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Abstract—In defending against various network attacks, such
as distributed denial-of-service (DDoS) attacks or worm attacks,
a defense system needs to deal with various network conditions
and dynamically changing attacks. Therefore, a good defense
system needs to have a built-in “adaptive defense” functionality
based on cost minimization—adaptively adjusting its configura-
tions according to the network condition and attack severity in
order to minimize the combined cost introduced by false positives
(misidentify normal traffic as attack) and false negatives (misiden-
tify attack traffic as normal) at any time. In this way, the adaptive
defense system can generate fewer false alarms in normal situa-
tions or under light attacks with relaxed defense configurations,
while protecting a network or a server more vigorously under
severe attacks.

In this paper, we present concrete adaptive defense system de-
signs for defending against two major network attacks: SYN flood
DDoS attack and Internet worm infection. The adaptive defense is
a high-level system design that can be built on various underlying
nonadaptive detection and filtering algorithms, which makes it ap-
plicable for a wide range of security defenses.

Index Terms—Adaptive defense, computer security, distributed
denial-of-service (DDoS), Internet worm, SYN flood.

I. INTRODUCTION

CURRENT Internet and computers are constantly under
various attacks: hackers’ intrusion, port scan, distributed

denial-of-service (DDoS), virus and worm infection, e-mail
spam, etc. Many defense methods and systems have been
proposed. These systems typically need to detect the ongoing
attack traffic first, and then block (filter) the attack traffic
before it reaches the victims. The attack detection is of crucial
importance in such defense systems. When using an imperfect
detection system, it can generate “false positives” and “false
negatives.” A “false positive” means a detection system incor-
rectly identifies a normal packet/connection/host as an attack,
whereas a “false negative” means a detection system incorrectly
identifies an attack packet/connection/host as a normal one.

A good detection system generates fewer false positives and
false negatives. However, these two types of detection errors
always conflict with each other when the detection algorithm
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is fixed: when we adjust the detection parameters to decrease
the number of false positives or false negatives, the other one
inevitably increases.

Most research has focused on stationary network operation
with fixed configurations. However, in reality, attack detection
systems have to face rapidly changing network condition and
attack intensity. Therefore, besides finding a specific detection
algorithm, it is equally or more important for us to design an
“intelligent” defense system that can automatically adjust its de-
tection and filtering parameters to achieve as best performance
as it could under various attack situations.

In this paper, we introduce an “adaptive defense principle”
based on “cost minimization”—a defense system adaptively ad-
justs its configurations according to the network condition and
“ attack severity” in order to minimize the combined cost intro-
duced by false positives and false negatives at any time. Such
a defense system, called an “adaptive defense system,” adap-
tively tunes its configurations according to the attack severity
and to the relative cost of erroneous actions. Compared with a
traditional defense system, an adaptive defense system gener-
ates fewer false alarms in normal situations (or under light at-
tacks), while protecting a network or a server more vigorously
under severe attacks.

Denote by the “attack severity” at time , which can be the
fraction of attack traffic, the volume of attack traffic, or other
indexes determined by the types of attacks. Denote by the set
of configuration parameters used in the defense system (either a
single or a vector parameter). A defense system’s false positive
cost and false negative cost at time are functions of and

. Denote the false positive cost as , false negative
cost as . The “adaptive defense principle” means that,
whenever the attack severity changes, the defense system will
choose the up-to-date optimal configurations by minimizing
the combined cost

(1)

The adaptive defense mechanism relies on the fact that we can
get a relatively good estimate of the “attack severity.” There-
fore, it is suitable for defense systems dealing with attacks that
involve a large amount of attack traffic, such as DDoS attack,
or Internet worm infection, etc. It is not suitable for detecting of
a hacker’s intrusion since such an attack may only involve one
connection with several packets.

In this paper, we present concrete adaptive defense systems
for defending against two major network attacks: SYN flood
DDoS attack and Internet worm infection. The adaptive defense
is a high-level system design that can be built on various un-
derlying nonadaptive detection and filtering algorithms, which
makes it applicable for a wide range of security defenses.

0733-8716/$20.00 © 2006 IEEE
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The rest of this paper is organized as follows. Section II
surveys related work. We present the adaptive defense system
design for defending against SYN flood DDoS attack in
Section III, and the system design for defending against In-
ternet worm infection in Section IV. After introducing how to
design the adaptive defense systems for the above two major
network attacks, in Section V we evaluate the performance
of these adaptive defense systems through either simulation
experiments or real attack traces. Finally, we conclude this
paper with Section VI.

