
nSwitching: Virtual Machine Aware Relay Hardware Switching to

improve intra-NIC Virtual Machine Traffic

Jim Bardgett
Harris Corporation

1025 W. NASA Blvd.

Melbourne, FL 32919

Cliff Zou
University of Central Florida

4000 Central Florida Blvd.

Orlando, FL 32816

Abstract – Recent development on Ethernet switching to provide Single

Root I/O Virtualization (SR-IOV) on network interface cards (NICs)

improves Ethernet throughput for Virtual Machines (VMs) and lowers

CPU loads. SR-IOV creates multiple receive queues on a NIC, directly

accessible by VMs for frames coming from sources external to the

Ethernet port. This virtualization of Ethernet ports and the presentation

of frames directly to VMs eliminates a major cause for CPU loading by

reducing the interrupts for receipt of inbound frames. However, SR-IOV

cannot provide switching support for two VMs on the same computer; the

only existing switching option is software-based switching in the

hypervisor, which limits throughput and results in high CPU utilization.

New industry standards 802.1Qbg and 802.1Qbh assist Ethernet traffic

between VMs, but they require costly replacement of both Ethernet NICs

and the data center external physical switch infrastructure. In this paper,

we propose a new design by integrating a new Ethernet switching

functionality into the NIC, which is called nSwitch, to enable hardware-

based switching for inter-VM traffic on a single computer that has a single

or multi-socket, multi-core CPU. Compared with software-based switching

in the hypervisor, this enhancement greatly reduces CPU utilization and

permits efficient traffic monitoring for on-board inter-VM I/O.

Furthermore, it eliminates the back-and-forth usage of external port or

channel bandwidth for internal VM communications.

Keywords: Virtualization; Virtual Machine switching; CPU utilization;

vSwitch

 I. INTRODUCTION

Traditional data center network switching architecture

involves the definition of switching platforms, port bandwidth,

physical medium connectivity, virtual local-area network

(VLAN) and Internet Protocol (IP) addressing, fail-over

mechanisms, port bonding, quality of service (QoS) and

security. With the introduction of improved switching

protocols and virtualization, increased utilization of hardware

has imposed many design challenges. Trill [5], a recent

replacement for spanning tree, eliminates unused redundant

ports across data center switches and permits continuous up

time during network technology refresh or maintenance. A

more dramatic change is the virtualization of Operating

Systems (OS) which pushes CPU and I/O utilization to levels

unachievable without Virtual Machines (VMs). Hypervisors

and VM clients are improving hardware reduction, beyond

that achieved by stacking of multiple applications on a single

computer.

With the instantiation of multiple VMs on a single server,

it is important to consider the frequent switching of frames
between VMs on the same machine. The initial solution, a
virtual switch (called “vSwitch”) was hypervisor integrated

software for VM to VM (VM-VM) switching. Fig. 1(a) shows
a vSwitch.

However, Virtual Switching (vSwitching) from one VM to

another on the same server was found [10, 11] to greatly
increase CPU load for all but modest level's of I/O. I/O
Virtualization1 in vSwitch has been analyzed since 2008 [1, 9,

19]. Upgraded approaches, such as Xen's OpenvSwitch [24]
integration, still had limited success as we describe in this
paper and also added traffic rate limiting. Additional

functionalities such as access lists on the switch in the
hypervisor lead to dramatic breakdown in throughput and are
currently costly to implement. Another major problem is that
practical packet capture, which is critical in troubleshooting
virtualization in the data center, is not supported by vSwitch.

Figure 1: High level architecture of single computer inter-VM frame paths:
a). Virtual Switch; b & c). Physical Switch; and d). Our proposed nSwitch.

As implemented, Spanning Tree Protocol (STP) prevents a
switch from redirecting a VM-VM frame out of the port
through which it entered. The introduction of reflective relay
and VEPA in two new IEEE protocol 802.1 standards,
802.1Qbg (Qbg) and 802.1Qbh (Qbh), permits reflective
relay, i.e., a hairpin turn at the switch port. However, Qbg and
Qbh require modification of the NIC and reflective relay
upgrade to the external network hardware to switch VM-VM

frames originating and terminating on the same physical
Ethernet port2.

