Copyright © 1999 [FAC

49

14th Triennial World Congress, Beijing, P.R. China

DERIVATIVE ESTIMATES PARALLEL SIMULATION ALGORITHM BASED
ON PERFORMANCE POTENTIALS THEORY

Chang-Chun Zou, Hong-Sheng Xi, Bao-Qun Yin, Ya-Ping Zhou, , De-Min Sun

Department of Automation, University of Science and Technology of China
Hefei, Anhui, 230027, P. R. China. Email: xihs(@usic.edu.cn

Abstract: An efficient derivative estimates parallel simulation algorithm is presented
based on the new Performance Potentials theory (Cao and Chen, 1997). Two main ideas
are introduced: First, a new processor-partitioning pattern, Screwy Partitioning, which
can make complete load balance on a time-costing simulation part; Second, modified
Common Random Number, which can remove the large amount of broadcasting cost of
sample path data at the price of only adding a very little workload. The simulation
experiments on an SPMD parallel computer show that this algorithm can achieve near
linear speedup. Copyright © 1999 IFAC

Keywords: Paralle! algorithms, Discrete-event dynamic systems, Performance analysis,

J-3¢-02-3

Closed queuing networks.

1. INTRODUCTION

The stochastic theory of discrete event dynamic
system (DEDS) can successfully describe the
structure and performance of systems such as
communication networks, manufaciuring systems,
traffic networks, military C°I systems, etc. Most
successful results established in DEDS performance
analysis are currently dependent on infinitesimal
perturbation analysis (IPA) technique, which was
first proposed by Ho In early 80’s and was developed
by others later (Ho et «l 1983, Ho and Cao 1991,
Cassandras 1993). Although the sample derivatives
that IPA yields are unbiased or strongly consistent
for many systems, it is not true for many others (Cao
1987; Heidelberger ef af., 1988).

Recently, Cao and Chen (1997) developed a simple
approach in this direction, Markov Performance
Potential theory. It provides new derivative formulas
of the steady-state performance measure of Markov
processes with respect to their infinitesimal
generators. It 1s shown that the quantities involved in
the derivative formulas can be easily estimated by

analyzing a single sample path of a Markov process.
The derivatives obtained by using these formulas can
be easily proved to be unbiased and converge to their
true values with probability one. Since Markov
process is the most fundamental model for many
discrete event systems, this potentials theory is
widely applicable for sensitivity analysis of DEDS.

With respect to the fact that DEDS simulation always
needs a great amount of computational effort and
spends a lot of time, it is particularly important and
promising to use parallel computer to speed up
DEDS simulation (Righter and Walrand. 1989;
Fujimoto, 1990). In this paper, for the new DEDS
analysis theory: potentials theory, through analyzing
the closed queuning networks simulation algorithm on
single-processor, a parallel simulation algorithm is
presented that promises a high parallel-efficiency.

The rest of the paper is organized as following,
Section 2 briefly describes the closed queuing
networks problem in Yin er a/. (1997). In Section 3,
the main formulas used in simulation are first
presented, then is the simple depiction of single-

processor simulation algorithm, leaving proofs and
details of performance potential theory of Cac and
Chen (1997) to the original paper. In Section 4,
through analyzing the single-processor simulation
algorithm and serial experimental results, an insight
of the main part of it is derived. Then two ideas are
derived with respect to the features of the serial
simulation algorithm and the characteristics of its
communication. By applying these two policies, the
overall parallel algorithm can be very efficient. The
parallel experimental results on an SPMD parallel
computer, which show that this algorithm can
achieve near linear speedup, is shown in section 5.
Finally, a conclusion and some discussions are given
in Section 6.

2. BRIEF INTRODUCTION OF CLOSED
QUEUING NETWORKS

Consider a close queuing network consisting of A
servers and NV customers. It is supposed that each
server is equipped with a buffer that has infinite
capacity and the service discipline is FCFS. The
service requirement of a customer at each server is
assumed to be exponentially distributed with a mean
value of 1. Once a server i completes its service of a
customer, this customer will immediately move from
server / to any one of these M servers, including
server i itself. The destination sever which the
customer will move to is determined by a transition
probability matrix ¢ — This is the simple depiction
of closed queuing networks (Yin ez af., 1997) that are
going to be discussed in this paper.