II. RELATED WORK

Mirkovic et al. [14] presented a comprehensive taxonomy of
DDoS attack and defense mechanisms. Many DDoS detection
approaches, such as the “IP traceback” in [17] and a series of
following papers, or the “MULTOPS" [2], try to find the iden-
tities of the real attacking sources. However, these approaches
cannot filter incoming attack packets without the help from the
Internet service providers (ISPs) that contain those attacking
sources. Hussain et al. [8] presented a framework to classify
DDoS attacks into single-source and multisource attacks. Such
an attack classification helps us to choose an appropriate re-
sponse mechanism, but it still cannot block attack traffic. [13]
and [21] presented methods to detect and block DDoS traffic
at the source-end networks. Like the egress filtering for pre-
venting Internet protocol (IP) spoofing, such a DDoS defense
at the source-end lacks incentive for people to deploy and also
requires universal deployment to be effective. Keromytis et al.
[7] presented a secure overlay structure to protect a mission-crit-
ical server against DDoS attacks.

In order to detect and filter SYN flood packets at the victim
end, Kim et al. [10] provided a general anomaly detection
framework based on the assumption that normal and attack
packets have different statistical characteristics. However, the
authors did not present the detailed algorithm on how to detect
SYN flood attack packets. Jin et al. [4] provided a concrete
“hop-count filtering” (HCF) algorithm based on the fact that
attackers do not know the real hop-lengths from their spoofed
sources to the target victim, which can filter close to 90% of
spoofed IP packets.

There are many papers on worm research and here we only
introduce related work for Internet worm defense. Williamson
[24] proposed a rate-limiting “throttling" method to constrain
infection traffic. “EarlyBird” in [18] and “Autograph” in [9] de-
tect and block worm spreading through identifying the common
bit-strings among all infection network traffic of a worm. To pre-
vent internal infection, Staniford [19] presented the segmenta-
tion idea to separate an enterprise network into many isolated
subnetworks. Jung et al. [5][6] presented “threshold random
walk (TRW)” detection algorithms to detect and block worm
infection based on the excessive number of unsuccessful scans
sent by a worm. Weaver et al. [23] presented a simplified ver-
sion of TRW algorithm that is suitable for both hardware and
software implementation.

Some researchers have discussed the notion of “adaptive” in
defense, although appeared in other forms. Lee et al. [11] con-
sidered various cost factors, including false positive/negative

cost, in the process of developing and evaluating Intrusion De-
tection System (IDS). However, such a cost-sensitive design is
a static system design method, which does not consider how to
dynamically adjust an IDS’s configurations according to the at-
tack condition during run time. Zou et al. [25] mentioned the
false positive cost in the worm quarantine defense and intro-
duced briefly the “feedback adjustment” idea with no detailed
discussion. Li et al. [12] presented a similar adaptive defense
formula for DDoS attacks based on statistical filtering. How-
ever, they did not present concrete algorithms on how to de-
tect attack traffic. Our work was conducted independently at the
same time as [12], and we have present concrete formulation of
the adaptive defense for both DDoS attack and Internet worm
infection.

III. ADAPTIVE DEFENSE SYSTEM I: SYN FLOOD

DDOS ATTACK

“SYN flood” attack is a denial-of-service attack by sending a
large amount of SYN packets to a network or a server [14]. The
attack packets usually have spoofed source addresses to hide the
real attacking sources and also make defense much harder. For
simplicity, from now on we call the victim of a SYN flood attack
as a server.

It is relatively easy to detect whether or not a server is under
SYN flood DDoS attack by observing the existence of excessive
amount of 1/2 open transmission control protocol (TCP) con-
nections. However, filtering SYN attack packets is very hard: a
filtering-based defense system must be able to detect individual
incoming SYN attack packet based only on its packet header,
even though all fields in the packet header can be arbitrarily
modified by attackers.

A. Underlying Detection Algorithm: Extended HCF

The HCF presented in [4] is a concrete and promising defense
approach for SYN flood DDoS attack. Although attackers can
forge any field in the IP header, they cannot change the number
of hops an IP packet takes to reach a server. In a nutshell, HCF
infers the hop-length of incoming SYN packets to a server based
on the time-to-live (TTL) value in the IP header, then compares
this value with the real hop-length of the source address, which
is derived from previously successful connections from the real
source. If these two values are different (to certain extend), the
HCF determines that the incoming SYN packet is a spoofed
attack packet.

