
Inducing Cooperation for Optimal Coexistence in Cognitive 

Radio Networks: A Game Theoretic Approach 

Abstract – Current coexistence protocols employed for 

contention by collocated Cognitive Radio Networks (CRN), such 

as the IEEE 802.22 WRAN, assume that the contending networks 

do not have any preference over the set of available channels. 

Having channels with different quality parameters can lead to an 

imbalance in contention for disparate channels, degraded quality 

of service and an overall inefficient utilization of spectrum 

resources. In this paper, we analyze this situation from a game 

theoretic perspective and model coexistence of CRNs as a non-

cooperative, repeated general-sum game with perfect information. 

We demonstrate that due to the possibility of its centralized as 

well as a distributed implementation, the correlated equilibrium is 

a practical solution for the problems of inefficiency and 

unfairness of Nash Equilibria. It not only induces voluntary 

cooperation among non-cooperative CRNs and results in 

optimum spectrum utilization but also results in an egalitarian 

equilibrium which maximizes the minimum payoff for every 

CRN. 

I. INTRODUCTION 

Studies on spectrum utilization have shown that static 

allocation of the spectrum has resulted in severe under-

utilization of this scarce resource, even as low as 14% [1]. 

With the proliferation of devices that rely on wireless access to 

the internet, the demand for wireless spectrum bands is ever-

increasing. This wide gap in the demand and supply of wireless 

spectrum resource forced regulatory bodies such as the FCC to 

allow un-licensed access to spectrum bands, also referred to as 

the TV white spaces, otherwise licensed to the Primary Users 

(PUs) in an opportunistic and non-interfering basis [2]. This 

has given rise to a challenging as well as an exciting type of 

networks called the Cognitive Radio Networks (CRNs). 

Deployment of Cognitive Radio technology as a last-mile 

connectivity option has already begun in parts of the world. 

Dynamic Spectrum Access (DSA) allows CRNs to ensure 

that their use of spectrum does not cause interference to PUs 

and that all spectrum opportunities are utilized to the 

maximum. IEEE 802.22 wireless regional area network 

(WRANs) [3] is an example of CRNs in which the base station 

controls all the operation of the CRN including the choice of 

spectrum bands for communication. However, there may be 

many CRNs collocated in a region all of whom compete for 

access to the available channels, a situation called self co-

existence in the context of CRNs. Most coexistence protocols 

do not take into consideration the fact that these channels can 

be heterogeneous in the sense that they can vary in their 

characteristics and quality such as SNR or bandwidth. Without 

any mechanism to enforce fairness in accessing varying quality 

channels, ensuring coexistence with minimal contention and 

efficient spectrum utilization for CRNs is likely to become a 

very difficult task. 

In this paper, we model heterogeneous spectrum sharing in 

CRNs as a repeated non-cooperative anti-coordination game 

where the payoff for every player (i.e., CRN) in the game is 

determined by the quality of the spectrum band to which it was 

able to gain access. Game theory has been applied to numerous 

areas of research involving conflict, competition and 

cooperation among multi-agents systems including wireless 

communications. Online databases [4, 5] can be accessed by 

CRNs to gain information about licensed PUs operating in a 

given region. Furthermore, the FCC requires CRNs to 

periodically access these online databases for up-to-date 

information about PU activity in their areas of operation. 

Therefore, the amount of PU activity, bandwidth and SNR 

which, for the purpose of this paper collectively determine a 

channel’s quality can be learnt / measured over a period of 

time. Due to the fact that all contending CRNs are collocated 

in a given region, it is reasonable to assume a channel’s quality 

to be common knowledge. Being rational about their choices, 

every player has a clear preference of selecting the best 

available channels before the start of every time slot. However, 

if every player tries to access the best available channel, it will 

result in a collision and the spectrum opportunity being wasted. 

Players that eventually gain access to higher quality channels 

will gain higher payoffs as compared to the players that end up 

with lower quality channels.  

