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Abstract

Time zones play an important and unexplored role in
malware epidemics. To understand how time and loca-
tion affect malware spread dynamics, we studied botnets,
or large coordinated collections of victim machines (zom-
bies) controlled by attackers. Over a six month period
we observed dozens of botnets representing millions of vic-
tims. We noted diurnal properties in botnet activity, which
we suspect occurs because victims turn their computers off
at night. Through binary analysis, we also confirmed that
some botnets demonstrated a bias in infecting regional pop-
ulations.

Clearly, computers that are offline are not infectious, and
any regional bias in infections will affect the overall growth
of the botnet. We therefore created a diurnal propagation
model. The model uses diurnal shaping functions to capture
regional variations in online vulnerable populations.

The diurnal model also lets one compare propagation
rates for different botnets, and prioritize response. Because
of variations in release times and diurnal shaping functions
particular to an infection, botnets released later in time may
actually surpass other botnets that have an advanced start.
Since response times for malware outbreaks is now mea-
sured in hours, being able to predict short-term propagation
dynamics lets us allocate resources more intelligently. We
used empirical data from botnets to evaluate the analytical
model.

1 Introduction

Epidemiological models of malware propagation are
maturing. Earlier work used simple susceptible-infected
(SI) models to measure the total infected population over

time [ZGT02]. Follow-up work significantly expanded
this analysis to include patching behavior (resistance)
in susceptible-infected-recovered (SIR) models [KRD04].
Despite these many improvements, much of our under-
standing of computer worm epidemiology still relies on
models created by the public health community in the
1920s [DG99].

Continued improvements in worm models will come
from two areas: an improved understanding of the prob-
lem domain, and improved ability to respond, which makes
new factors relevant to a model. Improvements belong-
ing to the first category can be found in more recent anal-
ysis such as [SM04], which traced significant worm out-
breaks, and [ZTGC05,WPSC03,WSP04], which examined
a specific type of routed worm, and [ZTG04], which ex-
amines specific types of propagation (e.g., e-mail). Model
enhancements belonging to the second category are far
fewer. So far, quarantine-based analysis has been the pri-
mary response-oriented improvement to malware propaga-
tion models [ZGT03, PBS+04, MSVS03].

Our work belongs to this second category, and builds on
recent improvements in response technologies. Over the
previous years, efforts at creating Internet-wide monitor-
ing networks have yielded some results. Distributed sens-
ing projects [Ull05, YBJ04, Par04] can take some credit for
helping reduce the response time for worms to hours in-
stead of days. Anti-virus companies similarly respond to
outbreaks often within hours [Mar04].

This improved response makes time a more relevant fac-
tor for worm models. In Section 3 we note how time zones
play a critical role in malware propagation. Now that re-
sponse times take only hours [Mar04], and are often local-
ized, models of malware spreading dynamics must similarly
improve.

In addition to time, we also note that location plays a



critical role in malware spreading. Some malware tends
to focus on particular geographic regions, corresponding to
different market segments for vulnerable software (e.g., a
language edition of an operating system). We combine both
of these factors in models that consider the importance of
time zones (literally, time and zone location) in propaga-
tion.

Our research looks at propagation dynamics in botnets.
We studied dozens of botnets, comprised of millions of indi-
vidual victims over a six month period. Our study of botnets
reveals an intriguing diurnal pattern to botnet activity. Our
model explains this behavior, and has two principal bene-
fits: (a) the ability to predict future botnet propagation char-
acteristics, for those botnets using similar vulnerabilities,
and (b) the ability to priority rank malware based on time-
of-release and regional focus, so that resources are devoted
to faster spreading botnets.

Section 2 provides a background discussion of botnets,
and details our data collection efforts. In Section 3, we pro-
vide a model of botnet propagation. After noting related
work in Section 4, the conclusion in Section 5 suggests fur-
ther areas of study.

2 Background

Using automated scanners and tools, attackers have
carved out a large portion of the Internet as continuously
infected networks. The victims are bots or zombies in large
networks, or botnets, controlled by hackers. There are tens
(if not hundreds) of millions of such victims on the Inter-
net [Dag05]. Some estimates hold that over 170,000 new
victims are compromised each day [Cip05]. Indeed it is
hardly possible for home users to purchase a new com-
puter and successfully update before becoming attacked.
The “vulnerability window”, or the time before a random
infection strikes a new computer, is often less than 20
minutes. As a result, others have observed that a “bot-
net is comparable to compulsory military service for win-
dows boxes” [The05a]. For a general discussion of botnets,
see [CJ05, SS03, The05a].

For purposes of modeling, we can think of botnets as het-
erogeneous collections of infections. They are composed
of the victims reaped from different viruses, worms and
trojans. Thus, botnets are correctly referred to as either
viruses, worms or trojans, depending on the context. The
original infections compel the victims to run bot programs,
which allow for remote administration.

Victims are usually spread over diverse parts of the
world, but can be concentrated in particular regions, de-
pending on how the underlying infections propagate. For
example, some attacks target a particular language edition
of an operating system, or use a regional language as part of
a social engineering ploy. Such factors tend to concentrate

the victim population in a particular location. (We speculate
that this may explain why most e-mail virus propagations
use simple English, to maximize its appeal.) These regional
variations in infected populations play an important role in
malware spread dynamics.