Attackers can arbitrarily change the initial TTL of spoofed
packets. However, attackers do not know the real hop-counts
from their spoofed source addresses to the victim. the authors
of [4] proved that attackers cannot increase much the chance of
cheating the HCF by forging TTL values; the HCF can identify
close to 90% of spoofed SYN packets with little false positive
damage [4].

We have fortunately obtained the hop-count collection data
from the authors of [4], which contains clients’ hop-counts to 46
servers. Most of these servers have measured hop-counts from
more than 40 000 clients.

We study the adaptive defense system’s performance based
on an arbitrary server in the above hop-count collection data.
The data provides each server’s real hop-count table for all its
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clients contained in the data. Since we do not have real SYN
flood attack trace, we use simulation to generate attack SYN
packets mixed together with normal SYN packets to such a
server. We use the similar assumptions as the experiments in [4]:
we assume that the attacker knows the IP addresses of all clients
to the server and generates spoofed SYN packets with randomly
selected source addresses among these legitimate clients. We
further assume that the attacker knows the hop-count distribu-
tion of the server.

Due to memory constraint, HCF cannot save the hop-count of
every client in its hop-count table; in addition, the server cannot
know the real hop-counts for all its potential clients since some
of them seldom send connection requests to the server. To solve
these problems, [4] presented a simple 24-bit address aggre-
gation theme, which means that the source IP addresses with
the same first 24 bits (/24 network) are grouped together and
represented by a single hop-count in the hop-count table. This
hop-count value is selected to be the smallest hop-count among
observed clients in the same /24 network.

The 24-bit aggregation may not preserve the correct hop-
counts for all clients in a /24 network if this network is com-
posed of several longer prefixes networks that reside in different
physical places. In addition, the hop-count table of a server may
not be up-to-date for all clients. For the above two reasons, the
HCF detection could falsely treat normal packets as spoofed
attack packets. In our simulation experiments, we assume that
after deriving the hop-count table, 5% of clients change their
hop-counts by 1, 1% of clients change by 2, and 0.5% of clients
change by 3. In a real implementation, how the hop-count table
differs from the real hop-counts of clients can be determined by
deploying the HCF detection without packet filtering; the real
hop-count of a client is derived from its successful TCP con-
nections with the server.

Three filtering configurations were presented in [4] based
on the 24-bit aggregation: “Strict Filtering,” “ Filtering,”
and “ Filtering.” “Strict Filtering” drops packets whose
hop-counts do not match those stored in the hop-count table;
“ Filtering” drops packets whose hop-counts are smaller or
greater than 2 compared with the values saved in the hop-count
table. In this paper, we extend the HCF to nine filtering config-
urations, denoted by: “0,” “ 1,” “ ,” “ ,” “ ,”
“ ,” “ ,” “ ,” and “ .” The “Strict
Filtering” and “ Filtering” in [4] correspond to “0” and “ ”
Filtering, respectively. “ ” Filtering drops packets whose
hop-counts are smaller than or greater than compared with
the values in the hop-count table.

Denote the “false positive probability” as , which is the
probability of incorrectly dropping a normal packet (or a normal
connection, or a normal host for other types of attacks); denote
the “false negative probability” as , which is the probability
of incorrectly treat an attack packet as a normal packet. For a
specific server in the hop-count collection data in [4], we run
the HCF detection on the simulated normal SYN traffic and
spoofed SYN flood traffic, respectively. From the simulation,
we derive the detection performance of each HCF configura-
tion in terms of and . Fig. 1 shows the detection perfor-
mance tradeoff for the server “net.yahoo.com”. Nine small cir-
cles in the figure from the left to the right represent the detec-

Fig. 1. HCF detection performance under different configurations.

tion performance of “0,” “ ,” , “ ” Filtering, respec-
tively. For other servers, the HCF achieves the similar detection
performance.

Fig. 1 shows that the HCF has two correlated parameters,
and . Thus, the HCF can be treated as only having one ad-
justable parameter ,1 which determines the pair of and .
In this paper, is defined to vary from 0 to 8: corresponds
to the “0” Filtering, corresponds to the “ ” Filtering,

corresponds to the “ ” Filtering, corresponds
to the “ ” Filtering, etc.