To propose fair and efficient strategies for utilization of the 

spectrum resources, we formulate an anti-coordination game in 

which we derive the game’s pure (PSNE) and mixed strategy 

Nash Equilibria (MSNE) along with its Correlated equilibrium 

(CE). We demonstrate how the traditional solution concepts of 

Nash Equilibria (NE) are either inefficient or unfair while the 

correlated equilibrium is optimal and fair. We also demonstrate 

how CE can be achieved in a 2-player as well as an N-player 

game with centralized as well as a distributed approach using 

linear optimization and No-Regret learning algorithms 

respectively.  

II. RELATED WORK 

Correlated equilibrium has been employed in [6] for a P2P 

file sharing non-cooperative game to jointly optimize players’ 

expected delays in downloading files. Not uploading files for 

others causes an increase in file download time for all players 

which in turn forces even the non-cooperative players to 
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cooperate. The authors of [7] tackle the self-coexistence 

problem of finding a mechanism that achieves a minimum 

number of wasted time slots for every collocated CRN to find 

an empty spectrum band for communications. To do so, they 

employ a distributed modified minority game under incomplete 

information assumption. Authors of [8] employ punishment 

strategies in a Gaussian interference game for a one shot game 

as well as an infinite horizon repeated game to enforce 

cooperation. Spectrum sharing is however considered within 

the context of a single CRN. Evolutionary game theory is 

applied in [9] to solve the problem in a joint context of 

spectrum sensing and sharing within a single CRN. Multiple 

SUs are assumed to be competing for unlicensed access to a 

single channel. SUs are considered to have half-duplex devices 

so they cannot sense the channel and access it at the same time.  

Utility graph coloring is used to address the problem of self-

coexistence in CRNs in [10]. Allocation of spectrum for 

multiple overlapping CRNs is done using graph coloring in 

order to minimize interference and maximize spectrum 

utilization using a combination of aggregation, fragmentation 

of channel carriers, broadcast messages and contention 

resolution. The authors of [11] achieve correlated equilibrium 

with the help of No-regret learning algorithm to address the 

problem of network congestion when a number of SUs within 

a single CRN contend for access to channels using a CSMA 

type MAC protocol. They model interactions of SUs within the 

CRN as a prisoner’s dilemma game in which payoffs for the 

players are based on aggressive or non-aggressive transmission 

strategies after gaining access to idle channels. 

III. SYTEM MODEL 

We consider a region where IEEE 802.22 WRAN based 

CRNs represented by the set of   {       } players are 

collocated and contend for secondary access to the licensed 

spectrum bands. The set of Television whitespace (TVWS) 

channels available for secondary access by the contending 

CRNs is represented as   {       } channels. The 

spectrum consists of channels that differ from each other due 

to various network parameters such as noise, bandwidth or 

even availability. These differences make the spectrum 

heterogeneous in nature with channels considered to have 

some ‘quality’ parameter determined by the payoff that a CRN 

may achieve
1
 if it is able to gain access to that channel. CRNs 

need to gain access to a channel in every time slot. A time slot 

is also treated as a stage in the spectrum sharing game.  

All CRNs are independent as they do not share a common 

goal and therefore do not cooperate with each other. A given 

time slot’s spectrum opportunity that arises due to the absence 

of its primary user may result in a collision and therefore be 

wasted if two or more CRNs select the same channel for 

access. Since all CRNs are collocated, a channel’s SNR, 

available bandwidth and PU’s activity on their licensed 

channels can be measured by all CRNs. Furthermore, sensing 

of PU’s spectrum allocation/activity is mandated by the FCC 

                                                           
1 We use the terms utility and payoff interchangeably. 

for CRNs [2] and is also publically available through online 

databases [4, 5]. Therefore, considering a channel’s quality to 

be common knowledge is reasonable.  In subsequent section, 

we show that our proposed spectrum sharing game can be 

implemented solely on the basis of a CRN’s own payoff 

observations. 