2.1 Data Collection

To control or “rally” their botnets, botmasters force their
victims to contact command-and-control (C&C) servers
(e.g., an IRC server, a webpage, or e-mail). Once connected
to the servers, the bots are given instructions, put to work,
or made to download additional programs. If such central-
ized servers are recovered, botmasters can merely update
DNS entries to point to a new central server. This practice
is known as “herding” a botnet to a new location. While
such centralized control may not be the favored topology for
much longer [Dag05, CJ05], we can manipulate this com-
mon feature of botnets to perform simple data collection.

To gather botnets for study, we identified botnets through
various traditional means (e.g., honeypots), and then manip-
ulated the DNS service for the C&C server, so that all traffic
was sent to our sinkhole for study. The sinkholes were used
to run tarpits [Har02,Lis01], honeypots [Spi03,Pro05], and
light-weight responders, e.g., [Pro03,Kre03]. For more dis-
cussion of network response options see [YBP05].

Our sinkhole redirection was accomplished by several
steps. First, using captured malware (e.g., from a honeypot,
spam filter, honeyd, and other commonly available sources),
we identify the command and control server used by the
botnet. This can be done by unpacking the binary (e.g., with
the help of tools such as IDA Pro, or PEiD [JQsx05] and a
hex editor) and scanning the binary for DNS resolution op-
erations, (e.g., gethostbyname(3)). This is also done
less precisely by observing the malware’s rallying behav-
ior in an emulator (e.g., a virtual honeypot). The latter is
less reliable because malware may selectively resolve one
of many encoded C&C domains, or behave differently in
the emulator [Hol05]. Hand-driven binary analysis, how-
ever, can usually reveal the malware’s rallying behavior.

Second, we then identify the DNS Start of Authority
(SOA) for the command and control box using well-known
techniques [RIP05]. We then contact the registrar for the
domain and the DNS authority, and instruct them to ei-
ther “park” the DNS (so that, for example, an RFC 1918
non-routable address is returned), or to supply an A-Rec
for a sinkhole, or a similar suitable Record Response (RR).
We followed a strict one-ip-per-botnet rule, to facilitate the
study of single botnets. For most bots, we also used layer-7
sinkholes (i.e., honeyd, or similar scripts) instead of layer-4
sinkholes (e.g., routing blackholes) to prevent random scans
from being confused with actual botnet participation.

Conceptually, one might think of this capturing tech-



nique as a form of DNS self-poisoning, except that alter-
ing the DNS entry for the bot domain is done legitimately,
in accordance with the DNS operator’s policies, and with
the permission and cooperation of all relevant authorities.
In our study, we worked with several DNS operators who
agreed to redirect bot victims to our sinkhole. The oper-
ators would enter CNAME records in their DNS servers to
point victims to our sinkhole.

Since all the botnets being studied used DNS to locate
their C&C server, redirection captured most of the bot-
net members. Through binary analysis, we confirmed that
the bots did not use hard-coded IP addresses. We also re-
stricted our study to non-public servers, so no legitimate
traffic polluted our data capture. Our sinkholes completed
3-way TCP handshakes with victims, so that random Inter-
net SYN scans did not skew our population counts. Fur-
ther, by setting a zero TCP window, our sinkhole prevented
most bots from disconnecting (e.g., through an application-
layer idle timeout), and then reconnecting after changing
dynamic addresses. This reduced the number of victims that
were double-counted due to DHCP churn.

These techniques yield what we believe is a fairly ac-
curate population count for an infection. Nonetheless, our
data probably did have casual, non-malicious connection at-
tempts, and certainly had some amount of DHCP churn.

Thus, while others models use trace files from large
“internet telescope” structures to infer which machines
scanning the internet share a common infection [Moo02b,
YBP05], we believe our simple data collection technique
yields accurate trace files for each infection. More impor-
tantly, this technique can potentially distinguish two botnets
that use the same infection, while scan-based sensors may
associate the traffic together based on port numbers. Sig-
nificantly, we also learn which victims are associated with
which botnet, based on the domain they attempt to resolve.

Thus, although our data collection technique focuses on
botnets using centralized DNS (currently, the most common
rallying technique used by botnets), we do not have to cor-
relate scans from diverse sources to infer the structure of
the botnet. We were able to direct some 50 botnets to the
sinkhole over a six month period. Our sinkhole captured
botnets ranging from just a few hundred victims to tens of
thousands of victims. One botnet featured over 350,000 vic-
tims, a record [CJ05].

One might wonder whether this redirection technique
yields data about worms instead of botnets. After all, many
of the botnets are created by worms. The question is: How
is redirection different from traditional worm measurement
techniques? We believe redirection measures botnets (as
opposed to just worms) because the traffic yield is entirely
related to the command-and-control of a malicious network.
Worm measurement techniques, by contrast, tend to col-
lect scans by worms (i.e., propagation attempts), and do

not usually capture the coordinating messages between bots
and botmasters (i.e., DNS resolution of the command-and-
control domain). Since DNS redirection gives us the oppor-
tunity to witness only the command-and-control traffic, and
not the propagation attempts, our technique measures prop-
erties of botnets, regardless of how the underlying infection
spreads. Thus, the model we propose is for botnets, albeit
botnets created by worms.