Now, the HCF has nine different operation points, i.e.,
. We call it a discrete HCF. If the HCF can be fur-

ther extended to adjust its parameters continuously within those
nine discrete operation points, the adaptive defense system will
have more freedom in tuning detection parameters to possibly
achieve a better defense performance. We extend the above dis-
crete HCF to derive a continuous HCF based on “probabilistic
dropping” in the following.

Suppose the continuous HCF uses a real number as its de-
tection parameter, . Denote the integer
and a real number . Then, this continuous HCF will
accept all packets that should be accepted by the discrete HCF
with while drop all packets that should be dropped
by the discrete HCF with . For the other packets
that should be dropped by the HCF but accepted by the
HCF, the continuous HCF accepts them with the probability .
In such a continuous HCF detection algorithm, both and
are piecewise linear functions of . Therefore, is also a piece-
wise linear function of as the performance curve shown in
Fig. 1.

B. Adaptive Defense System Design Based on a General
Cost Function

We have presented the underlying detection algorithm in the
previous section, the next step in designing the adaptive defense
system is to find out how to represent the “attack severity” for
a SYN flood DDoS attack. Denote by the fraction of attack

1Of course, we can define an extended HCF with a vector adjustable param-
eter �, too. For example, � = (a; b), where variable a and b represent the
“+a� b” Filtering. All the work and discussion in this paper will be the same
for such a vector parameter �.
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Fig. 2. Adaptive defense system architecture.

packets among all incoming SYN packets. naturally exhibits
the relative attack intensity compared with the normal payload
of a server, and hence, we use to represent the attack severity.

The adaptive defense system updates its HCF detection pa-
rameter at each discrete-time denoted by .
During the time interval from the discrete-time to , sup-
pose the HCF uses the parameter , which corresponds to
the false positive probability and the false negative prob-
ability . During this time period, the fraction of packets
identified by the defense system as attack packets is denoted by

. The real attack fraction during this discrete-time interval
is denoted by .

differs from the observed value because: 1) the
limited samples within a discrete-time interval introduce an ob-
servation statistical error and 2) some attack packets are not
counted in due to false negatives, whereas some normal
packets are counted in due to false positives.

Based on the observation data and the detection param-
eters , in the following we present a formula to
derive an unbiased estimate of the attack severity, denoted by

. Suppose during the time interval from the discrete-time
to , the attack severity does not change and the

defense system receives SYN packets. Then,
packets are attack packets, while the remaining
are normal ones. The defense system drops overall
packets, among which are real attack
packets and the remaining are falsely
dropped normal packets. Therefore, we have

(2)
Removing from both sides, we derive the estimation for-
mula of the real attack fraction as

(3)

A more formal proof of the estimation formula is given in
the appendix, which shows that the estimate is unbiased
(when the detection decision of each packet is independent to
each other).

Fig. 2 illustrates the architecture of the adaptive defense
system. At the end of the discrete-time , based on the parame-
ters , used in the last discrete-time interval and the
observed attack severity , the adaptive defense system first
uses (3) to derive an estimate of the real attack severity,
then finds the “optimal” detection parameters ,

(i.e., ) for use in the next discrete-time
interval. In the “optimization” module shown in Fig. 2, the

adaptive defense system tries to minimize the combined cost of
false positives and false negatives by minimizing

(4)

where is the cost of incorrectly dropping a normal SYN
packet; is the cost of incorrectly accepting an attack packet.
When the detection system uses the new detection parameter

for the DDoS attack with the current attack severity
is the fraction of falsely dropped

normal SYN packets, and is the fraction of
attack SYN packets that pass through to the server.

The two cost factors and have concrete physical mean-
ings: they represent the cost of incorrectly dropping (accepting)
a normal (attack) SYN packet, respectively. In some cases,
they can be chosen as constants, whereas in other cases they
should be functions of the attack severity. For example, while
a server can tolerate a small number of false negatives, beyond
some point, the received attack traffic will severely consume
the system’s resources. Whether to choose constant or func-
tional cost factors should be determined by the specific defense
requirement and experiences from security staffs.

It should be noted that the adaptive defense system can be
implemented not only on a server itself, but on the server’s up-
stream routers or gateways, as what shown in Fig. 2. The server
only needs to update its hop-count table based on successful
TCP connections and pass the up-to-date hop-count table to its
upstream routers or gateways. In this way, deploying the adap-
tive defense system does not add any burden to the server under
protection.

