application [14]. For this reason the
activation button, we used, turned into a check-mark sign (over
green circle) when the application was active and remained a
cross sign (over red circle) otherwise (Fig. 2 & 3). 79% of users
in our usability study preferred a password application that
gives feedback or strong visual cues.

B. Implementation Challenges

The idea of hashing the password with server’s IP address
though seems simple in principle but is not simple in
implementation. We faced several challenges during
implementation of our proposed idea and had to refine the basic
principle of hashing to overcome these challenges.

1) Server’s IP Address
A challenge faced during implementation was to get the IP

address of the (authentication) server to which the client is
currently connected. This becomes difficult since browsers do
not offer/provide a mechanism to share with other applications
the IP addresses of currently connected servers. We considered
several different options to solve this challenge:

Option 1: Reverse DNS lookup
One possible option was to do reverse DNS lookup on all

established TCP connections (http or https). We tried this
solution successfully on our prototype, but the reverse DNS
lookup introduced noticeable delays.

Option 2: Additional DNS lookup
The other option was to directly query the DNS with the

server’s domain name to obtain its IP address. This option,
however, had two potential problems:

• Mismatched IP addresses: If the browser’s and operating
system’s DNS caches are incoherent then the server’s
domain name may map to two different IP addresses. Also,
if the server has more than one IP addresses then we could
also get an IP address mismatch between the browser and
PwdIP-Hash. Both situations will result in computation of
incorrect hashed password.

• Exploitation by Attacker: If the client is connected to a
Phishing (attacker’s) website where the attacker controls
his site’s DNS, then the attacker can provide the legitimate
website’s IP address as response to the second DNS query.
In this case the attacker will be successful in capturing the
usable password.

Option 3: Additional DNS lookup- Revised Hashing Method
The first problem discussed in Option 2 can be solved by

letting the authentication server to check the password against
all of its assigned IP addresses for verification.

The second problem in Option 2 can be solved by using the
domain name of the server along with its IP address to compute
the password; the attacker’s (Phishing) website will have a
different domain name and hence the generated password will
not be usable on the legitimate server. This can be implemented
by re-defining key K as K=HK+(Domain-name | NS | IPS), in
steps 4 & 6 of our solution shown earlier in Fig. 1.

2) Different Passwords for Websites sharing Host
Another challenge was to generate different passwords for

websites that are hosted on the same server. Since in this case
the domain name would resolve to the same IP address and a
password captured from one website can be used for
authentication with the other websites on the same hosting
server. Previous modification of using domain name in addition
to IP addresses can also solve this issue. But the websites that
share domain name/host (e.g. sites.google.com/site/abc,
sites.google.com/site/xyz, etc) will still be prone to this attack.
A possible solution to this is to use URL instead of shared
domain name to ensure unique passwords among these sites.

3) Clients using Proxy Servers
If a user is accessing the Internet via a proxy server then the

user’s browser will be connected to proxy server instead of
authentication server. In this case the browser will see the IP
address of proxy server and not the authentication server. In
this case our previous modification of getting server’s IP
address by separate DNS query will get the IP address of
server.

C. Browser Plug-in/Add-on

A user friendly implementation should automatically detect
the password fields and activate the hashing process. However,
if an attacker presents a login page with normal text field
instead of password/protected fields then password hashing
will not take place. Because of this and other security issues
identified by Ross et al., we decided to use the plug-in
activation model given in [6]. In this case, the user activates the
application (pressing F2 after clicking in the password field)
before typing her password. This also solves the issue of
heterogeneous design of login pages among different websites.

We reused the basic key-hook framework of [6] and
replaced some functions according to our own needs. We
implemented our hash class, which accepts password and IP
address as parameters and generates the hashed password. For
convenience, here we used MD5 as the hash function.

D. Standalone Application

The standalone application is illustrated in Fig. 4. It has two
inputs; the domain name of the authentication server and the
password. The user can first load the authentication server’s
login page either by typing the URL or using bookmarks or
clicking a hyperlink. Next the user activates the standalone
application, which will present URLs of all currently loaded
web pages in a dropdown list (automatic URL detection feature
is currently compatible with IE only) as shown in Fig. 5. The
user selects the URL of the desired login server, enters the
password, and then clicks the “Generate Password and Copy to
ClipBoard” button. The standalone application will generate
the hashed password and copy it to clipboard (see Fig. 6). After
that the user can manually paste the hashed password to the
relevant password field in the login page and log in.