In this paper, we propose the nSwitch architecture to
improve the VM-VM switching performance for traffic in the
same computer across multiple CPUs and sockets. nSwitching
is compatible with the SR-IOV3 specification without any

1 I/O Virtualization is defined by [21] as "the capability of a single

physical I/O unit to be shared by more than one system image”.

2 Qbh requires hardware and software changes to the external physical

switch where Qbg requires only software changes.

3 SR-IOV is the sharing of a single physical Ethernet device, appearing as

1

nSwitch
enhanced

NIC

Single CPU

Hypervisor

VM1 VM2

(d) Proposed nSwitch

Inter-VM frame path

** Alternative Paths not
shown here are proposed

in the IEEE 802 standards

Single NIC

Ethernet Port

Single CPU

Hypervisor

VM1

802.1Qbg aware

Ethernet Port

VM2

(b) 802.1Qbg**

Inter-VM frame path

(a) vSwitching

Inter-VM frame path

Single CPU

VM1 VM2

vSwitch

802.1Qbh aware

Ethernet Switch

(c) 802.1Qbh**

Inter-VM frame path

Single NIC

Ethernet Port

Single CPU

Hypervisor

VM1 VM2

Hypervisor

frame

path

Single Ethernet

Port Extender

Ethernet frame alteration. By defining the nSwitching as an
enhancement to SR-IOV, the architecture will enable all high

load inter-VM traffic without the overhead introduced by
802.1Qbg or 802.1Qbh. Our approach allows a VM to select
the nSwitch Reflective Relay group it participates in by MAC

Address, thus enabling the VM management software to
provide additional dynamic control. nSwitch allows CPU
optimization across multiple CPU cores and our proposed

implementation provides a tool for additional research in VM
optimization due to switching based on MAC Address. The
method used also allows traffic switched through nSwitch to
be monitored, allowing visibility into the network traffic that
is currently only provided by a sniffer used in conjunction
with a physical switch (called “pSwitch”). No pSwitch
modification is required by our proposed implementation.

Although we mainly focus nSwitch design and evaluation
for wired networks in this paper, nSwitch is also applicable
and suitable for advanced wireless networking architectures
that are implemented with virtual machines. There is a
considerable need for virtualized, low power, mobile network
nodes to reduce their power and channel utilization, for which
the proposed nSwitch technique could be very useful. An
example would be the virtualization of mobile routing nodes
in ad-hoc networks such as those deployed for dynamic
search-and-rescue networks in remote areas. Reduction of
CPU utilization reduces power consumption and nSwitching
will reduce precious wireless channel bandwidth as well. The
contributions of this paper are:

• Present a new switching architecture called nSwtich to
enable hardware based switching for inter-VM traffic on a
single computer

• Conduct performance comparison of the nSwitch,
vSwitch and pSwitch.

The rest of the paper is organized as follows. Section II
introduces background on the physical and virtual switching in
data centers. Section III introduces proposed single and
multiple Ethernet port nSwitch designs. Section IV evaluates
existing vSwitch and simulates proposed nSwitching and not
yet available pSwitching. Summary is presented in section V.

II. BACKGROUND

Before virtualized servers (no hypervisor or virtual

machine monitor), the network architect's scope ended with

multiple separate physical devices through virtualization.

physical server connectivity. The physical external switch
delivered switched Ethernet frames to the server's OS. The

network edge and switch fabric was bounded by the physical
Ethernet switch which switched between servers4. The same
process occurred for a blade server with a pass through

Ethernet NICs. Traditionally this switching occurred in the
directly connected pSwitch which passed frames in one
direction or the other without reflection5. The switch fabric

edge and thus the network edge was well defined. In this
paper, we confine our discussion to single VLAN non-trunked
switch ports, independent of virtual port channel or chassis.

VM servers on the same single physical device require
frame switching which is contrary to the spanning tree [6]
based switching design. Traffic between VMs on a single NIC
card would not pass traffic unless Virtual Switching in the
hypervisor existed [7]. Fig.1 shows VM-VM communications.