The data collection technique is not the focus of the pa-
per, and deserves more careful separate study. We welcome
input from the research community on what other factors
(besides our use of command-and-control messages) permit
the measurement of botnets. Additionally, we acknowledge
that there are certain types of botnets that would evade such
measurement efforts. We merely use redirection to quickly
perform population counts on botnets. In section 3 we dis-
cuss particular botnets in detail used to derive our diurnal
propagation model.

3 Model of Botnet Growth

Our goal is to use our observations of previous botnets
to predict the behavior of future botnets. Botnets are so
widespread that we need a technique to comparatively rank
them, and help prioritize responses. Existing models let us
predict the total botnet population over lengthy periods of
time (e.g., over days). But since most viruses used to spread
infections are short lived, we need a model that can predict
short-term variations in population growth.

Further, existing models treat all vulnerable populations
as the same. Our observations of botnets, however, show
that they use a heterogenous mix of different infections ex-
ploiting different sets of vulnerabilities, often in distinct net-
works, with variable behavior across time zones. We there-
fore need a model that can express differences in susceptible
populations, and gauge how this affects propagation speed.

There are a variety of reasons why existing models have
not examined factors such as time zones. First, converting
a network address into a time zone (or geographic region)
is difficult, as noted in [Mic05], and there are few available
resources, e.g., [Coo03]. Second, since the earlier models
were proposed, the state of the art for response and quaran-
tine has improved. Most antivirus companies can issue sig-
nature updates in under 12 hours (or less), so understanding
the short-term growth of a worm is more relevant.

For our model, we make another observation about bot-
net behavior. We were first struck by the strongly diurnal
nature of the botnets trapped in the sinkhole. Figure 1(a)
shows a typical plot of SYN rates over time, broken down
by geographic regions, for a large 350K member botnet.
This pattern repeated itself for both email-spreading worms
and scanning worms observed in the sinkhole. A logical
explanation is that many users turn their computers off at



night, creating a sort of natural quarantine period, and vary-
ing the number of victims available in a geographical re-
gion.

Such significant changes in populations over time surely
affects propagation rates. To model the strongly diurnal be-
havior of botnets observed in Figure 1(a), we analyze bots
grouped into time zones. Consider a very simplified model
represented in Figure 1(b), where one host is shown in a col-
umn of time zones, TZ. In the first hour, the infected host
in TZi infects TZi−1 and TZi+1; however, since TZi−1

is experiencing a low diurnal phase at Hour2 (e.g., night
time, represented by diagonalized shaded boxes), the mal-
ware does not spread further until several hours later (in-
dicated by a dashed line). By contrast, the infection sent
to TZi+1 spreads immediately, only later entering a diurnal
phase.

This conceptual model exaggerates a key property of the
diurnal model: different propagation rates, depending on
time zone and time of day. Time Zones not only express rel-
ative time, but also geography. If there are variable numbers
of infected hosts in each region, then the “natural quaran-
tine” effect created by a rolling diurnal low phase can have
a significant impact on malware populations and growth.

Below, we describe a model to express the variable num-
ber of infected hosts, time zones, and regions of the Inter-
net that we observed in the empirical data. We then test
this model against other observed botnets. The model in
turn lets us estimate short-term population projections for
a given worm, based on its regional focus, and the time of
day. The model also tells us when bots spread fastest, and
allows us to compare the short-term “virulence” of two dif-
ferent bots. This in turn can be used to improve surveillance
and prioritize response.

3.1 Time Zone-Based Propagation Modeling

We model the computers in each time zone as a “group”.
The computers in each time zone have the same diurnal dy-
namics, no matter whether they are infected or still vulner-
able. In our model, the diurnal property of computers is
determined by computer user behavior, not by the infection
status of computers. If a user changes his diurnal behavior
because he discovers his computer is infected, then we as-
sume the computer will quickly be patched or removed by
the user.

The number of infected hosts in a region varies over
time. So we define α(t) as the “diurnal shaping function”,
or the fraction of computers (that have the vulnerability be-
ing exploited by the botnet under consideration) in a time
zone that is still on-line at time t. Therefore, α(t) is a pe-
riodical function with the period of 24 hours. Usually, α(t)
reaches its peak level at daytime and its lowest level at night
when many users go to sleep and shutdown their computers.

Not all the computers are shut off at night, of course. So in
modeling and experiments, we can derive α(t) for a given
time zone based on monitored malicious traffic.

In the following, we first derive the worm propagation
diurnal model for a single time-zone by assuming comput-
ers in the time zone form a closed networking system. We
then derive the diurnal model for the entire Internet by con-
sidering multiple time zones.

3.2 Diurnal Model for a Single Time Zone

First, we consider a closed network within a single time
zone. Thus, all computers in the network have the same di-
urnal dynamics. Define I(t) as the number of infected hosts
at time t; S(t) as the number of vulnerable hosts at time t;
N(t) as the number of hosts that are originally vulnerable
to the worm under consideration.

We define the population N(t) as a variable since such
a model covers the case where vulnerable computers con-
tinuously go online as a worm spreads out. For example,
this occurs when a worm propagates over multiple days. To
consider the online/offline status of computers, we define
I ′(t) = α(t)I(t) as the number of online infected hosts;
S′(t) = α(t)S(t) as the number of online vulnerable hosts;
N ′(t) = α(t)N(t) as the number of online hosts among
N(t).