 IV. CORRELATED EQUILIBRIUM FOR SPECTRUM 

SHARING GAME  

In this section, we first present the formulation of our 

proposed spectrum sharing game, followed by the derivation of 

pure and mixed strategy Nash Equilibria. Next we introduce 

the concept of Correlated Equilibrium (CE) and demonstrate 

how CE can be achieved in a centralized implementation for a 

2–player game using linear optimization. We also demonstrate 

that CE can be achieved in a distributed manner for an N–

player game using a learning algorithm called No-Regret (NR) 

learning [14]. Using these concepts we model the problem of 

self-coexistence and heterogeneous spectrum sharing in the 

following subsections as an anti-coordination game 

framework. The game is a non-cooperative repeated game with 

perfect information because: 

 CRNs compete for the best channels available in the 

spectrum band and are interested only in maximizing their 

own utility. Therefore, CRNs are not bound to cooperate 

with each other.  

 Utilities are common knowledge since the quality of 

various network parameters can be measured by every 

CRN. Also, it is reasonable to assume that every CRN can 

tell which channels other CRNs were able to gain access 

to in the past hence they know other CRNs’ payoffs. 

A. Game Formulation 

The spectrum sharing anti-coordination game presented in 

this paper is represented as   ⟨   ( ) ( )⟩  where players in 

the game are CRNs represented by  . Every player in the 

game has the same action/strategy space represented by   
{         } where the strategy    means selecting channel k 

for communication during the next time slot.  The CRNs gain a 

specific payoff when they are successful in utilizing a spectrum 

opportunity in a channel. The payoff for players playing 

strategies    and    respectively, when competing against each 

other for access to channels is denoted by the ordered pair 

 (     )    and is a function of an individual channel’s 

quality given by: 

 (     )  {
(     )                       

(   )                            
                               ( )  

where the first element    of the ordered pair  (     ) 

represents the payoff for the player that selected channel   and 

the second element    for the player selecting channel  . For 

the sake of ease in analysis, we assume that         The 

game represented by (1) can also be represented in strategic 



form as table I, which shows the payoffs for two players 

selecting channels k or j. Since       , it is in every CRN’s 

interest to choose channel   instead of channel   for a larger 

payoff. However, when the players select the same channel it 

results in a collision, the spectrum opportunity being wasted 

and both player end up with a payoff of 0. On the other hand, if 

both players select different channels then their payoffs reflect 

the quality of the channel to which they are able to gain access. 

This game is the reverse of the classic Battle of the Sexes game 

and is classified as an anti-coordination game where it is in 

both players’ interest not to end up selecting the same strategy, 

as shown in table I.   

B. Pure and Mixed Strategy Nash Equilibria for the Spectrum 

Sharing Game 

In this subsection we derive the solution concepts in the 

form of pure (PSNE) as well as the mixed strategy Nash 

equilibria (MSNE) for our spectrum sharing anti-coordination 

game.  

Definition 1: The pure strategy Nash Equilibrium [12] of the 

spectrum sharing game is an action profile      of actions, 

such that 

 (   
      

 )   (        
 )              

where   is a preference relation over utilities of 

strategies    
 and    . The above definition means that for    

  to 

be a pure strategy NE, it must satisfy the condition that no 

player i has another strategy that yields a higher payoff than 

the one for playing    
 given that every other player plays their 

equilibrium strategy    
 .  

Lemma 1: Strategy pairs (     ) and (     ) are pure 

strategy NE of the anti-coordination game. 

Proof: Assume player 1 to be the row player and player 2 

to be the column player in table I. From (1) it follows that 

both           are positive values and therefore the payoffs 

for strategy pairs (     ) and (     ) are greater than the 

payoffs for strategy pairs (     ) and (     ). Consider the 

payoff for strategy pair (     ) from table I. Given that the 

player playing strategy    continues to play this strategy, then 

from definition 1 for a Nash Equilibrium, it follows that the 

player playing strategy    does not have any incentive to 

change its choice to   , i.e., it will receive a smaller payoff of 0 

if it switched to   . Therefore, (     ) is a PSNE. Similarly, 

strategy pair (     ) is the second PSNE of this game.               

