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Abstract— Email worms constitute one of the major Internet
security problems. In this paper, we present an email worm
model that accounts for the behaviors of email users by con-
sidering email checking time and the probability of opening
email attachments. Email worms spread over a logical network
defined by email address relationship, which plays an important
role in determining the spreading dynamics of an email worm.
QOur observations suggest that the node degrees of an email
network are heavy-tailed distributed. We compare email worm
propagation on three topologies: power law, small world and
random graph topologies; and then study how the topology
affects immunization defense on email worms. The impact of
the power law topology on the spread of email worms is mixed:
email worms spread more quickly on a power law topology than
on a small world topology or a random graph topology, but
immunization defense is more effective on a power law topology
than on the other two.

I. INTRODUCTION

“Email worms” are malicious computer programs that prop-
agate through email: when an email user clicks a worm
program in the attachments of a worm email, the worm
compromises the user’s computer and then finds all email
addresses stored on this computer to send out worm email.

Email has become an indispensable communication medium
in our life. However, email worms keep attacking us with in-
creasing intensity and using more advanced social engineering
tricks. Some famous email worms include Melissa in 1999,
“Love Letter” in 2000, “W32/Sircam” in 2001, “SoBig” in
2003, “MyDoom”, “Bagle” and “Netsky” in this year [1].

Like earthquake modeling or tornado modeling, a good
email worm model gives us deep understanding of email
worms, helps us evaluate the effectiveness of defense mecha-
nisms, and provides possible early warning to help us control
a worm’s potential damage. In this paper, we first present a
realistic email worm model that accounts for the behaviors
of email users by considering users’ email checking time and
the probability of opening email attachments. Then we carry
out extensive simulation studies. Email worms spread over a
logical network defined by email addresses; our observation
shows that the Internet-scale email network might be heavy-
tailed distributed and we model it as a power law network.
To study how topology affects an email worm’s propagation,
we compare worm spreading on power law, small world and
random graph topologies. We derive the conclusion that email
worms spread more quickly on a power law topology than
on the other two topologies; the other two topologies have
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little differences in terms of the propagation dynamics of email
worms.

Based on the above email worm model, we study the ef-
fectiveness of “selective immunization defense”, i.e., selecting
some most connected email users’ computers to make them
immune to an email worm. The results explain why selective
immunization defense against email worm propagation is quite
effective for a power law topology but not so good for the other
two topologies.

The rest of the paper is organized as follows. Section II
surveys related work. Section III presents the email worm
propagation model. In Section IV, we explains why we choose
power-law topology to represent the logical email network. We
conduct extensive simulation studies and present the results
in Section V. Then we study selective immunization defense
against email worm attacks in Section VI. Finally, we make
some discussions and conclude the paper with Section VII.

II. RELATED WORK

Kephart, White and Chess studied viral infection based on
epidemiology models from 1991 to 1993 [2][3][4], where
they considered virus spreading on random graph networks
and local networks. After Code Red worm incident [1] in
2001, many researchers have studied worm propagation mod-
eling [5][6][7][8]. However, these papers studied “scan-based”
worms that propagate through random scanning — models of
scan-based worms do not need to consider topological issues
and thus not suitable for modeling email worms.

Wang et al. [9] simulated a simple virus propagation based
on a clustered topology and a tree-like hierarchic topology.
Newman et al. [10] collected email address book data from
a university and showed that the campus-level email topology
has an exponential and a stretched exponential distribution for
in-degree and out-degree, respectively. However, they didn’t
consider email lists, which can dramatically increase edges in
an email network. In addition, most email worms send out
worm email to all addresses existed in a computer, not just
in email address books. Thus the Internet-scale email network
may follow a completely different topology. Briesemeister et
al. [11] used simulation to study epidemic spreading on scale-
free networks without considering other topologies and user
interactions. Satorras et al. [12] used SIS epidemic model to
study epidemic spreading in scale-free networks — the SIS
model is not suitable for modeling the propagation of one



email worm because a cured host is not likely to become
susceptible to the same email worm again.