3. SERIAL SIMULATION ALGORITHM OF
DERIVATIVE ESTIMATES

the the
derivatives estimate’s values can be got by analyzing
a single sample path of closed queuing network,
Because of the limits of pages, for the proofs and

From performance potentials theory,

details of performance potentials theory, please refer
to the original paper (Cao and Chen, 1997). All the
formulas and symbols in this paper are consistent
with Cao and Chen (1997) and Yin et al. (1997).

Let J donate the performance measure. & is the
steady-state probability vector of the state-transition
process, while X is the state space number. g is the
performance potential. / donates the performance
function vector. g, ; is the service rate of the sever |

at state j, 4 is the infinitesimal generator. The

50

superscript 7 represents the simulation estimation
value of x. Then by applying the performance
potentials theory, from a single state-transition
sample path, the unbiased partial derivative estimated
value of J with respect to y, , is (Cao and Chen,

1997):

22 %

So the unbiased estimated gradient of Jis:

0"“ M, K
Vj:{ﬁj }
'u"j i=l, j=1

The most important work in the simulation is to
record the data of events “process starts from state /,
first transits to state j ¥, where / and j are arbitrary
states. In the serial simulation pregram, three square
KxK dimensional matrices called parameter
matrices are used to record these kinds of data. The
accordingly matrix entry (m, n) records the overall
number, time summation, cost summation of the
events “process starts from state i first transits to
state / ” on simulation, respectively. These parameter
matrices will be used to calculate the estimated value
of performance potential g .

@

The serial simulation program based on performance
potentials is given below: (Use &, donates the length
of sample path in simulation, i.e. the state-transition
number)

Algorithm 1. Serial simulation program based on
Markov performance porentials

Step 1. Use the pseudo-random number to simulate
one step of state transition.

Step 2. Update the three KxK dimensional
parameter matrices. Record every state residence
time and overall simulation time.

Step 3. Return to step 1 to begin next state transition
unti] the state transition number reaches NV,

Step 4. Use the three parameter matrices to caleulate
§. Use every state residence time and overall

simulation time to calculate 7.

Step 5. Calculate every to compose the

[?Aul,_j
gradient matrix V.J (=12, M, j=1.2,...,K)

4, PARALLEL ANALYSIS AND
IMPLEMENTATION

4.1. Serial simulation program anaiysis

it is well known that in DEDS simulation, the
simulation sample path is often required to be very
long. The number of state transition IV, often reaches
hundreds of thousands, even millions, which is one
of the reasons why parallel simulation plays an
important role in DEDS research.

In order to determine which part of simulation is the
pivotal part in parallel implement, many numerical
experiments of serial simulation program are made
on PC. The typical results are listed in table 1 and
table 2.

M=3N=5K=2]

N, State Matrices g,z v.J
Trans Compute
10,000 2.6% 37.3% 1.5% 58.6%
100,000 5.0% 82.0% 033% 12.6%
1,000,000 57% 9275 0.04% 1.5%

Table. Fi le path length as N =100.000

[

M N K Stae Matrices gx VJ
Trans Compute

2 3 4 202% 69.5% 0.71% 0.60%

305 21 5.0% 82.0% 0.33% 12.6%

38 45 12% T28% 0.30% 25.7%

Remark: each column of table | and table 2 is
computational fime percentage ratio to overall
simulation time.

From table 1 and table 2, it is easy to know that for
middle and large scale simulation problems, there are
more than 0% of overall CPU time concentrating on
two parts of matrix computation:

*+ Computation of parameter matrices in step 2.
« Computation of gradient matrix VJ in step 5.

It can be seen that for large-scale simulation,
parameter-matrix computation will occupy most of
CPU ftime, even more than 90%. Therefore, the
parallel implementation of step 2 and step 5,
especially of the three-parameter matrices in step 2,
will directly determine the overall parailel
simulation program’s efficiency. Therefore, these
two parts are the focuses of parallel implementation.

By observing these two parts, It can be found that

51

they have some good parallelizable feature:

= In parameter matrix computation of step 2, there
are only matrix-numeral product and two
matrices multiplying corresponding entries. (i.e.,
icolumn j row element in a matrix multiplies
the icolumn ; row element of another matrix)

* In step 5, each entry in matrix V.J is computed
independently.

If the parameter matrices are partitioned with the
same partitioning pattern (i.e., the 7 column
row’s elements of these matrices are partitioned into
one processor) and the gradient matrix V.J are
partitioned evenly with arbitrary partitioning pattern,
there will be no need to exchange matrices data
between different processor in matrix computation.