Definition 2: The mixed strategy Nash Equilibrium [12] of 

the spectrum sharing game is a probability distribution  ̂ over 

the set of actions   for player i such that 

               ̂  {         }      
         ∑   

 
       

which makes the opponents indifferent about the choice of 

their strategies by making the payoffs from all of their 

strategies equal.  

Let   be the probability with which player 1 plays strategy 

   and   (   ) be the probability of playing strategy   , 

then from the payoffs of table II, the expected utility of player 

2 for playing strategy    is given by: 

                            (  )     (     )    (     )               ( ) 

Similarly, the expected utility of player 2 for playing strategy 

   is given by: 

                            (  )     (     )    (     )                 ( ) 

According to definition 2, player 2 will be indifferent about the 

choice of strategies when the expected utilities from playing 

strategies    and    are equal, i.e., 

                                    (  )     (  ),                           (4) 

Substituting (2) and (3) in (4), we have: 

         

       
  

     

                     
  

     

     ( )  

Therefore, the MSNE for the spectrum sharing game is given 

by the distribution  ̂  {   } which means that when both 

players select strategies    and    with probabilities   and   

respectively, then their opponents will be indifferent about the 

outcomes of the play and mixes for its choice of strategy. We 

discuss the efficiency and fairness of PSNE and MSNE after 

deriving CE for our spectrum sharing game in the next 

subsection. 

C. Centralized Correlated Equilibrium for 2-Player Game 

Under pure and mixed strategy Nash Equilibria, it is 

assumed that the players choose their strategies independently 

without any communication. However as we demonstrate next, 

it is in every player’s interest to coordinate their actions such 

that the outcomes are favorable to all players by avoiding 

Table II: (a) Joint probability distribution over strategies 

   and    under correlated equilibrium. (b) An example 

payoff matrix for a 2-player game. 

(a) a1 a2  (b) a1 a2 

a1            a1         

a2            a2         

 

 

Table I: Strategic form representation of a 2-player anti-

coordination game with strategies    and   . Players 

receive a payoff of 0 if both select the same strategy. 

 ak aj 

ak (0,0) (uk ,uj) 

aj (uj, uk) (0,0) 

 

 



ending up on the same channels, thereby making it an anti-

coordination game. Such coordination can be achieved with a 

trusted central entity that can provide an external 

recommendation signal which can be either public or private 

signals or it can be learnt for distributed implementation 

without the need for a central entity. In this subsection, we 

present the centralized algorithm to achieve CE while the 

distributed algorithm is presented in the next subsection. 

CE is a state when given the availability of an external 

recommendation signal, none of the players can achieve a 

greater payoff by ignoring that signal when all other players 

follow the recommended action. Formally, CE is defined as: 

Definition 3: A probability distribution is a correlated 

equilibrium of a game when [13]: 

∑  (      )

        

[  (      )    (  
     )]              (  ) 

where  (      ) is the joint probability distribution of players 

to select a certain strategy pair in the next time slot. The 

inequality (11) represents that selecting some different strategy 

  
  instead of    in the next time slot will not result in a higher 

payoff for a player given that all other players adhere to the 

recommended strategy. In a centralized implementation of 

correlated equilibrium for a 2-player 2-strategy game such as 

the one shown in table II, any external entity may be selected 

as the ‘recommender’, a trusted entity that calculates and 

provides the external recommendation signal for all contending 

CRNs according to the CE joint probability distribution   
(                   ). The strategic form of such a correlated 

strategy pair is shown in table II (a). A correlated strategy pair 

means that the action pair (     ) is played with 

probability      and action pair (     ) is played with 

probability      etc.  