From an email worm’s point of view, the connectivity of a
partly immunized email network is a “percolation” problem.
Newman et al. [13] derived the analytical solution of the
“percolation threshold” for arbitrary topologies: if nodes are
removed randomly from a network, the network will be broken
into pieces when the fraction of removed nodes is higher than
the network’s “percolation threshold”. However, it is more
effective and reasonable to “selectively immunize” nodes in an
email network rather than the uniform immunization studied
in [13]. Albert et al. [14] showed that a power law network
is vulnerable under selective attack, which is consistent to our
conclusions.

III. EMAIL WORM PROPAGATION MODEL

We represent the topology of the logical email network by
an undirected graph G =< V, E >. Vv € V, v denotes an
email user; Ve = (u,v) € E, u,v € V, represents that two
users v and v have the email address of each other in their
own computers. “Node degree” d of a node means that this
node has d edges connecting to d other nodes. |V| is the total
number of email users. For a reader’s convenience, Table I
lists most notations used in this paper.

TABLE I
NOTATIONS USED IN THIS PAPER

Symbol | Explanation

G Undirected graph representing email network, G =< V, E >

N Number of infected users at time ¢

« Power law exponent of a power law topology that has
complementary cumulative degree distribution F'(d) ox d—%

NI Number of users uninfected when a worm finishes spreading

T Email checking time interval of user i, ¢ = 1,2,---,|V]|

F; Probability of user ¢ to open email worm attachments

T Gaussian-distributed random variable that generates F[T;],
T ~ N(pr,02) (E[T;] = 0 when T' < 0)

P Gaussian-distributed random variable that generates P;,

P~ N(;Lp,cr?,,) (P; =0 when P <0

and P; = 1 when P > 1)

Dy Average degree of those nodes that are healthy before time ¢
but are infected at time ¢, V¢ > 0

L(p) Remained link ratio — fraction of links remained after
removal of the top p percent most connected nodes
C(p) Connection ratio — fraction of remained nodes that are

connected after removal of the top p most connected nodes

Email worms depend on email users’ interaction to propa-
gate. There are primarily two human behaviors affecting email
worms: one is the email checking time interval, denoted by
T;,i=1,2,--- V|, which is the time interval between two
consecutive email checking by user ¢; another is the opening
probability, denoted by P;, the probability with which user @
opens a worm attachment.

Some email worms exploit email clients’ bugs such that
they can compromise computers without users to execute any
attachment. Such email worms can be modeled by assigning
P; =1 for those vulnerable computers.

Email checking time of a user is a stochastic variable
determined by the user’s habit. Denote E[T;] as the mean value

of the checking time interval T; for user i, : = 1,2,--- | |V|. T;
may follow different distributions. For example, it is a constant
value when a user checks email once every morning or uses
email client programs to fetch and check email at a specified
time interval; it is exponentially distributed (i.e., checking
action is a Poisson process) if a user checks email at a random
time. In this paper we will study how different distributions
of email checking time interval affect the propagation of an
email worm.

Since the number of email users in the Internet is very large
and users’ behaviors are independent, we assume that the mean
checking email time E[T;] of user ¢ is generated by a Gaussian
distributed random variable 7T, i.e., T ~ N(ur,02) (E[T;] =
0 when T' < 0). We assume that when a user checks his email,
he checks all new email in his mailbox.

The opening probability P; of user ¢ is determined by: (1)
the user’s security awareness; and (2) the social engineering
tricks deployed by an email worm (e.g., “MyDoom” infected
more users than any email worm before due to its advanced
social engineering techniques [1]). Therefore, for the propaga-
tion of one email worm, we assume P; to be constant for user
i. Similar to E[T;], we assume P; of user ¢ is generated by a
Gaussian distributed random variable P, i.e., P ~ N(up, 0123)
(P; =0 when P<0and P; =1 when P > 1).

An email user is called infected once the user opens an
email worm attachment; upon opening a worm attachment,
an infected user immediately sends out worm email to all
his neighbors. Let Ny denote the number of initially infected
users. Let random variable V; denote the number of infected
users at time ¢ during email worm propagation, Ny < N; <
[V|, ¥t > 0. It takes time before a recipient receives an email
worm sent out by an infected user; but the email transmission
time is usually much smaller compared with a user’s email
checking time interval, and thus, it is ignored in our model.