However, virtual switches in hypervisors, like those
provided by KVM, VMware and Xen, have had many
problems and proposed solutions [1,10,11]. Evolution of
OpenvSwitch has shown recent improvement. The vSwitch
makes monitoring of protocols or bandwidth usage
complicated or impossible [8]. Open-vSwitch does have rate
limiting but not QoS (e.g. 802.1p). Concerns like limited I/O
bandwidth and the additional skill development for server
administrators makes managing the vSwitch complex [1,8,9].
In addition, vSwitch could cause very high CPU loads
[1,9,10] with software switching [11].

After the concern with software switching in the hypervisor,
subsequent analysis allowed for hypervisor redesign, new
VM queuing and SR-IOV. SR-IOV creates receive queue's for
externally received frames [12] and eliminates the packet
receive interrupt for the receiving computer. However, VM-
VM traffic on the same computer is not considered by SR-
IOV and currently there is no existing hardware solution.

For VM-VM traffic, only the vSwitch shown in Fig. 1(a)
has been realized. vSwitches have proprietary and at least one
open source implementation [7]; the major limitation is
determined by the CPU loads which is created by I/O
Virtualization.

4 Using only a MAC layer broadcast or a look-up provided by the MAC

Address table or multicast functionality.

5 Based on the implementation of the spanning tree algorithm invented by

Radia Perlman while at Digital Equipment Corporation.

2

Table 1: Physical Switch comparison with the proposed nSwitch

Method Standard Implemented Concern Details

Proposed

nSwitch

SR-IOV plus

our proposal

Ethernet NIC Not yet

implemented.

Low CPU utilization. Low VM load not proportional to I/O. Fast, high throughput. Data

does not traverse the pSwitch port, does not affect VM resources. nSwitch simplifies the

selection of bridge port based on MAC Address selection supported by VF on bridge.

pSwitch with

Reflective

Relay

802.1Qbg/

Qbh

Physical

Switch

Latency, Bandwidth,

External switching.

Well understood traffic patterns. Throughput must contend for available physical port

bandwidth. pSwitch requires multiple external devices in some cases, modifies frame

and requires modification of existing switches. It adds additional latency.

There are two unimplemented switching methods defined
by IEEE, which will deliver VM-VM frames on the same

network, logic board and switch port. Each of the standards
proposes a different method for enabling pSwitch Reflective
Relay: Edge Virtual Bridging (EVB) also called 802.1Qbg6

and Bridge Port Extension (BPE) also called 802.1Qbh7

Reflective relay [13] and another pass through device known
as a port extender in addition to the pSwitch is required for

802.1Qbh. pSwitch requires hardware and software changes to
support Qbg or Qbh. Depending on the implementation, the
frame may have to continue upstream across fiber or copper

until it is returned to the same Ethernet port for processing by
the same NIC it exited. This traversing of three devices and
two interconnecting fiber and associated port interface

connection devices like SPF+ requires a large number of
external devices required to switch a packet from one VM to
another on the same CPU. Fig. 1(b)(c) show the inter-VM

frame path for a frame going from one VM to another on the
same device in and out of the same Ethernet port for
Qbg/Qbh, irrespective of which CPU is the frame destination.

III. PROPOSED NSWITCH DESIGN

We present two designs of nSwitch which reflect VM-VM

traffic on the same computer. These designs differ in terms of

implementation complexity and functionality. Design 1, shown

in Fig. 2, is a single Ethernet port NIC. Design 2, shown in

Fig. 4, has two Ethernet ports. Both designs support multiple

CPUs and multiple socket logic boards.

A. nSwitch Design for Single Port SR-IOV NIC Architecture

Fig. 2 shows the nSwitch design with the SR-IOV

architecture for NICs with single Ethernet port. We show a

single Ethernet NIC which builds on the SR-IOV functions

(e.g. use of SR-IOV VFs for frames and use of SR-IOV PFs

for reflective relay). The implementation, shown in Fig. 2, is

fully compatible with SR-IOV and utilizes an existing core

[16] as a reference structure. Virtual Machine 1 (VM1) has a

virtual MAC Address (vMAC1) and is supported by an SR-

IOV aware hypervisor on a Virtualization Aware CPU. The

NIC shown has the Physical Functions (PFs)8 associated with

the physical interfaces and Virtual Functions (VFs)9 which

represent the physical interface to VMs; PFs and VFs are

defined in detail in [18, 20, 23]. The Configuration PF 0,

which configures the functionality of PF 0 Ethernet, has been

modified to allow nSwitch functionality within the NIC.