This is a very important feature in parallel
implementation, because in general parallel program,
data communication cost occupies considerable run
time. In order to reduce the communication cost,
different parallel programs must be made for
different structural parallel machines. Therefore, it
can be conciuded that because of the special feature
of the simulation algorithm of this paper, the
parallel simulation program here can achieve high
parallel efficiency and can be widely applied to
different structural parallel machines.

Nowadays the Multiple-Instructions Multiple-Data
(MIMD) parallel machines are gaining increasingly
important role in parallel area and it seems that the
near-term future of parallel computing will be
dominated by MIMD machines. The major
disadvantages of MIMD machines such as
workstation clusters are high communication
latency and limited communication bandwidth. So
the very low communication cost of the simulation
program here makes it fitted MIMD computing well
and has practical application value.

4.2. Screwy partitioning algorithm

Because the state space number K is generally
large in simulation, for practicality of this parallel
simulation program, the processor-partitioning
pattern on matrix entries must be considered (Chen,
1994). Since there is no matrix data exchanging
between different processors, only the load balance
problem needs to be considered. For the gradient
matrix in step 5, because each entry of it is
computed independently, just dividing these
M x K entries of it equally among processors will
achieve a complete load balance. The essential work
is for parameter malrices in step 2. From the serial
simulation program, it can be seen that there arc

three different types of matrix computing in step 2:
some matrix’s entries are computed one by one;
some are computed by row and others are computed
by column, General speaking, there are three
different types of partitioning patterns in matrix
parallel computing; block partitioning, row
partitioning and column partitioning (Chen, 1994).
However, for the parallel simulation algorithm here,
neither of them can get a complete load balance.

Here a new partitioning method: screwy partitioning,
is introduced. By using if, a complete load balance
of these parameter matrices in step 2 can be
achieved. Principle of this method is illustrated in
fig.1.

P, P, P 2,
P, o
P, \
P;
P, N \3

Fig.1. Ulustration of screwy partitioning. Use a 4-step
square matrix as example. P, represents the ith
processor. The little circles represent entries of
matrix. Those circles on one line indicate that
they are partitioned in one processor.

Thus, the screwy partitioning formula of matrix
[afur'](*‘!J’I = 1,2,"'?K) is
(“r,l»“m.?s"'s“'K,x—m,ﬂl,x-uzv”'ea;—lx}“’ £ (3)
The above formula requires that the square matrix’s
dimension K is equal to the number of processors.
Since the state number K is often very large, in
general, if using K/ processors to do simulation, the
matrix entries that will partitioned into processors
Pyat> PasasraPysy » (=01 Kf1-1) according

to (3) should be partitioned into processor £, ,.

It should be noted that the screwy partitioning
method presented here could be a general partitioning
algorithm. General speaking, if the matrix
computation in paralle}] program has both row-
calculation and column-calculation, maybe by using
the screwy partitioning method, a better load balance
can be achieved than those ordinary-partitioning
methods.

4.3. Common Random Number (CRN)

By using the screwy partitioning method, complete
load balance have been achieved on two matrix
computation parts that accupy more than 90% CPU
time of serial simulation program. Since there wili be

th

=3

no matrix’s entries to exchange between processors
in these parts, it seems that an efficient parallel
algorithm has been derived. However, things are not
so simple.

When developing the paraliel program, it is common
to let one processor to generate the single sample
path, then this processor broadcasts the path's data to
all other processors, who (may include the former
one or not}) will do parallel matrix computation
together. But here in DEDS simulation, since the
simulated sample path is often very long, even
though there are only three number to broadcast in
every state transition {old state, new state, old state
residence time), the overall broadcast communication
cost of sample path will be very large. This large
communication cost will dramatically deteriorate the
parallel efficiency of the parallel program. So an
alternative method must be found to get rid of it.

In “Ordinal Optimization” (Ho, 1994), the Common
Random Number (CRN) (Heidelberger and Iglehart,
1979) theme was presented to generate N's different
sample paths for different parameters with the same
random sequence number (Dai, 1996). Enlightened
by it, here the CRN series can be used i all
processors and let all of them to do the calculation of
sample path. In this way, since the random number
are identical, every processor will get the same
sample path and need not to translate the path data to
others. Since the sample path’s computation time is
less than 5% of all CPU time for most problems, the
large amount of sample path’s communication cost
can be removed at the price of adding only a liule
workload. The experimental results in the following
(section 5) show that this kind of modified CRN
theme is the most important contribution to the high
efficiency of overall parallel program.