Here we investigate the centralized CE using linear 

optimization approach. The objective function    to find the 

optimal strategy CE for a 2-player game can be defined as: 

                   
    

∑∑[  (     )     (     )]

 

   

 

   

                          (  ) 

where the constraints for CE in (12) are: 

                                                                                       (  ) 

    [  (     )    (     )]      [  (     )    (     )]     (  ) 

    [  (     )    (     )]      [  (     )    (     )]     (  ) 

    [  (     )    (     )]      [  (     )    (     )]     (  ) 

    [  (     )    (     )]      [  (     )    (     )]     (  ) 

For the game of table II, any correlated equilibrium of the 

form   (         ) will maximize the sum of expected 

payoffs for the players because it eliminates the possibility of 

the players contending for the same channel. For an egalitarian 

equilibrium which is fair and maximizes the sum of expected 

payoffs, we have an additional constraint such that: 

                                                                                      (  ) 

Having the recommender to provide external signal based 

on (12) and the constraints (13) – (18) ensures that probability 

of the two players ending up in the same channel is minimized 

so that the spectrum opportunity is not wasted and players’ 

payoffs can be maximized. Furthermore, it must be noted that 

the external recommendation signal is not binding and players 

are free to ignore recommended actions.  

Consider a situation in which the recommender selects an 

egalitarian CE probability distribution   (           ) 

over the payoff matrix of table II (b) in order for the two 

players to avoid selecting the strategy 

pairs (     ) and (     )  The external signal recommends 

player 1 to select action a2 i.e., channel 2 which is of lower 

quality and results in a smaller payoff of 7 compared with a 

payoff of 9 if channel 1 was selected for next time slot. Player 

1 knows that player 2 will follow the recommended action 

because it has been recommended a higher quality channel. It 

is however in player 1’s interest to select the action 

recommended by the external signal since it would yield a 

higher payoff of 7 instead of 0 if external signal is ignored and 

both players end up selecting the same higher quality channel. 

CE can be implemented in a similar manner as equations 

(12)-(18) for a multi-player game using linear programming; 

however, the number of constraints grows exponentially with 

the number of players and their strategies and the problem 

grows at a polynomial rate [14]. We omit the discussion of 

centralized correlated equilibrium for N-player game due to 

space limitation.  

D. Distributed Correlated Equilibrium for N-Player Game 

In this subsection we utilize the No-Regret learning 

algorithm to achieve CE [15] in CRNs in a multi-player 

scenario without the need of having a trusted entity to act as a 

centralized/external recommendation signal provider. No-

Table III: No-Regret Learning Algorithm 

initialization:  

  
 (  )   

 

  
        ,     

loop: 

Choose strategy   
       with probability   

 (  ) 

Observe payoff   
  for current time slot t 

For every player, compute regret    
 for all actions 

  
       not played upto current time t with (20) and (21) 

Calculate   
    prob. of selecting the strategy    and 

(   
 ) for next time slot with (22) and (23) 

      

end loop 

 



regret learning algorithm is based on the concept of 

minimizing a player’s regret in the hindsight for not playing 

other strategies in every time slot up to the current time t.  

Specifically, suppose that the game is played repeatedly at 

every time slot t = 1, 2, 3,... and given a history of play 

   (  
 )    

  up to time t, every player i chooses a probability 

  
     (  ) of selecting the same strategy   

  for the next 

time slot. The probability for selecting a strategy for the next 

time slot is calculated as follows: For every two different 

strategies   
  and       up to time t, if player i replaces 

strategy                    
   every time that it was played then 

the payoff for time   will become: 

         
 (   

 )  {
  

 (  
      

 )                 
     

  
 (  

 )                            
                  (  )   

Then the average difference in player i's payoff up to time t is 

given by: 

         
 (   

     )  
 

 
∑ [  

 (   
 )    