 Pseudo code for the single PF, corresponding to a single

6 It was found in a description of 802.1Qbg that a miniaturization of

802.1Qbg may be able to be performed on the NIC.

7 Vendor presentation slides may suggest an implementation of NIC

switching but not as what we propose.

8 Physical Functions (PFs) are the same as PCIe functions with a full

configuration space and a supervisory role over the associated VM. PF

Numbering requires a single digit.

9 SR-IOV specification introduces Virtual Functions (VFs) associated with

a Physical Functions (PFs). When refering to a VF a PF is required, so

the number pair is the PF, VF of format VF0,1 for VF1 associated with

PF0 [20].

Ethernet Port design is shown in Fig. 3. The nSwitch

functionality is in addition to the same routing functionality

for SR-IOV as shown in the DesignWare IP datasheet by

Synopsys [16]. Modifying the Configuration PF 0 structure

with the proposed pseudo-code in Fig. 3 allows the Routing

Function [15] to permit the VF to VF communication using

reflective relay.

Initial state

- VF 0, 3 associated with VM3; - VF 0, 3 associated with VM3; - PF

0 associated with PCIe routing function allocating bandwidth data

path and switching functionality between VMs; Create table space

(Table A) to associate a MAC Address with a given VF

Initialization of VM interfaces:

- vMAC offered to VMs will have a consistent MAC Address OUI

based on the PF number (e.g. VF 0,3 assigns vMAC3 an OUI F0-

F0-F0, VF 0,4 assigns the same to vMAC4); Insert MAC Address

into Table A and associate with a given VF

Steady State

- Upon receipt of frame from a VF, compare source and destination

OUI, prioritize based on 802.1p marking from VM.

- Case 0: equal source and destination OUI, look up the destination

VF and route packet to that VF for the associated VM; Case 1:

unequal source and destination OUI, send to PCIe port; Case 2:

Follow SR-IOV for receipt of a frame from PCIe port

Figure 3. Pseudo Code for nSwitching in the Synopsys (SR-IOV) core.

B. nSwitch Design for Multiple Port SR-IOV NIC

For a NIC card with multiple Ethernet ports, the nSwitch

design will be slightly different. Fig. 4 shows the design with

multiple SR-IOV architectural PF elements in a multi-port

Ethernet NIC which builds on the SR-IOV functions. In Fig.

4, we see the additional frame paths available for

communications between VM1 and VM4 which reside on

different external physical ports (represented by different

PFs). VM1 has been assigned with VF0,110. VF0,1 is

presented to the Guest OS on VM1 because the hypervisor is

10 This is the VF number 1 associated with PF 0.

3

Figure 2. nSwitch architecture and frame path for a single Ethernet port NIC

Network Interface Card (NIC)

PCIe Port

VF 0,2

Ethernet

VF 0,4

Ethernet

VF 0,3

Ethernet

Single CPU

Hypervisor

VM1 VM2

vMAC 1
OUI-00-00-01

vMAC 2
OUI-00-00-02

Single CPU

VM3 VM4

vMAC 3
OUI-00-00-03

vMAC 4
OUI-00-00-04

nSwitch (internal switching)

Switches All

Other Mac Addresses

PF 0 Ethernet

VF 0,1

Ethernet

Configuration PF 0
Internal VM –

External Computer

Intra-CPU VM -VM

communications

1 12 23

3

Inter-CPU VM -VM

communications

SR-IOV aware. In this case the role of VF0,1 is to receive a

frame from VM1 and the PF 0 Ethernet switches the frame to

PF 1 using the pseudo code as seen in Fig. 3. The design

shows a connection between the two physical functions

supported by configuration of the data path in the Synopsys

core. SR-IOV Virtual Functions are enhanced by our pseudo

code [17, 18]. As the nSwitch enhancement is applied to the

routing function, the change to the NIC software permits inter-

VF communications through an existing switch structure in the

core [16].