To capture the situation where infected hosts are re-
moved, we extend the basic Kermack-McKendrick epi-
demic model [DG99]. We assume that some infected hosts
will be removed from the worm’s circulation due to (1)
computer crash; (2) patching or disconnecting when users
discover the infection. Define R(t) as the number of re-
moved infected hosts at time t. Just as in a Kermack-
McKendrick model, we define dR(t)

dt
= γI ′(t), (where γ

is the removal parameter) because in most cases only online
infected computers can be removed.

Then the worm propagation dynamics are:

dI(t)

dt
= βI ′(t)S′(t) −

dR(t)

dt
(1)

where S(t) = N(t)−I(t)−R(t). β is the pair-wise rate
of infection in epidemiology study [DG99]. For Internet
worm modeling, β = η/Ω [ZTG05] where η is the worm’s
scanning rate and Ω is the size of the IP space scanned by
the worm.

From Eqn. (1), we derive the worm propagation diurnal
model:

dI(t)

dt
= βα2(t)I(t)[N(t)− I(t)−R(t)]−γα(t)I(t) (2)

This simple diurnal model can be used to model the prop-
agation of regional viruses or worms. For example, it is
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(b) Conceptual Model

Figure 1. (a) Botnet activity by geographic region. (b) General conceptual model of diurnal botnet
propagation.

well known that viruses can focus on specific geographic
regions [Tre05], e.g., because of the language used in the
e-mail propagation system. Similarly, worms can use hard-
coded exploits particular to a language-specific version of
an OS (e.g., a worm that only successfully attacks Windows
XP Home Edition Polish.) For these regional worms, the
infection outside of a single zone is negligible and the infec-
tion within the zone can be accurately modeled by Eqn. (2).

If we do not consider diurnal effect, i.e., α(t) ≡ 1 at any
time, then the diurnal model Eqn. (2) is simplified as:

dI(t)

dt
= βI(t)[N(t) − I(t) − R(t)] − γI(t) (3)

This is exactly the traditional Susceptible-Infectious-
Removal (SIR) model [DG99].

3.3 Diurnal Model for Multiple Time Zones

Worms are often not limited to a geographic region, how-
ever. Some malware contain enormous lookup tables of
buffer-overflow offsets for each language edition of Win-
dows [The05b].

Accordingly, we model the worm propagation in the en-
tire Internet across different time zones. Since computers
in one time zone could exhibit different diurnal dynamics
from the ones in another time zone, we treat computers in
each zone as a “group”. The Internet can then be modeled as
24 interactive computer groups for ≈ 24 time zones.1 Since

1There are more than 24 time zones, but we simplify things for the sake

many of the time zones have negligible numbers of comput-
ers (such as the zones spanning parts of the Pacific Ocean),
we consider worm propagation in K time zones where K is
smaller than 24.

Assume Ni(t), Si(t), Ii(t), Ri(t) as the number of hosts
in the time zone i (i = 1, 2, · · · , K) that correspond to N(t),
S(t), I(t), R(t) in the previous model Eqn. (2); αi(t) is
the diurnal shaping function for the time zone i; βji is the
pairwise rate of infection from time zone j to time zone
i; γi is the removal rate of time zone i. Considering the
worm infection across different time zones, we can derive
the worm propagation for time zone i:

dIi(t)

dt
=

K∑

j=1

βjiI
′

j(t)S
′

i(t) −
dRi(t)

dt
(4)

which yields:

dIi(t)
dt

= αi(t)[Ni(t) − Ii(t) − Ri(t)]

·
∑K

j=1 βjiαj(t)Ij(t)

−γiαi(t)Ii(t)

(5)

For a uniform-scan worm, since it evenly spreads out its
scanning traffic to the IP space, βji = η/Ω, ∀i, j ∈ K. For
worms that do not uniformly scan the IP space, the authors
in [ZTG05] demonstrated that βji = ηji/Ωi where ηji is
the number of scans sent to group i from an infected host in
group j in each time unit; and Ωi is the size of the IP space
in group i.

of discussion.



When we discover a new worm propagating in the In-
ternet, we can use the diurnal model Eqn. (5) by inferring
the parameter βji based on monitored honeypot behavior
of scanning traffic. As noted above, many honeypot sys-
tems can observe all outgoing scans created by a trapped
worm [Pro03]. We therefore infer the worm’s scanning tar-
get address distribution based on reports from multiple hon-
eypots. Then we can derive ηji based on the worm’s scan-
ning distribution and rate.

3.4 Model Limitations

There are of course several limitations to our model.
First, our diurnal model is not well suited to model worms
propagating via email. Unlike scanning worms where ma-
licious codes directly reach victim computers, malicious
email are saved in email servers before users retrieve them
onto their own computers. When a computer is shut down
and its user goes to sleep at night, the malicious email tar-
geting the user is not lost as in the case of scanning worms;
the infection effect of these malicious email will show up
once the user checks email later. Therefore, the propaga-
tion dynamics I(t) at time t will be not only determined by
current infection as shown in Eqn. (1), but also determined
by previous infection dynamics.