 (  
 ) ] 

                      (  )  

and player i's average regret at time   is given by: 

                
 (   

     )  [  
 (   

     )]
                                       (  ) 

and the probability of playing the strategies    and    
  in the 

next time slot is a function of a player’s average regret and is 

given by: 

                
   (   

  )  
 

 
   

 (   
     )                                        (  )  

                 
   (  )      

   (   
  )                                          (  )  

The parameter      (   ), such that k is the number 

of channels and    is the upper bound on |  ( )|. Its value is 

independent of time as well as the play’s history and also 

ensures that there is always a positive probability of staying in 

the same channel as in the previous time slot. As      the 

empirical probability distribution   over the N-tuples of 

strategies converges to the CE [14]. A summary of the No-

Regret learning algorithm is given in table III.  

E. Discussion  

Here we provide a discussion on the fairness and efficiency 

of pure and mixed strategy Nash equilibria compared with CE. 

Consider the payoff matrix of table II(b) in which gaining 

access to channel 1 brings a payoff of 9 to the CRN while 

being of comparatively lower quality, channel 2 brings a 

payoff of 7. There are two pure strategy Nash equilibria for 

this anti-coordination game: (     ) and (     ), however 

both of them are unfair because one player always gets a 

smaller payoff than the other.  

In order to be fair, the expected utility for both players must 

be equal and to achieve that, both players would have to mix 

their strategies in a way that their opponent is indifferent about 

the play’s outcome. The result would be the MSNE and as 

elaborated in section III.B above, the MSNE for the game in 

table II(b) is the distribution (         ) over the set of 

strategies for both players. When the players mix their 

strategies according to MSNE, then each player gains an 

expected utility equal to (           )(   )       according 

to equations (2)-(4). This expected utility is even smaller than 

the payoff of the lower quality channel i.e., 7. This means that 

a player will always do better than the MSNE even if it always 

selected the lower quality channel. Furthermore, there is 

always a (           )  (           )        chance of 

both players ending up in the same channel. Clearly MSNE is 

an inefficient solution to the anti-coordination game. 

 CE for the game of table II(b) can be calculated by 

equation (12) under the constraints of inequalities (13) – (18) 

which is the joint probability distribution of    (          

 ) for the four action pairs (     )  (     )  (     )  and 

(     ).  Expected utility for both players from the CE of this 

game is       (   )   , which is greater than the payoff 

from PSNE and MSNE as well as the lower quality channel. 

This proves that CE is fair and efficient at the same time and it 

also maximizes the minimum expected utility of all players. 
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 = 20 (CE)

 = 100 (CE)

 = 200 (CE)

MSNE

Figure 1: Comparison of MSNE and CE at different values of 

the inertia parameter    Different values of   achieve the same 

convergence value of expected utility however at different rates. 

Figure 2: Comparison of CE at different values of the number of 

networks and channels where n=k. With every additional CRN, a 

lower quality channel was added to the spectrum resulting in 

smaller expected utility per CRN. 



V. SIMULATION MODEL AND RESULTS 

A. Simulation Setup 

For the purpose of validating the game model, we 

implemented our proposed anti-coordination game along with 

the No-Regret learning algorithm. We verify that CE is 

achievable, fair and efficient as it always yields a higher 

expected utility per CRN as compared with MSNE. For the 

purpose of simulation, n represents the number of CRNs and k 

is the number of channels of the spectrum available for 

secondary access by the CRNs. We first carry out the 

comparison of CE and MSNE with a 2-player 2-channel game 

i.e., n=2 and k=2 and calculate expected utilities per CRN. 

Later we carry out simulations with varying number of players 

and channels and demonstrate that the game always converges 

to CE. Since the No-Regret algorithm of all CRNs approaches 

CE based solely on a given network’s own payoff 

observations, it allows the distributed implementation of our 

proposed anti-coordination game. Inertia parameter of the No-

Regret learning algorithm is   whose value is kept constant 

except for figure 1. 