E. Deployment

1) Installation - Client
The source codes of both plug-in and standalone prototypes

can be downloaded freely from our server [20]. A user must
have necessary permissions to install the plug-in prototype. On
the other hand, the standalone version executable program can
work without installation; this will be useful for situations
where a user does not have necessary permissions/rights to
install programs. The user may carry around the standalone
program in a USB key or download it from the download-sever
(IP address instead of server name may be used to guard from
DNS attacks targeted against download-server).

2) Installation - Server
Our solution requires modification on both server and client

side. For server side, a module can be added to handle
necessary generation and computation steps.

3) User Transition
When a user starts using the solution she does not need to

update the passwords on her accounts but she needs to
somehow remember which of her accounts are protected by the
solution and only use the standalone application /plug-in for
those accounts. This could be a big challenge for a user if she
has many accounts. To resolve this challenge, we propose two
options:

Server registration: In this option, a list of all servers
supporting PwdIP-Hash can be maintained; the standalone
program/plug-in can periodically update their lists just like
anti-virus software.

Bookmarking: In this option, whenever a user registers with
a server (that supports PwdIP-Hash), the server prompts the
user to bookmark the server with the PwdIP-Hash plug-
in/standalone application. Later, the user can log in using these
bookmarks. This option has portability issues since user’s
bookmarks will only be present on his/her computer. This can
be resolved by using online bookmarking services or carrying
the bookmark file with oneself.

4) Server Transition
It is not safe to assume that all the clients of a particular

server will be using PwdIP-Hash from the moment the server
implements the solution and starts accepting modified
password for authentication. There will always be a transition
period (and it may be long) during which some of the clients
would still be using old authentication methods. We suggest
that the server first checks the authentication using PwdIP-
Hash and if it fails then it checks using the old authentication
method for smooth transition. In case a user is authenticating
using old method then additional security checks, such as
asking security questions (as used by financial servers to
authenticate users), should be added to strengthen
authentication.

F. Fallback Mechanism

We also considered the options for users to log in from a
computer where neither the plug-in nor the standalone
application can be used/installed. One option is to have an
online password hashing server that behaves equivalent to the
standalone application; a user can access the server to generate
the hashed password [6]. The solution though easy to
implement but may become a single point of failure, especially
if an attacker launches a fake online password hashing server.

The other options are: deny a user from logging in or let the
user log in without the added security offered by our
application. In the second case we can modify the server to first
check the hashed password and if that does not match then
proceed to standard authentication procedure. The security can
be improved by incorporating additional security questions as
previously suggested. We added a question in user study to
ascertain users’ preferences as to whether they would like to be
logged-in without the additional security or would like to be
denied login if the plug-in/standalone application cannot be
used. 73.5% users preferred to be able to log in even if the
added security is not available to them. This highlights a very
important preference of users and should keep this in mind
while designing security solutions.

IV. USABILITY STUDY

A comprehensive user study was carried out to check the
usability of the proposed solutions. For this a total of 34 users
were recruited, this number is 1.7 times of the number required
for a decent usability study as Faulkner has shown that twenty
users can find more than 98% of usability problems [15]. To
help readers to understand our user study, we have posted our
user study questionnaires on our server [20].

A. Study Design Considerations and Settings

Users were briefed at the beginning to ensure that all users
get the same information. The briefing covered basic purpose
of our application, the components of the user study and how to
use the application. Each user was also given a brief manual
which contained the stages of study and usage of the
application as a ready reference.

All tests were conducted in a single location on the same
computer; this was especially done to control the computer
performance and the environment variation. Further, all users
were asked to perform the tests on our own developed web
server. This ensured that all users were presented with the same
interface. Care was taken, so that the login page does not
resemble any of the famous login pages such as email or social
networking sites, since this similarity may produce bias in
results between users who are familiar with the websites and
those who are not familiar.

B. Stages

The user study was divided into four stages: pre-trial
questionnaire, short Internet/computer security tutorial,
application trial and post-trial questionnaire.

Pre-trial questionnaire: After initial briefing a user was
given a pre-trial questionnaire which besides demographic
information also collected some data regarding the user’s
familiarity with Internet/security etc.