Second, for non-uniform scanning worms, as explained
after Eqn. (5), we need to know the worm scan rate and
scanning space size in each group (or time-zone) in order to
use the multiple time-zone diurnal model Eqn. (5). For this
reason, we need to have a sound worm scanning monitor-
ing system in order to use the diurnal model accurately for
modeling of non-uniform scanning worms.

3.5 Experiments

We wish to validate our model using empirical data. Fur-
ther, we wish to explore whether the model can analytically
distinguish botnets, based on their short-term propagation
potential. We selected a large (350K member) botnet from
our collection of observed botnets, since it had the most di-
verse geographical dispersion of victims. The binary for
the botnet was obtained from AV company honeypots, and
analysis confirmed that the malware used random scanning
for propagation, and a single domain for rallying victims.

Our experiment simplifies the number of time zones to
a manageable number. Usually, computers in neighboring
time zones have the similar diurnal property — this phe-
nomena has been confirmed by our monitored botnet activ-
ities. For example, Figure 1(a) shows European countries
with very similar diurnal dynamics. Therefore, it is conve-
nient and accurate to model the Internet as several groups
where each group contains several neighboring time zones
that have the similar diurnal dynamics.

In the following experiments, we consider three groups
of computers because the infected population was mostly
distributed in these three groups: North America, Europe,
and Asia. The North American group is composed of US,
Canada, and Mexico; the European group is composed of
European countries; and the Asian group is composed of
China, South Korea, Japan and adjacent areas (e.g., Aus-
tralia). We note that antivirus companies similarly organize
Internet monitoring into major groups: Asia, Europe, North
America, and so on [Tre05, Ull05].

Figure 2 shows the number of SYN connections sent to
the sinkhole per minute by the botnets in each group. The
time shown in X-axis is the 00:00UTC time of the labeled
date. Since each bot sends out a similar number of SYN
connection requests to its botmaster per minute, the number
of infected hosts in each group is proportional to the number
of SYNs sent from each group. Therefore, the curves in
Figure 2 represent the number of online infected computers
as time goes on.

As shown in this figure, for the botnet we are studying,
the Asian group has about eight times more infected com-
puters than the North American group has (although this is
not true for other botnets). In addition, the number of on-
line infected hosts of the Asian group reaches its peak level
when this number of the North American group reaches its
lowest level since the time difference between these two
groups is around 12 hours.

In the following, we study the propagation of a worm
based on the diurnal model, Eqn.(5), and the above three
groups. For simplicity, we assume the worm uniformly
scans the Internet, thus βji = η/Ω, ∀i, j ∈ K. We also
assume that all computers in these groups have the same re-
moval rate γ. Since the number of infected hosts is propor-
tional to the number of SYN connections per minute, we
choose populations of N1 = 15, 000 for the North Amer-
ican group, N2 = 45, 000 for the European group, and
N3 = 110, 000 for the Asian group. Then we deploy Mat-
lab Simulink [Mat05] to derive the numerical solutions for
the diurnal model Eqn. (5).

We wrote a program to automatically derive the dynam-
ics α(t) for each group (and also each country). The basic
steps for deriving α(t) include:

1. First, observe all botnet traffic, and break down victim
membership by geographic region.

2. Second, process the data from a region to derive α(t)
through the following steps:

• Split a monitored dataset into segments for each
day. Suppose a monitored dataset spans over n
days. Split the dataset into n segments where
each segment corresponding to one day contain-
ing the data from 00:00:00UTC to 24:00:00UTC
in that day.
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Figure 2. Number of SYN connections sent to the sinkhole per minute from each group by the botnet

• Normalize the data in each segment so that the
maximum value of the data in each segment is
one.

• Average the data in all segments to derive a pri-
mary α(t);

• In order to remove the monitoring noise, find a
polynomial to represent α(t) by minimizing the
cumulative square error between the polynomial
and the primary α(t) derived in the previous step;

• Normalize the result so that the maximum value
of α(t) is one.

The diurnal shaping function α(t) is a periodical func-
tion, i.e., α(0) = α(T ) where T = 24 hours. Af-
ter the first one or two days, many worms’ infected
population will drop continuously due to patching and
cleaning of infected computers. For this reason, the
α(t) derived through the above procedures usually has
α(0) > α(24). If this is the case, we need another step
to adjust the derived α(t) so that α(0) = α(24). Here
we use a heuristic algorithm such that the shape of the
α(t) is not distorted much.

3. Third, place the α(t) table and its corresponding vul-
nerability in a database, keyed by vulnerability.

We followed these steps to derive α(t) for North Amer-
ica, Europe and Asia, as shown in Figure 3(a). Studying the
diurnal dynamics of North American group, the time with
the fewest computers online is around 11:00 UTC, which
is 6:00am in US eastern coast and 3:00am in US western
coast. Figure 3(b) shows the cumulative online vulnerable
population across all three groups before the worm begins
to spread.

Figure 3(a) clearly illustrates the diurnal properties of
botnets visually suggested by the SYN activity plot in Fig-
ure 1(a). The distinct diurnal behavior of all three time zone
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Figure 4. Comparison of models with botnet
traffic in the European group

groups also shows that combining multiple hour-sized time
zones into groups did not make the diurnal patterns indis-
tinguishable from each other.