B. Simulation Results 

Figure 1 shows a comparison of expected utilities per CRN 

under MSNE and CE with various values for the inertia 

parameter  . Payoff value for channel-1 is 9 while channel-2 

has a payoff of 7. Compared with all the three plots for CE 

where the expected utilities converge to 8 per CRN, MSNE 

yields a smaller expected utility of 3.93 per CRN, proving our 

analysis that CE is more efficient than MSNE. Different values 

of   achieve CE at different rates however the convergence 

values are identical. As evident from figure 1, the 

parameter   reflects a CRN’s propensity towards staying in the 

same channel in next time as the previous one. 

Figure 2 shows different values for CE while increasing the 

number CRNs as well as the number of channels such that n is 

always equal to k. The channels added to the spectrum for 

contention are always of lower quality than the existing 

channels which is why the expected utility per CRN always 

decreases for every increase in the number of available 

channels from k=2 to k=4. Payoff values for channels 1 

through 4 are 9, 7, 6 and 5 respectively. As can be seen from 

figure 2, the rate of convergence slows down as the number of 

networks and channels is increased. 

Figure 3 shows the CE for expected utilities per CRN over 

time such that     i.e., increasing the number of available 

channels from 4 to 6 while keeping the number of contending 

CRNs constant at 4. Notice that the convergence value for 

expected utility is the same for all cases. It shows a very 

important aspect of the No-Regret algorithm which allows 

CRNs to always have a fair distribution of channel resources as 

players choose the highest quality channels from the pool of 

available channels. Also, the speed of convergence to CE is 

fastest when the number of CRNs is equal to the number of 

available channels i.e., n=k. Payoff values for channels 1 

through 6 are kept at 9, 7, 6, 5, 4 and 3 respectively. 

Figure 4 shows the CE for expected utilities per CRN over 

time such that     i.e., increasing the number of CRNs from 

2 to 4 while keeping the number of available channels constant 

at 4. Intuitively, expected utility per CRN is lowest at n=4 and 

k=4 as compared with the situation when the number of 

contending networks is smaller however, the speed of 
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k = 3, n = 3

k = 3, n = 4

k = 3, n = 5

Figure 4: Comparison of CE when    . With a fixed value of 

k, increase in n causes a decrease in the expected utilities 

however convergence rate increase as    . 

Figure 5: Comparison of CE when    . Every time slot will 

have at least one collision when     thereby decreasing the 

expected utilities per CRN to drop significantly. 
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k=4, n=4

k=5, n=4

k=6, n=4

Figure 3: Comparison of CE when    . CRNs always select 

the best out of the available pool of channels therefore the 

convergence value of expected utilities are equal however 

convergence rate increase as    . 



convergence to CE in figure 4 is fastest when n=k. Payoff 

values for channels 1 through 4 are 9, 7, 6 and 5 respectively. 

Finally, figure 5 shows the results of simulation when   
 . It shows that as soon as the number of networks contending 

for channels becomes more than the number of channels 

available, there will always be at least one collision between 

two or more CRNs in every time slot making the expected 

utility per CRN to drop significantly. However, the No-Regret 

algorithm still manages to achieve CE despite much degraded 

expected utilities per CRN. 

VI. CONCLUSIONS 

Coexistence protocols employed by collocated CRNs 

usually do not take into consideration the fact that spectrum 

bands vary significantly with regards to channel quality 

thereby making some channels of the spectrum bands more 

attractive to CRNs than others. In this paper, we aimed at 

solving the problem of sharing heterogeneous spectrum by 

adopting a game theoretic approach. We demonstrated that 

correlated equilibrium solves the problem of efficiency and 

fairness with pure and mixed strategy Nash equilibria. To 

address the issues associated with centralized implementation, 

we proposed the use of No-Regret learning algorithm that 

converges to correlated equilibrium in a distributed manner.  
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