IV. EMAIL NETWORK TOPOLOGY DISCUSSION

Let f(d) be the fraction of nodes with node degree d
in email network graph G. The complementary cumulative
distribution function (ccdf) is denoted by F(d) = >_.°, f (i),
i.e., the fraction of nodes with degree greater than or equal
to d. We have examined more than 800,000 email groups in
Yahoo! [15], the sizes of which vary from as low as 4 to more
than 100,000. Fig. 1 presents the empirical ccdf of the group
sizes of Yahoo! in the log-log format. From this figure we can
see that the size of Yahoo groups is heavy-tailed distributed,
i.e., the ccdf F(d) decays slower than exponentially [16].

Currently, “email groups”, or so-called “email lists”, have
become very popular. Once a user has the address of an email
group in his address book or stored in his computer, from
an email worm’s point of view, this user virtually has all the
addresses contained in the email group. Therefore, even though
a user’s computer may only contains tens of email addresses,
the node degree of the user in the email network graph might
be as large as several thousand if one of the email address
is a popular email group. Since email groups are heavy-tailed
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Fig. 1. Complementary cumulative distr. of Yahoo! group size (in May 2002)

distributed as shown in Fig. 1, it suggests that the Internet-
scale email network is also heavy-tailed distributed.

In this paper we use the power law generator in [16] to
generate power law topologies. The node degree of a “power
law topology” is heavy-tailed distributed and has the power
law cedf F(d) o< d~%, which is linear on a log-log plot
[16]. Except power law topology generators, there is no other
network generator available to create a heavy-tailed distributed
topology. Thus a power law topology generator is the best
candidate to generate the email network although the node
degree of a real email network may not be strictly power law
distributed.

There are other popular topologies such as random graph
topology and small world topology [17]. We study worm
propagation on these topologies as well in order to under-
stand how different topologies affect email worm propagation.
We generate the small world topology by using the two-
dimensional small world model presented in [18].

V. EMAIL WORM SIMULATION STUDIES

We are interested in F[N;] — the average number of
infected users at any time ¢. In all of our simulation experi-
ments, we derive E[N;] by averaging the results of N; from
100 simulation runs with different seeds to generate random
numbers. The underlying power law network has 100,000
nodes, average node degree 8 and power law component
a = 1.7. Except the experiments on distributions of email
checking time interval, in other experiments we assume that
the email checking time interval 7; of user 7 follows a Poisson
process with rate 1/E[T;], i = 1,2,---,|V]|, where E[T}]
follows T ~ N (40,20%). Other simulation parameters are:
P ~ N(0.5,0.3%) and Ny = 2. Initially infected nodes are
randomly chosen in each simulation run.

A. Reinfection vs. Non-reinfection

First we consider two cases with different infection as-
sumptions: the reinfection case versus the non-reinfection case.
Reinfection means that the computer of a user sends out email
worm copies whenever the user opens a worm attachment.
Non-reinfection means that an infected computer of a user
sends out worm copies to all its neighbors only once, after

which it will not send out any worm email again even if the
user opens worm attachments repeatedly. Fig. 2 illustrates the
behavior of E[Ny] as a function of time ¢ on a power law
email network.

4 Reinfection vs. Non-reinfection
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Fig. 2. Reinfection vs. non-reinfection

In our email worm model, user ¢ opens a worm attachment
with probability P; when he checks a worm email. Thus user ¢
has the probability 1 —(1— P;)™ to be infected when receiving
m worm email — this is the reason why more users are
infected in the reinfection case than in the non-reinfection case
as shown in Fig. 2.

Since some users never open worm email attachments
or open them with very low probabilities, in both cases a
certain number of users will not be infected when the worm
propagation is over. Let N” denote the number of users that
are not infected when the worm propagation is over. In the
non-reinfection case, user ¢ who has m; edges (neighbors) will
receive at most m; copies of the worm email — the probability
that user ¢ is not infected is at least (1—P;)™¢. Let G(z) denote
the probability generating function of the node degrees of the
email network:

G(z) =) P(d= k)" (1)
k=1

where P(d = k) is the probability a node has degree k. When
all users are equally likely to open worm attachments, i.e.,
P, =p, Vi€ {1,2,---,|V|}, we derive the lower bound for
E[N] as:

EINL]Z VY Pd=k)(1-p)=VIG1-p) @
k=1
A reinfection email worm propagates faster and thus is
the focus of our study. In the following, we only consider
reinfection email worms.