Having derived values for α(t), we can test how well the
diurnal model in Eqn. (5) can capture a worm’s propaga-
tion behavior in the Internet. Figure 4 shows the number
of online bot computers in the European group observed by
our sinkhole compared with the analytical results from the
model Eqn. (5), and the existing SIR model Eqn. (3). At
some initial time labeled as time 0 in the figure, the bot be-
gan to spread. After a while, the bot was discovered and
entered our sinkhole, and our data collection begins. Fig-
ure 4 shows that, compared with the SIR model Eqn. (3),
the diurnal model Eqn. (5) is much better in capturing the
diurnal property of a worm’s propagation and the active in-
fective populations in the Internet.
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Figure 3. Worm propagation dynamics and population growth

3.6 Practical Uses of Diurnal Models

The diurnal model Eqn. (5) tells us when releasing a
worm will cause the most severe infection to a region or the
entire Internet. For worms that focus on particular regions,
the model also lets us predict future propagation, based on
time of release. The role that time zones play on propaga-
tion is intuitively obvious, but has not been expressed in any
previous model.

3.6.1 Forecasting with Pattern Tables

The derived αi(t) is not limited to the botnet under ex-
amination, but instead reflects the type of vulnerability ex-
ploited by the botnet. That is, different botnets that both
exploit the same vulnerability in Windows 2000 SP2 will
likely have similar Ni(t) (and therefore α(t)), assuming
there are no other region-specific limiting factors. That is,
both worms will target the same Si(t), if there are no differ-
ences (e.g., language differences such as Korean versus En-
glish language email viruses) that would clearly favor one
time zone’s population over another.

Repeated sampling of botnets using DNS redirection
noted in Section 2 (and other techniques) will conceivably
yield an understanding of how vulnerabilities are distributed
in different zones. Since αi(t) corresponds to the type of
vulnerability being exploited, repeatedly seeing malware
target the same OS flaw may assist forecasting. Researchers
can infer the growth of future outbreaks based on previ-
ous attempts to exploit the same vulnerability. Thus, when
a new bot appears targeting a familiar vulnerability, re-
searchers can use timely previous examples to estimate how
far and fast the bot will spread.

Accordingly, we can build a table of the derived shaping

functions, based on observed botnet data, and key the table
based on other heuristics about the worm (e.g., the exploit
used, the OS/patch level it affects, country of origin). When
a new worm is discovered, these heuristics are often the first
few pieces of information learned from a honeypot. One
can then consult the table for any prior αi(t) derivations,
and use them to forecast the short-term population growth
of the bot, relative to its favored zone and time of release.

To evaluate the forecasting capability of our diurnal
model, we collected monitored traces of three botnets that
exploited the same vulnerability [Mic04]. The agents for
these botnets were released in succession, evidently as en-
hancements to prior versions. From our discussion in Sec-
tion 3, these botnets should have similar diurnal shaping
functions, αi(t), for the same time zone or group of zones.
We therefore used the diurnal model derived from one bot-
net to predict the propagation dynamics of other botnets.

Fig. 5(a) shows the propagation dynamics of these three
botnets in the European group. Each data point represents
the number of SYN connection requests observed by our
sinkhole within every half an hour. Because these botnets
appeared in different time periods, their infected population
were different from each other since the vulnerable popula-
tion in the Internet varies over time. We therefore show the
results by normalizing their SYN connections. Figure 5(a)
clearly shows that botnets exploiting the same vulnerabil-
ity have similar diurnal dynamics. The results of the North
American and Asian groups, shown in Figs. 6(a), 7(a), were
also similar.

To evaluate the predictive capability of our diurnal
model, we derive the parameters for the diurnal model based
on curve fitting of data from Botnet 1 for the European
group. Then we use the derived diurnal model to predict the
dynamics of the other two botnets for the same European
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group. The results are shown in Fig. 5(b). Again, the ab-
solute values of the three curves are normalized to be com-
parable with each other. This figure shows that we can use
the diurnal model to forecast the propagation of botnets us-
ing a similar vulnerability. Similar predictions for the North
American and Asian groups appear in Figs. 6(b), 7(b). The
predictive feature of the diurnal model is not as good as in
the European group. Fig. 6(b) shows that the online in-
fected hosts in the North American group is not as smooth
as in the European group, and the Botnet 2 infections in-
creased slightly after the first two days instead of dropping.
For the Asian group, Fig. 7(b) clearly shows that the first
two-days have a different pattern than the third day. We
speculate that the North American and Asian groups have
more noise because countries in these groups tend to span
numerous time zones with large numbers of infected indi-
viduals, and China has one time zone for the entire country.
By comparison, the European countries tend to occupy a
single zone, and most victims are located in the western-
most time zones.

As shown in Fig. 5(b), the diurnal model can predict the
dynamics of botnets, but not their infected population. (Re-
call that the model derives α(t) values, which describe the
relative fraction of users online.) There are some other ways
to predict vulnerable or infected populations for an Inter-
net virus or worm. For example, Zou et al. [ZGGT03] pre-
sented a method to predict the vulnerable population based
on a worm’s initial propagation speed and its scan rate η.