The core by Synopsis [16] shows considerable promise for

the ability to integrate the nSwitch functionality with

minimum effort. Based on the datasheet [16], it appears only a

software modification to the core is needed to implement

nSwitching. With PCIe 3.0 32-bit PIPE and 8.0

GigaTransfers/second (GT/s), this core can support significant

transfers from VM-VM internally. Properly constructed code

for internal VF-VF routing are envisioned as the logic

necessary for nSwtiching in the NIC.

Fig. 4 shows the frame path for a multiple port SR-IOV

card with multi-VM, multi-CPU architecture for the proposed

nSwitch. It associates each PF, which is correlated to a

physical port on the NIC, to a separate nSwitch function to

provide an individual VF for each VM. The figure shows the

frame path for VM-VM communications on a single CPU (the

No. 2 blue path), the path for VM-VM communications across

CPUs (the No. 1 black path) and the frame path for VM to

External Traffic (the No. 3 red path). For external traffic, PF 0

is used and all PCIe structures are used for physical frame

transmission including internal scheduling, framing, encoding,

signal generation, etc.

The VF Routing Identifier (RID) [16] structure in the

Synopsys core should support the switching of packets with

the appropriate code implementation. Each nSwitch instance

corresponds to a single PF. VF Switch Identifiers (SIDs) will

be expressed as an offset of the PF SIDs [14].

C. Benefits of nSwitching

Without the nSwitch implementation, Ethernet cards with
EVB, BPE and SR-IOV strictly address frames coming from
an External Physical Ethernet Switch (pSwitch) using Direct
I/O to the VM. The addition of nSwitching to SR-IOV will
reduce CPU loads and eliminate the need for bandwidth
between the NIC and pSwitch for inter-VM traffic internal to

the server.

Compared with the software-based vSwitch, there are
many benefits to switching in hardware by using nSwitching:

• Eliminate CPU utilization increase caused by inter-
VM I/O traffic and remove NIC bandwidth constraint

• Enable application of Access Lists (ACLs) and
Quality of Service (802.1p) without CPU
performance hit

• Enable VM-VM frame monitoring and control using

MAC Address Organizational Unit Identifier (OUI)

Without using nSwitch, all bandwidth in and out of every
VM must be accounted for in the NIC and Ethernet switch
port speed, as well as upstream device if required. We propose
that for heavy VM workloads between VMs on the same
Ethernet port, Ethernet switching components of 802.1qbg
should be integrated into the SR-IOV and MR-IOV NIC
designs. This will eliminate the CPU workload problems
created by inter-VM switching in the hypervisor or vSwitch,
and the bandwidth, latency and reliability problems created by
switching in the pSwitch.

IV. EVALUATION

Software, hardware, platform profiling tools and VM with

several operating systems were used for switching methods

evaluation. Investing capital in any new core in silicon would

be cost prohibitive without the intent to produce and sell the

product, thus real implementation is beyond the scope of this

paper. In this paper, we compare existing vSwitch with an

approximation of 802.1Qbh and the proposed nSwitch.

A. Testing Software, Hardware, Profiling Tools and VMs

Software: Citrix(r) XenServer(tm)11 5.6 FP1 with Open

vSwitch [7] was chosen for accelerated I/O virtualization and
a paravirtualized guest. The VM operating systems used were
Redhat Beta 6 and Ubuntu 10.10 Maverick Meerkat.

Hardware: Directed I/O, Virtualization Technology for
Directed I/O (VT-D) and SR-IOV were integrated in the main
board, Ethernet card and Processor. The hardware was special
built by us as the features are not yet combined in a single

platform.

Platform profiling tools: Linux top, dstat, md5sum for load
and CPU Limit. Xen [22] uses Open vSwitch. The Redhat

VMs were given 1Gigabyte RAM and 4 GB of hard drive.
VMs also used Ubuntu 10.10. Fig. 6(a) shows the setup.

11 Note in all cases in this document all Registered or Unregistered

Trademarks are the property of their respective owners, designated or

not.