4.4. Parallel simulation program

Now cfficient parallel implementation of the main
part of serial simulation program has been derived. In
order to minimize the communication cost, which
will dramatically deteriorate parallel performance,
and simplify the parallel program, other parts of
serial simulation program are not changed and just
used in parallel program. The overall parallel
simulation program is listed below:

Algorithm 2. Parallel simulation program based on
Markov performance potentials

Step 1. In all processors, use a same random “seed”
to initialize the pseudo-random number generator in
each processor. In this way, the random number
series in all processors will be identical to each other
(CRN).

Step 2. In all processors, use the pseudo-random
number to simulate one step of state transition. Since
the CRN theme is used, each processor will get the
same state transition result, i.e. the same sample path.

Step 3. Al processors parallel compute
corresponding parameter matrices’ entries that are
partitioned in them (use screwy partitioning method).

Siep 4. Return to step 2 to begin next state transition
until the state transition number reaches V..

Step 5. Calculate g, 7.

Step 6. All processors parallel the

corresponding entries of matrix viJ. (Partition

compute

entries of matrix VJ equally among all processors
by using any partitioning method.)

5. EXPERIMENTAL RESULTS

The computation experiments are performed on an
SPMD parallel computer in Univ. Sci. & Tech. China,
which is a loosely coupled message passing parallel
processing computer,

To compare the performance between CRN theme
and the common one without the CRN, a small-scale
problem is investigated by parallel simulation: A4=3,
N=3, K=10, the sample path length is N ,=100,000.
The results are listed in table 3 below:

Table 3 Common Random Number (CRN)
Nodes Use CRN Not use CRN
number theme(sec) theme(sec)

1 17.0

2 11.8 46.5
5 7.6 41.6
10 6.2 402

Obviously, if Common Random Number is not used
in parallel program, the large amount of sample
path’s broadcasting cost will deteriorate performance
drastically, even making the parallel program much
more time consuming than serial program. It can be
seen from it that the CRN theme is the most
important contribution factor to the parallel program.

In order to see how well the screwy partitioning
method works, a medium-scale problem (A=3, ¥=4,
K=45, N =100,000) is tested based on four different
partitioning methods: screwy partitioning, block, row
and column partitioning. The results are listed in
table 4 {time unit: second).

Table 4 8 e had
Nodes Screwy Block Row Column
number

1 261.1

5 54.9 56.2 55.6 56.8

15 20.1 20.4 21.5 22.0

It can be seen from table 4 that in practice the screwy
partitioning method does not play an important role
in parallel program. This is reasonable after
analyzing the parallel program. The screwy
partitioning method is used for paraliel processing
the parameter metrics computation in step 2 of serial
program. In step 2, the row and column computation
is addition and subtraction, while the one by one
computation is multiplication. So the row and
column computation workload is much smaller than
that of matrix’s entries one by one computation, for
which part these different partitioning methods make
no differences.

Since in most cases, the parallel simulation program
is only used for large-scale problems, it is necessary
to do experiments for large-scale problems to see the
parallel program’s performance. For a large-scale
case: M=5, N=8, k=495, together with the abave two
cases, the experiment resulis are summarized in table
5 {Use screwy partitioning method. The sample path
lengths in all cases are N=100,000).

Table 5 The experimental results of parallel
Cases Nodes Time Speedup Efficiency
scale number (sec)

K=10 1 17.0
2 11.8 1.44 72.0%
5 7.6 2.24 44.8%
10 6.2 2.74 27.4%
K=45 1 261.1
5 549 476 95.2%
15 20.8 12.55 83.7%
K= 1 32546
495 3 11172 291 97.1%
5 6687 4.87 97.3%
9 3755 8.67 96.3%

Obviously, the parallel simulation program here
exhibits excellent speedup and scalability.
Furthermore, the larger the case’s scale is, the better
performance it behaves, this makes it suitable and
effective to practical usage.

CONCLUSION

Based on a new DEDS analysis theory: Markov

performance potentials (Cao and Chen, 1997), an
efficient parallel simulation algorithm is provided
when applying the potentials theory on a class of
closed queuing networks. The experimental resuits
show that the parallel simulation algorithm of this
paper exhibits excellent speedups and scalability.