We note that the derived diurnal dynamics of a botnet
have an unknown shelf life. If a model is derived from a
botnet, its predictive power decays over time, since users
migrate to new platforms, clean machines, or replace equip-
ment. The botnets studied in the example above all took
place within the same 3-week period. Since malware is of-
ten released in rapid succession (e.g., version.A, version.B,
etc. of the same exploit), long-term changes in victim pop-
ulations might not affect short-term forecasting. Our data
did not permit a longitudinal study of the predictive power
of older botnets. Future work will identify factors that af-
fect the validity of derived α(t) values over an extended
time period.

Another limiting factor in our model comes from the in-
troduction of additional propagation mechanisms. Many
instances of malware, e.g., phatbot [LUR04], spread us-
ing many different infection vectors, such as e-mail, ran-
dom scanning and local exploits. Our model does not ad-
dress malware that combines additional types of propaga-
tion techniques in subsequent releases. Future work will
explore techniques to identify dominant propagation mech-
anisms used in malware, and hybrid models derived from
different botnets with distinct α(t) values.

3.6.2 Release Times

The short-term spread of a worm will vary, depending on
the time of release and the distribution of the affected pop-
ulation across different time zones. Knowing the optimal
release time for a worm will help us improve surveillance
and response. To identify the optimal release time, we per-
form the following steps:

• Obtain the scan rate η and scanning distribution, and
vulnerable population for each zone;

• Obtain the α(t) values for each zone; and

• Using the diurnal model Eqn. (5) to calculate (numer-
ical solution) the infected population six hours after
release for different release time to derive the optimal
release time.

As an example, we identify an optimal release time in a
scenario where the worm uniformly scans the Internet and
all three diurnal groups have the same number of vulner-
able population, i.e., N1 = N2 = N3. The diurnal dy-
namics of different groups will not matter much for a very
slow spreading worm that needs to spread out with at least
several days. It also does not matter much for a very fast
spreading worm that can finish infecting all online vulner-
able hosts within an hour — its infection range is solely
determined by the population of current online comput-
ers. Therefore, we study the propagation of a middle-speed
worm that can spread out in several hours. For example,
Code Red is one such worm, which finished its infection
in 14 hours [Moo02a]. For this reason, we study a Code
Red-like worm that has the total vulnerable population
N1 + N2 + N3 = 360, 000, and η = 358/min [ZGGT03].
For the purpose of studying worm release time, we assume
γ = 0.

Figure 8(a) shows the propagation of the worm when it is
released at 00:00, 06:00 and 12:00 UTC time, respectively.
It clearly shows the impact of the diurnal phenomenon on
a worm’s propagation speed. Refer to the diurnal dynamics
shown in Figure 3, the worm released at 12:00 UTC propa-
gates faster than the other worms at the initial stage, because
it catches the largest portion of the vulnerable population
online in the following several hours. Note that these results
are particular to the botnet under consideration, and not all
bots. Other botnets will of course have different growth pat-
terns, based on their unique α(t) values.

Figure 8(b) shows the same phenomenon from a differ-
ent perspective. Here we consider the maximum infected
population six hours after a worm is released. (We se-
lect six hours as an estimated time required for antivirus or
worm monitoring efforts to generate a signature for a new
worm [Mar04].) The worm propagates most widely within
six hours when it is released around 12:00 UTC, which
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Figure 8. Worm propagation when released at different time

is 9:00pm in Tokyo and South Korea, 8:00pm in China,
7:00am in US Eastern. When the botnet starts to grow, it
captures some of the evening users in Asia, the mid-day
population in Europe, and the early morning users in North
America. Six hours later, the Asian population has de-
creased, but has been substantially replaced by the evening
European and mid-day North American users. Thus, by re-
leasing at 12:00 UTC, the worm captures significant por-
tions of all three population groups within six hours.

If we compare the propagation speed when a worm is
released at 00:00 UTC and 06:00 UTC, we can see that the
worm released at 00:00 UTC propagates faster in the first
several hours (as shown in Figure 8(a)). However, it will
slow down its infection speed and infects slower than the
other one after 8 hours.

This interesting observation has important implications
for network administrators. Suppose two worms break out,
with the similar infection ability and diurnal properties, and
are released at 00:00 and 06:00 UTC, respectively. We no-
tice the spread of the 00:00 worm seems more rapid at first
than the other one. (We might observe this by witnessing
lots of sensor alerts). Just using η or an alert rate, we might
conclude that somehow this worm is spreading rapidly, and
is more urgent. So we might want to prioritize response
over the 06:00 worm. But, if we know both worms have a
similar diurnal property, we know that the 06:00 worm is
a higher priority, even though it is spreading at a slightly
slower rate in the first few hours.

Being able to distinguish worms based on their optimal
release times is useful to security researchers. For example,
it can better determine the defense priority for two viruses
or worms released in sequence. As noted, malware of-
ten goes through generational releases, e.g., worm.A and

worm.B, where the malware author improves the code or
adds features in each new release. The diurnal model lets
us critically consider the significance of code changes that
affect S(t) (the susceptible population). For example, if
worm.A locally affects Asia, and worm.B then adds a new
feature that also affects European users, there clearly is an
increase in its overall S(t), and worm.B might become a
higher priority. But when worm.B comes out, relative to
when worm.A started, plays an important role. For exam-
ple, if the European users are in a diurnal low phase, then
the new features in worm.B do not pose an immediate near-
term threat. In such a case, worm.A could still pose the
greater threat, since it has already spread for several hours.
On the other hand, if worm.B is released at a time when the
European countries are in an upward diurnal phase, then
worm.B could potentially overtake worm.A with the addi-
tion of the new victims. The diurnal model exposes this
non-obvious result.