B. Topology effect: Power law, Small world and Random
graph topologies

The topology of email logical network plays an important
role in determining the behaviors of an email worm’s propaga-
tion. In this section we study the impact of different topologies
on email worm propagation. Through this study, we can have



better understanding of what factors affect an email worm’s
spreading speed, which makes it possible for us to find out the
appropriate defense mechanism by taking advantage of such
properties.

We run the email worm simulation on a power law network,
a small world network and a random graph network, respec-
tively. All three networks have the same average degree 8 and
100, 000 nodes. Fig. 3 shows the E[NN] as a function of time
t of these three topologies.
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Fig. 3. Topology effect on email worm propagation

To study why worm propagates faster on a power law
network, let D; denote the average degree of those nodes that
are healthy before time ¢ but are infected at time ¢t. D; tells us
what nodes are being infected at each time ¢, t = 1,2,3,---.
We repeat the experiment in Fig. 3 and derive D, for each
topology by averaging the results of 1,000 simulation runs.
We plot each D, of these three networks as a function of time
t in Fig. 4. Note that the D; of a small world and a random
graph networks are almost the same.
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Fig. 4. Average degree of nodes that are being infected at each time tick

Fig. 4 clearly shows that on a power law network an email
worm tends to first infect most highly connected nodes —
these nodes send out a much larger number of worm email
copies than other infected nodes. Thus the infection speed will
be “amplified” by them at the beginning. Neither a small world
nor a random graph network exhibits such amplification effect
since all nodes on them have the similar node degrees.

Another reason for the propagation speed difference of
these three topologies is their different “characteristic path
length”, which is defined as the number of edges in the
shortest path between two vertices averaged over all pairs of
vertices [17]. For an email network, a smaller characteristic
path length means that an infected user needs a smaller number
of steps to reach other users, and thus an email worm would
propagates faster. [16][19] show that a power law topology
has the smallest characteristic path length among those three
topologies while the other two have the similar characteristic
path lengths.

We also investigate the sensitivity of our results to the scale
of an email network. We run the same experiments as shown in
Fig. 3 on a 1,000, 000-node email network (the average node
degree remains 8). we observe the same behaviors of worm
propagation on this tenfold larger network, which shows that
the behavior of worm propagation doesn’t change when the
network scale changes.

C. Effect of email checking time distribution

Here we study how different distributions of 7; affect an
email worm’s propagation. We study three distributions of
T;: exponential distribution, a 3rd-order Erlang distribution,
and a constant email checking time interval for each user. For
comparison, in all three cases E[T;] follows the same Gaussian
distribution T ~ N (40, 202).
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Fig. 5. Effect of the distributions of email checking time interval (on a power
law email network)

Fig. 5 shows the average number of infected users, E[V],
on a power law email network. We also conduct this experi-
ment on a small world network and a random graph network
— both networks give the similar worm propagation patterns
(propagation speed on these two networks is slower than on a
power law network as illustrated in Fig. 3).

Given the same mean value, the exponential distribution
is more stochastically variable [20] than the kth-order Erlang
distribution where £ > 1. Both of them are more stochastically
variable than the constant value. Fig. 5 shows that an email
worm propagates faster as the email checking time interval 7;
becomes more “variable”. We have proven this conclusion for
a simplified worm propagation model and presented the proof
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in our technical report [21]. Intuitively, it is due to so-called
snowball effect: before worm copies in the system with less
variable checking time give birth to the next generation —
infecting some new users — worm copies in another system
with more variable checking time have already given birth to
several generations, although each generation’s population is
relatively small.

D. Other simulation studies

We have conducted many other simulation experiments,
including: (1) studying the impact of the power law exponent
« of a power law email network; (2) studying the impact of
the network average node degree and the degree of initially
infected users. For the results and details of these experiments,
please see our technical report [21].

VI. IMMUNIZATION DEFENSE FOR EMAIL WORMS

In this section, we consider immunization defense against
email worm attacks. “Immunization” means that before an
email worm starts to propagate, some nodes have already
been immunized such that they cannot be infected by the
worm. If some email users are well educated and they never
open suspicious email attachments, they can be treated as
immunized nodes in the email network.