4

Network Interface Card (NIC)

PCIe Port 0 PCIe Port 1

nSwitch (internal switching)

VF 0,2

Ethernet

VF 1,4

Ethernet

VF 1,3

Ethernet

Single CPU

Hypervisor

VM1 VM2

vMAC 1
OUI-00-00-01

vMAC 2
OUI-00-00-02

Single CPU

VM3 VM4

vMAC 3
OUI-00-00-03

vMAC 4
OUI-00-00-04

VF 0,1

Ethernet

Internal VM –

External Computer

Intra-CPU VM -VM

communications

1 12 23

3

Inter-CPU VM -VM

communications

Configuration PF 0

PF 0 Ethernet PF 1 Ethernet

nSwitch (internal switching)

Multiple GigaTransfers/second Core Pathway

(>> 802.1Qbg, 802.1Qbh)

Configuration PF 1

Figure 4. nSwitch Logical Functions possibly implemented via BIOS in

Synopsys Core for NICs with multiple Ethernet ports.

B.

vSwitch: Bandwidth, Delay and CPU Load with 2 VMs

We seek the combined CPU load and delay imposed by the
vSwitch when transferring with different traffic rates (10

MBps to 93 MBps) from VM2 to VM1 in figure 1(a). We test
three fixed CPU loads on the receiving virtual machine, VM1.
We also seek to know the:

• Minimum consistent I/O load required to drive
CPU utilization to 100%

• Switching latencies due to I/O driven CPU load

• Maximum vSwitch transfer rate between VMs.

Fig. 5(a) shows the testing results of vSwitch time delay
(latency) and CPU loading. Tests were executed with 2 VMs,
a varying load on VM1 using md5sum controlled with CPU
Limits software when VM2 sent a varying bandwidth through
the vSwitch to VM1. The total CPU load was the sum of
system load and the CPU soft interrupt load. The results are
shown in Fig. 5(a) under three different CPU base loads. As
I/O increases from 10 MBps to 93 MBps, a 20% CPU load
increase would be produced due to the vSwitch. In Fig. 5(b),
traffic loads over 75 MBps can be seen to dramatically
increase the latency between VM2 and VM1 with a vSwitch.
The maximum throughput of the Xen vSwitch tested with 0%
CPU base load is 93 Mega Bytes per second, irrespective of

the number of VMs. Our proposed nSwitch can increase this
maximum throughput without using external NIC bandwidth.

C. pSwitch: Bandwidth, Delay and CPU Load of 802.1Qbh

For pSwitching approximation shown in Fig. 1(c) we use
three VMs with no fixed CPU load. VM3 sends data using the
external 802.1Qbh switch to VM1 and VM2 sends traffic to

an external computer through the SR-IOV Ethernet NIC. We
show our simulation of Fig. 1(c) in Fig. 6 (b). Fig. 6(b) shows
the test setup for a single Gigabit Ethernet port and one Cat 6
cable. VM1 communicates with VM2 by exiting an Ethernet
port then re-entering the same Ethernet port after traversing a
Port Extender and an 802.1Qbh-aware switch. This emulation
is required because there is no existing 802.1Qbh software for
NIC cards and no Qbh software for the pSwitch exist at this
time. We illustrate the port bandwidth limitation in Fig. 7. We

seek to find whether any load created on VM3 will affect

either the CPU load or the transfer rate from VM1 to VM2.

From our tests we determine that processing time (t
p
) is not

a significant factor. For bandwidth investigation, the red oval
in Fig. 6 (b) shows that all VM-VM communication must pass
through the 'port extender' to the NIC. This fact keeps the
maximum bandwidth between all VMs to be bounded by the
Ethernet's physical bandwidth at 1 Gigabit per second. Fig. 7
shows the results when traffic is passing from VM3 to VM1 as
VM2 gradually increases traffic sending to an external device
over SR-IOV. Fig. 7 also shows the limitation of 802.1Qbh:
port speed limits the upper bound of all VM communications,
and intra-VM communication will reduce the bandwidth
available for external communication.