Our model lets researchers calculate optimal release
times for worms and therefore rank them based on predicted
short-term growth rates. We note worm writers cannot
similarly use the model to maximize the short-term spread
of their malware. Being able to calculate the appropriate
time of day to maximize an infection requires the botmas-
ter to know the diurnal shaping function for each time zone.
Worm writers might know η, and other important variables
in Eqn. (5). But α(t) is necessary to find an optimal release
time, and is hard to know. In effect, worm writers would
have to create their own distributed monitoring projects like
[Ull05, YBJ04, Par04] to accurately derive diurnal shaping
functions for selected regions. In this respect, administra-
tors potentially have one advantage over botmasters. Ap-
propriate detection and response technologies can leverage



this knowledge.

4 Related Work

Botnets are a fairly new topic for researchers, but have
been around for almost a decade [CJ05]. Some work fo-
cuses on the symptoms caused by botnets instead of the
networks themselves. In [KKJB05], the authors designed
sets of Turing tests (puzzles) that users must solve to ac-
cess over-taxed resources. We further distinguish our work
from the extensive literature on DDoS traceback and de-
tection, [MVS01], in that our approach attempts to predict
botnet dynamics before they launch attacks.

A few researchers have noted techniques for detecting
bots using basic misuse detection systems [Han04], and
IRC traces [Bru03]. These investigations focus on track-
ing individual bots (e.g., to obtain a binary), while ours fo-
cuses on capturing the network cloud of coordinated attack-
ers. The only other research directly on countering botnets
(as opposed to individual bots) is [FHW05]. The authors in
[FHW05] use honeypots to infiltrate the C&C network of
botnets.

Our modeling work is part of a long line of com-
puter virus propagation studies. In [TAC98], the au-
thors presented models for the spread of viruses and
trojans. Epidemic modeling of viruses was discussed
in [KW91], and later in [MSVS03, WW03]. Mod-
els have also been proposed for a few famous worms,
including CodeRed [ZGT02, Moo02a, Sta01] and Slam-
mer [MPS+03]. In [ZTG04], the authors noted the need
to create new models that capture new transmission capa-
bilities (e.g., email) used by worms.

Our study of diurnal behavior in malware has implica-
tions for research into worm epidemics. In [MVS05],
the authors speculated about the ability of worms to halt
spreading (and thereby become more stealthy) after sens-
ing that the vulnerable population had saturated. The
pronounced diurnal behavior we noted suggests that self-
stopping worms may become mislead about the absence of
victims online, particularly if their spread time is less than
one diurnal phase (i.e., than 24 hours).

A significant early work on botnets is [CJ05], which
notes the centralized control structures used for data col-
lection in Section 2. We agree with [CJ05] centralized bot-
net C&C is not always guaranteed, and more research is
needed. Our model tracks propagation, and is orthogonal to
this view.

Bots are often special purpose worms, and so our work
relies on much of the existing worm literature. The utility
of our model assumes administrators can detect and analyze
worms in a somewhat automated fashion to derive the scan-
ning rate and identify the target vulnerability. We have not
discussed this in detail, because tools like honeyd [Pro03]

and others [YBP05, DQG+04] have convincingly demon-
strated the required detection capability.

Biological models of epidemics have of course noted the
importance of dormancy in propagation [DH00]. This cor-
responds to the diurnal factors in our model, which models
night-time as a form of limited natural quarantine or dor-
mancy in the malware. Similarly, biological models have
noted the importance of spatial dispersion, demography,
and other other categorical factors in propagation [DG99].
To a limited extent, this corresponds to the role played by
zones (geographic location) in our time zone model. Com-
puter models of malware, and our model in particular, are
different from these approaches, since contact is not re-
stricted in a computer network, and transmission may occur
between any peers on the Internet.

5 Conclusion

Botnets will continue to grow and evolve, and the re-
search community needs to keep pace. Time zones play an
important role in botnet growth dynamics, and factors such
as time-of-release are important to short-term spread rates.

The data we observed in our sinkhole revealed the im-
portance of time zones and time of day, and motivated the
creation of a diurnal model. The model was more accurate
than the basic SIR models currently used, and accurately
predicted botnet population growth. Further, knowledge of
the diurnal shaping functions lets one identify release times
that maximize malware. This allows one to compare two
given botnets, and priority rank them based on short-term
propagation potential. Since deriving the diurnal shaping
function (α(t)) for each time zone requires extensive data
collection, botmasters are unlikely to accurately predict op-
timal release times.

5.1 Future Work

Our future work will also extend the diurnal model to
address email spreading viruses. By studying the rate of
propagation and new victim recruitment observed in sink-
hole studies, we hope to derive a more accurate model of
email virus propagation. We will also identify new tech-
niques to sample botnet populations, so that we can further
study botnets that do not use centralize C&C systems.

Our work so far has identified time zone and time of re-
lease as two key factors in short-term virus propagation. We
plan to investigate other possible variables, such as the mix
of operating systems, hot patch levels, and the mix of appli-
cations used on infected systems.
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