In this paper, two ideas are presented, Screwy
Partitioning method and modified Common Random
Number theme. Although the screwy partitioning
method does not play a very important role in the
parallel program, it is a kind of general partitioning
method that can be used in many other paraliel
implementation areas.

There are still many topics for future research. In this
parallel simulation program, based on the
characteristics of the potential theory and closed
queuing network, the matrix computation parts of the
counterpart serial program are parallel implemented
and get a high efficiency. But for general DEDS
paratlel simulation, researchers are mainly doing the
‘sample path’ parallel simulation (Righter and
Walrand, 1989; Fujimoto, 1990) and now studying
simulation of many different DEDS simultaneously
on parallel computers. (Vakili 1991,1992; Hu, 1995)
Since the recently developed concept of ordinal
optimization (Ho, 1996) has becomie popular and
promising, it is likely a prospective research direction
by combining the derivative estimates parallel
algorithm here with the many-sample-path DEDS
parallel simulation and the ordinal optimization.

ACKNOWLEDGEMENTS

The authors thank China High Performance
Computing Center at Hefei to provide the SPMD
parallel computer for the experiments.

REFERENCES

Cao, X.R. (1987). First-order perturbation analysis of
a single multi-class finite source queue,
Performance Evaluation, 7, 31-41.

Cao, X.R. (1994). Realization Probabilities: the
Dynamics of Queuing Systems, Springer-Verlag,
New York.

Cao, X.R. and HF. Chen (1997). Perturbation
realization, potentials and sensitivity analysis of
Markov processes, [EEE Transactions on
Automatic Corutrol, 42, 1382-1393.

Cassandras, C.G. (1993). Discrele Fvemt Sysiems:
Modeling and Performance Analpsis, Aksen
Associates, Inc.

Chen, G.L. (1994). Design arnd Analysis of parallel
algorithm, High Educational Publishing House,
PR China.

54

Dai, L.Y. (1996). Convergence Properties of Ordinal
Comparison in the Simulation of Discrete Event
Dynamic Systems, Jowrnal of Optimization
Theory and Applications, 91, 363-388

Fujimoto, R.M. (1990). Parallel discrete event
simulation, Commu. ACM, 33, 31-53.

Heidelberger, P. and D.L. Iglehart (1979).
Comparing stochastic systems using regenerative
simulation with common random numbers, Adv.
Appl. Prob., 11, 804-819.

Heidelberger, P., X.R. Cao, M. Zazanis and R. Suri
(1988). Convergence properties of
infinitesimal perturbation analysis estimates,
Management Science. 34, 1281-1302.

Ho, Y.C.,, X.R. Cao and C.G.Cassandras (1983).
Infinitesimal and Finite Perturbation Analysis
for Queueing Networks, Awtomarica, 19, 439-
445.

Ho, Y.C. and X.R. Cao (1991}. In: Perturbation
analysis of discrete event dynamic systems,
Kluwer Academic Publisher, Boston.

Ho, Y.C. (1994). Overview of Ordinal Optimization,
Proceedings of the 33rd Conference on Decision
and Control. Lake Buena Vista, Florida, 1975-
1977.

Ho, Y.C. (1996). Soft Optimization for Hard
Problems, In: Computerized Lecture via private
COMMURICALION.

Hu, J.Q. (1995). Paralle] Simulation of DEDS Via
Event Synchronization. DEDS: Theory and
Applications, 5, 167-186.

Righter, R. and J.C.Walrand (1989). Distributed
simulation of discrete event systems,
Proceedings of the IEEE 77,59-113.

Ross, S.M. (1983). Stochastic Processes. Wiley.

Vakili, P. (1991). Using a standard clock technique
for efficient simulation, Operations Research
Letters, 10, 445-452.

Vakili, P. (1992). Massively parallcl and distributed
simulation of a class of discrete event systems: A
different perspective. ACM Trans. On Modeling
and Simulation, 2, 214-238.

Whitt, W. (1980). Continuity of generalized semi-
Markov processes. Mathematics of Operations
Research, 5, 494-501.

Yin, B.Q., Y.P. Zhou, H.S. Xi and D.M. Sun (1997).
Sensitivity formulas of performance and
realization factors with parameter-dependent
performance functions in closed queuing
networks, In: Proceedings of CWCICIA, 1884-
1889. Xi’an Jiaotong Univ. Press, PR China.