D. Proposed nSwitch approximation: Bandwidth, Delay and

CPU Load testing

From Fig. 1(d) we see that the frame path is between two
VMs using the NIC as the switching mechanism. The internal
mechanisms are shown in Fig. 2 and 4 and pseudo code in Fig.
2. The latencies for this switch path, shown in Fig. 8, are
defined as the sum of the time to the NIC (t

1'
), the time from

the NIC (t
4'
) and the time through the NIC(t

p'
). Thus we have a

way to approximate nSwitch latency. To make an estimate of

5

Fig. 5. CPU I/O load and delay for VM-VM data transfer with consistent loads

(a) 25%-75% starting base load (b) Data transfer drives CPU load (CB = class based)

Simulated 802.1Qbh

802.1qbh aware Ethernet

Switch

Single NIC
Ethernet Port

Single CPU

Hypervisor

VM 1

Single Ethernet Port

Extender

VM 2

1 Gigabit Ethernet

 Connection

VM 3

(a) Latency Calculations

802.1qbh aware Ethernet

Switch

Single NIC
Ethernet Port

Single CPU

Hypervisor

VM 1

Single Ethernet
Port Extender

VM 3

t4

t3

t1

t2

(b) VM1-VM2 and VM3-external
communications

802.1 Qbh Latency = t1 + t2 + t3 + t4 + tp

tp

10M 25M 50M 100M

0

50

100

150

(a) vSw itch CPU I/O load w ith base loads

25% base load

50% base load

75% base load

MBps

%
 C

P
U

 u
ti
liz

a
ti
o
n

50 70 75 93

0

20

40

60

80

100

(b) vSw itch CPU I/O w / Base Loads

25-75% CBQ

25% FIFO

50% FIFO

75% FIFO

Variable I/O into VM through v Switch

P
in

g
 L

a
te

n
c
y
 i

n
 m

il
li

s
e
c
o

n
d

s

Figure 6. Expanded 802.1Qbh Approximation: Frame path and latency

associated with 802.1Qbh

(a) Qbh Latency = t
1
 + t

2
+ t

3
 + t

4
+ t

p
(b) Maximum bandwidth = port speed.

the latency in the nSwitching architecture, we simulate latency
with 1 VM pinging the IP address assigned to the SR-IOV

NIC. We find the nSwitch approximate latency is on average
about 0.009 ms. Fig. 8 subscripts are shown with a prime ['] as
they are shorter than the latencies for 802.1Qbh which passes
through the entire NIC.

With nSwitch there is no port bandwidth limitation;
available channel bandwidth in the NIC determines the
bandwidth available between virtual machines. As SR-IOV
mechanisms are used for packet receipt in nSwitch there are
no CPU loads created by switching in the NIC.

VI. CONCLUSION

nSwitch is shown to be able to reduce CPU utilization over
the vSwitch and decrease latency. Comparing with 802.1Qbh
or Qbg, inter-VM transmission speed will not be limited by
the Ethernet port speed. At least one core was shown to
eliminate the port bottleneck using PCIe 3.0 32-bit PIPE and
8.0 GigaTransfers/second, and can support significant VM-
VM transfers on an nSwitch-enabled Ethernet card. We have
presented a method of using SR-IOV functions in the
nSwitching design and proposed that it is feasible to
investigate the detailed implementation nSwitching in existing
SR-IOV core structures. One of the primary benefits for
nSwitching is that it eliminates any load created on the CPU
due to switching in the hypervisor and the changes to the
switch infrastructure as required by other edge switching
technologies.

REFERENCES

[1] Santos, J. R., Turner, Y., Janakiraman, G., Pratt, I. “Bridging the Gap

between Software and Hardware Techniques for I/O Virtualization”.

USENIX '08: 2008 USENIX Annual Technical Conference. 2008.

[2] IEEE Standard, “802.1Qbg - Edge Virtual Bridging".

http://www.ieee802.org/1/pages/802.1bg.html

[3] IEEE Standard, “802.1Qbg - Edge Virtual Bridging".

http://www.ieee802.org/1/pages/802.1bh.html

[4] IEEE Standard, “802.1w-2001 - IEEE Standard for Local and

Metropolitan Area Networks - Common Specifications - Part 3: Media

Access Control (MAC) Bridges: Amendment 2 - Rapid Reconfiguration”.

http://standards.ieee.org/findstds/standard/802.1w-2001.html

[5] Touch, J., & Perlman, R. Request for Comments (RFC) 5556. May, 2009.

IETF Network Working Group.