Internet/computer security tutorial: Next a user was asked
to go through a brief tutorial on Phishing and Pharming (based
on the material from [18, 19]). This was incorporated to
educate the user on these topics since the user may not be
aware of the threat for which we have designed the solution.

Application trial: The trial consisted of four steps.

• Step 1: Create a user account on the server, users were free
to write their usernames and passwords on provided sheet
since a new username and password may be difficult to
remember and users were encouraged to use some new
usernames other than their normal ones to ensure privacy.

• Step 2: Log in to the account, users were required to use
the plug-in for filling up the password field.

• Step 3: Change the password and log out, changing
password does not require the activation of application.

• Step 4: Again log in the server this time using new
password. Users were asked to use the standalone version,
this time, for login.

Post-trial questionnaire: The post-trial survey asked for
users’ experience and recommendations.

C. Participant Recruitment and Demographics

The study was advertised via flyers which were posted in
different departments of our university. The participants were
required to be familiar with computer/Internet and login based
accounts such as web emails etc. Interested participants were
given the consent form, and those who agreed were recruited
for the study. To facilitate the recruitment, each participant was
given a small amount of compensation money. Overall we
recruited 34 users for this user study. The 34 participants
ranged in age from 18 to 37 (Mean=23.6). In gender
distribution 56% were male and 44% were female.

In terms of educational level, 41% had a high school
diploma, 21% had Associate, 10% had a Bachelors degree and
28% had a Masters degree. In terms of their majors, 52% were
from non-technical disciplines (such as Accounting,
Psychology, Business, Art, Film, Teaching, Music, etc) and the
rest 48% were from technical disciplines (such as Computer
Science, Engineering, Physics, Biology/Microbiology, etc).

Figure 2. Inactive status of PwdIP-Hash browser plug-in Figure 3. Active status of PwdIP-Hash browser plug-in

Figure 4. PwdIP-Hash standalone application Figure 5. PwdIP-Hash detects current loaded IE pages and

presents the corresponding URLs in its drop-down list
Figure 6. PwdIPHash copies hashed password to

clipboard

D. Participants’ awareness to computer/Internet/security

In terms of familiarity with computer/Internet, on average
each user spent 6 ~ 7 hrs on Internet daily and 94% of users
reported having used Internet for online banking, bill pay or
purchases. On average each user had 10 ~ 11 online accounts
(min=3, max=25) and was using 4 ~ 5 different passwords for
these accounts (min=1, max=10). Average length of the longest
password among users was 11 ~ 12 characters (min=8,
max=21) and that of shortest password was 6 ~ 7 characters
(min=3, max=10). The password shared by most of a user’s
accounts had an average length of 8 ~ 9 characters and was
shared among 5 ~ 6 different accounts (min=1, max=20).

Participants were asked to report their familiarity with
terms such as Phishing, Pharming, https, digital certificates,
etc. 26% reported that they were not familiar with at least half
of the terms. 32% were not familiar with Phishing, 79% were
not familiar with Pharming. Only 18% were familiar with both
Phishing and Pharming. These statistics show that a large
portion of users, even among college students, are not familiar
with the potential threat introduced by Phishing and Pharming.

The large number of online accounts per user, password
reuse habits and lack of security awareness highlights the threat
which people are facing from Phishing and Pharming attacks.

E. Results

All 34 participants successfully completed the user
registration step (step 1) of the trial; a few took more than one
attempt. During the login phase using plug-in (step 2) some
users forgot to activate the application and thus encountered the
login failure error. Most of the users recovered from the error
by consulting the user’s guide and repeating the login again
successfully after activating the application. Password change
step (step 3) was also successfully completed by most of the
users. Most of the users successfully completed login using
standalone application in first attempt, though some users
indicated the inconvenience of additional steps; but these
additional steps also helped users to successfully log in. Fig. 7
gives detailed account of application trial attempts.

0

20

40

60

80

100

1 2 3 4

P
er

c
en

ta
ge

 o
f

 u
s
er

s

Number of attempts

Step 1: Creating User account

Step 2: Login using plug-in

Step 3: Changing password

Step 4: Login using standalone

Figure 7. Number of attempts made by users to complete each step of

application trial

The tutorial was aimed at increasing the participants’
awareness to Internet security especially Phishing and
Pharming. 91% of users agreed/strongly-agreed that they have
learned something new from the tutorial, this also highlights
the strong need of user education/awareness to Internet
security, even for the young generation. 76% of participants
agreed/strongly-agreed to consider improving their password
habits so that their passwords are strong and distinct.