A. Effect of selective immunization

We simulate worm propagation under two different im-
munization defense methods: in the first case we randomly
choose 5% nodes in the email network to immunize, while
in the second case we choose 5% most connected nodes
to immunize. We plot E[N;] as a function of time ¢ for
these two immunization methods in Fig. 6 (on a power law
network, a small world network and a random graph network,
respectively). In order to see the effect of immunization,
we also plot E[N;] for the original case where there is no
immunization.

We observe from Fig. 6 that selective immunization is a
very effective defense on a power law email network while
it has little effect for a small world or a random graph
network. This result is consistent with the conclusions in
[14]: selectively attacking the most connected nodes rapidly

Time: t

b. Small world topology

Time: t

¢. Random graph topology

Effect of selective immunization on email worm propagation

increases the diameter of a power law network. Since an email
worm depends on the connectivity of the underlying email
network to spread, immunizing the most connected nodes has
the effect of rapidly increasing the network diameter. This in
turn significantly slows down worm propagation speed.

B. Selective percolation and worm prevention

From an email worm’s point of view, the connectivity of a
partly immunized email network is a “percolation” problem.
The authors in [13] studied simple percolation by removing
some nodes from networks uniformly — their approaches
cannot be used here to study the selective immunization
defense.

We introduce the corresponding concept “selective perco-
lation”. A selective percolation value p means to remove the
top p percent of the most connected nodes from a network,
0 < p < 1. Let C(p) denote the connection ratio, the fraction
of how many remained nodes still connected after removing
the top p percent of the most connected nodes from the
network. Let L(p) denote the remained link ratio, the fraction
of links remained after removal the top p percent of the most
connected nodes from the network.

{ Clp) =c/(IVI=1[Vip)
Lp) = (B[ - e)/|E|

where ¢, is the number of removed edges and ¢, is the number
of nodes in the largest cluster of the remaining network.

We generate 100 networks for each type of the three
topologies — power law, small world and random graph
topologies. Each network has the same average degree 8 and
100,000 nodes. For every selective percolation value p we
derive C'(p) and L(p) by averaging those 100 numbers derived
by equation (3) from each network instance. The results are
shown in Fig. 7. All three topologies have their own selective
percolation thresholds: if the fraction of selectively immunized
users exceeds the threshold, an email network will be broken
into separated fragments and no email worm outbreak will
occur. The selective percolation threshold of a power law
topology is much smaller than the threshold for the other two
topologies, which is consistent with the experiment shown in
Fig. 6. When we immunize the top 5% of most connected

O<p<l1 3)
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nodes in a power law network, Fig. 7 shows that although
97.5% of remained nodes in the network are still connected,
55.5% of the network edges have been removed. Thus an email
worm has fewer and longer paths to reach and infect nodes in
the remaining network.

VII. CONCLUSIONS

We present an email worm model that accounts for the
behaviors of email users considering email checking frequency
and the probability of opening an email attachment. Email
worms spread over a logical network defined by email address
relationship. Our observations suggest that the node degrees
in an email network are heavy-tailed distributed. We compare
email worm propagation on three topologies: power law, small
world and random graph topologies; and then study how the
topology affects immunization defense. The impact of the
power law topology on the spread of email worms is mixed:
email worms spread more quickly on a power law topology
than on a small world topology or a random graph topology,
but immunization defense is more effective on a power law
topology than on the other two.

There are still many works to do on email worm model-
ing and defense. First, in this paper we have mainly used
simulation to study email worm propagation. The next step
is to derive mathematical model like the models for scan-
based worms [5][6][7]. Second, we have only considered static
immunization defense in this paper — we assume that before
the break out of an email worm, part of users and computers
have already been immunized of the worm and no more users
or computers will become immunized during the propagation
of an email worm. However, the more realistic scenario is
that email users and computers gradually become immunized
as an email worm spreads out, which means we need to further
study the “dynamic immunization”. Third, although we have
considered the impact of email lists on the topology of Internet
email network, instead of an undirected graph used in this
paper, a directed graph is preferred in order to more accurately
capture some one-way email address relationship (i.e., user A
has the email address of user B, but user B does not have the
address of user A). Finally, the privacy issue of email makes

it hard for us to build up a global cooperation and defense
system in the near future. Therefore, for email worm defense,
in the short term we plan to study how to protect email users
in a local network, such as an enterprise network, from email
worm attacks.
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