[6] IBM. “Spanning Tree Protocol and the Virtual Switch”. (). z/VM V5R3.0

Connectivity SC24-6080-05.

http://publib.boulder.ibm.com/infocenter/zvm/v5r3/topic/com.ibm.zvm.v

53.hcpa6/hcsc9b2190.htm

[7] Open vSwitch. “About: What is Open vSwitch?”. (April, 2011).

http://www.openvswitch.org/

[8] McClellan, R., Metzler, J. (June, 2010).

http://searchnetworking.techtarget.com/tip/Networking-for-virtualization-

Virtual-network-switch-problems-abound

[9] Wood, T., Cherkosova, L., Ozonat, K., Shenoy, P. “Profiling and

Modeling Resource Usage of Virtualized Applications”. (2008).

Middleware '08: Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware. (2008)

[10] Cherkasova, L., Gardner, R. “Measuring CPU Overhead for I/O

Processing in the Xen Virtual Machine Monitor” (April, 2005)

Proceedings Of USENIX Annual Technical Conference (2005)

[11] Menon, A. Renato Sanots, J. Yoshio, T., Janakiraman, G. Zwaenepoel,

W. “Diagnosing Performance Overheads in the Xen Virtual Machine

Environment” (2005) USENIX: First International Conference on Virtual

Execution Environments 2005 (VEE'05).

[12] LAN Access Division, Intel. “Intel(r) 83576 SR-IOV Driver Companion

Guide” (June, 2009).

http://download.intel.com/design/network/desguides/322192.pdf

[13] Blade Network Technologies, et. al. “Standardizing Data Center

Server-Network Edge Virtualization” (October, 2010).

http://h30499.www3.hp.com/hpeb/attachments/hpeb/bladesblog00/130/1

/VEPA-EVB%20Industry%20Whitepaper.pdf

[14] Varma, A. “Single Root IOV Endpoint Implementation” (2007). PCI-

SIG.

[15] Dong, Y., Yu, Z., Rose, G. “SR-IOV Networking in Xen: Architecture,

Design and Implementation”. (2008). USENIX, First Workshop on I/O

Virtualization (WIOV'08).

[16] Synopsys. “Datasheet: DesignWare IP PCI Express Single-Root I/O

Virtualization” (February, 2011).

https://www.synopsys.com/dw/doc.php/ds/c/dwc_pci_express_iov.pdf

[17] Dong, Y., Jiang, Y., Tian, K. “SR-IOV Support in Xen”. (June, 2008)

Xen Summit Boston 2008.

[18] PCI-SIG. “Single Root I/O Virtualization and Sharing Specification 1.0.

”(September, 2007).

http://m1.archiveorange.com/m/att/hrTVj/ArchiveOrange_PD2t5zHbVL

Vi1Wd9XFMQb1SUkS0a.pdf

[19] Shafer, J. “I/O Virtualization Bottlenecks in Cloud Computing Today”.

(March, 2010) Workshop on I/O Virtualization.

[20] Knowlton, S. “Using PCI Express for I/O Virtualization”. (2011).

http://www.chipestimate.com/techtalk.php?d=2010-05-11

[21] Krause, M., Recio, R. “I/O Virtualization and Sharing” (2006).

Microsoft WinHEC 2006..

[22] Xen. Xen Wiki: XenNetworking. (2011).

http://wiki.xensource.com/xenwiki/XenNetworking

[23] Intel. “PCI-SIG Single Root I/O Virtualization (SR-IOV) Support in

Intel® Virtualization Technology for Connectivity: Efficient Native

Sharing of I/O Devices with Virtual Machines for enhancing I/O

Performance” (June, 2008).

[24] Plaff, B., et. al. (2009). “Extending Networking into the Virtualization

Layer”. Hotnets 2009.

6

Single NIC
Ethernet Port

tp’

Single CPU

Hypervisor

VM1 VM2

nSwitch Latency = t1' + t4' + tp’

t1’ t4’

Figure 8. VM 1 to VM 2 contributions to nSwitch Latency = t
1'
 + t

4'
+ t

p'Figure 7. VM to VM and VM to External device throughput showing path

traffic is constrained by the physical port and proportional Ack traffic

1 2 3 4 5 6

0

200

400

600

800

1000

Total link throughput by communcations path

VM2 to Ext'l

(data)

VM3 to VM1

(data)

Extl to VM2,

(Ack)

VM1 to VM3

(Ack)

Samples

M
b
p
s