In response to the usability of PwdIP-Hash, 94%
agreed/strongly-agreed that the task was easy, 97%

agreed/strongly-agreed that the task was manageable, 85%
showed their satisfaction with the user interface and
functionality. 79% considered using the application if a version
was available for their favorite browser. These statistics show
that our solution is user-friendly and practical. In addition, 56%
preferred plug-in version over standalone version.

V. CONCLUSION

In this paper we have presented a lightweight solution that
can effectively defend against both Phishing and Pharming
attacks. Our solution does not require any hardware tokens and
does not assume that a user is able to differentiate between a
fake and a legitimate website. We have prototyped the solution
as a web browser plug-in and as a standalone application. The
usability trials have shown that our prototypes are easy to use
and most of the users have shown their willingness to use the
solution if made available as a standalone (44%) or as a plug-in
(56%) for their favorite browser.

We also intend to develop PwdIP-Hash for other famous
web browsers such as Firefox, Chrome, Safari, etc and to
compare their performance. Furthermore, a user study
involving different solutions and involving more general
participants than college students can give us more insight in
how users see security and what are their preferences.

REFERENCES

[1] Internet crime report, 2008, Internet Crime Complaint Center.
[2] C. K. Karlof, “Human factors in web authentication”, PhD Thesis,

University of California at Berkeley, Feb 2009.
[3] N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell, “Client-side

defense against web-based identity theft”, In NDSS 2004.
[4] Z.-C. Chai, Z.-F. Cao, and R.-X. Lu, “Effcient password-based

authentication and key exchange scheme preserving user privacy”, In
LNCS, 4138:467-477, 2006.

[5] I-E. Liao, C.C. Lee, and M.S. Hwang, “A password authentication
scheme over insecure networks,” Journal of Computer and System
Sciences, 72 (4) (2006), pp. 727–740.

[6] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell, “Stronger
password authentication using browser extensions”, Usenix Security 05.

[7] M. G. Gouda, A. X. Liu, L. M. Leung, M. A. Alam, “SPP: An anti-
phishing single password protocol”, Comp.Net. 51 (2007) 3715-3726.

[8] M. Sharifi, A. Saberi, M. Vahidi, and M. Zorufi, “A zero knowledge
password proof mutual authentication technique against real-time
phishing attacks. Information systems security”, In ICISS 2007.

[9] C. Karlof, U. Shankar, J.D. Tygar, D. Wagner, “Dynamic pharming
attacks and locked same-origin policies for web browsers”, In CCS07.

[10] J. A. Halderman, B.Waters, and E. Felten, “A convenient method for
securely managing passwords”, In WWW 2005.

[11] D. Jablon, “Strong password-only authenticated key exchange”, ACM
CCR, ACM SIGCOMM, vol. 26, no. 5, pp. 5-26, Oct. 1996.

[12] Q. Tang and C. J. Mitchell, “On the security of some password-based
key agreement schemes”, In CIS 2005.

[13] M. Zhang, “Analysis of the SPEKE password- authenticated key
exchange protocol”, IEEE Comm. Ltrs. v. 8, no.1, pp. 63-65, Jan. 2004.

[14] S. Chiasson and P.C. V. Oorschot, “A Usability Study and Critique of
Two Password Managers”, In USENIX Security 2006.

[15] L. Faulker, “Beyond the five – user assumption: Benefits of increased
sample sizes in usability testing”, Behavior Research Methods,
Instruments, & Computers, 35(3):379-383, 2003.

[16] E. Gabber, P. B. Gibbons, Y. Matias, and A. J. Mayer, “How to make
personalized web browsing simple, secure, and anonymous”, In
Financial Cryptography, pages 17-32, 1997.

[17] D. Florencio, C. Herley, “A large-scale study of web password habits”,
In WWW 2007.

[18] http://phishguru.org/designs/all_phishguru_designs.pdf.
[19] http://www.SecurityCartoon.com.
[20] PwdIP-Hash. http://www.cs.ucf.edu/~czou/PwdIP-Hash/.