C. Adaptive Defense System Design Based on a
“Buffer-Aware” Performance Function

The adaptive defense system design presented above is based
on a general cost function (4), which is suitable for a wide
range of security defense systems. If the network or the server
under protection has its own specific performance function, the
adaptive defense system can use such an object-oriented perfor-
mance function in its optimization.

A server usually has two separated buffers for incoming
TCP connections: one for pending connections, which is call
“pending buffer” in this paper, another for connections that
have been established. The pending buffer is susceptible to
SYN flood DDoS attack. Suppose the server’s performance
is not affected by the number of pending connections in the
pending buffer as long as the buffer is not overflowed to drop
connection requests. Such a server has a specific performance
function in dealing with SYN flood attack: to accept as many
as possible normal connection requests.

With such a “buffer-aware” performance function, the adap-
tive defense system should deactivate its filtering functionality
as long as the pending buffer is not overflowed. In this way, no
normal packets will be dropped due to false positives. When
the pending buffer cannot support all incoming SYN packets,
the defense system should activate its filtering functionality to
drop most attack packets. The defense system will drop more
attack packets when its detection component becomes more ag-
gressive, i.e., decreasing ; however, an increasing number of
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normal packets will also be dropped due to the increasing false
positive probability introduced when the detection becomes
more aggressive (as illustrated in Fig. 1). Therefore, to accept
a maximum number of normal SYN packets, the adaptive de-
fense system should filter packets such that the packets passing
though can fill up the pending buffer without causing overflow.

Define “sojourn time” as the time period a SYN packet re-
sides in the pending buffer. Denote the average sojourn time
of a normal SYN packet as , the average sojourn time of
an attack SYN packet as . In most cases, normal clients can
quickly set up TCP connections with a server, whereas most at-
tack SYN packets will reside in the pending buffer for a long
time, many of which will only be removed from the buffer after
they are time-out. In the following, we present the adaptive de-
fense system design considering the different sojourn time of
normal and attack packets.

The adaptive defense system still has the same architecture
shown in Fig. 2. Suppose the server under protection has a
pending buffer of size , which means the buffer can hold
pending TCP connections at the same time. The discrete-time
interval is denoted by . At the end of the discrete-time , the
defense system knows the number of incoming packets during
the last time interval, denoted by , and the estimate .
Based on current attack situation, the adaptive defense system
determines whether to activate the filtering functionality and
finds the best defense parameters , .

If the defense system deactivates its filtering functionality and
let all those packets passing through to the server, the
buffer size requirement, denoted by is

(5)

When the defense system activates its filtering functionality
with the parameters , then

attack packets and
normal packets will pass through the detection/filtering module
to reach the server. Thus, the buffer size requirement, denoted
by is

(6)

Therefore, at the end of the discrete-time , the adap-
tive defense system should choose its defense parameters

for the next time interval according to
the following.

• If , deactivate the filtering functionality. The de-
tection system keeps running in order to know the attack
severity in the next time interval.

• If , activate the filtering functionality and choose
the optimal (i.e., ) by
minimizing

(7)

Basically, (7) tries to minimize the cost caused by overfiltering
( ) or underfiltering ( ).

D. Stability Study

When the detection decision of one packet is independent
from the detection decisions of other packets, we derive (de-
tails are shown in the appendix) the statistical property of the
estimate of attack severity [the formula of is in (3)]

(8)

The above equation shows that the unbiased estimate has
a statistical error due to limited sampling. When we have fewer
samples observed in a discrete-time interval (i.e., smaller ),
the estimate could have more statistical error compared with
the real value .

If the adaptive defense system updates its detection parame-
ters ( ) at every discrete-time based on either (4) or (7),
its parameters will always change as changes, even if the real
attack severity does not change. Such kind of performance os-
cillation is unnecessary and undesirable.

The “adaptive defense” principle means that we change
system configurations only when the attack situation changes.
The adaptive defense system does not need to update its de-
tection/filtering configurations as long as does not change or
changes within a small range. Therefore, in order to make the
defense system stable without the oscillation mentioned above,
at the end of discrete-time , the adaptive defense system will
update its parameters for the ( )th times ( ) only
when

(9)

where is the attack severity estimated at the th update.
The parameter exhibits a tradeoff between defense sensitivity
and stability: when increases, the adaptive defense system is
less sensitive to small changes in the attack severity, but more
stable in dealing with the estimation error (8). In addition, by
using (9), the adaptive defense system updates its configurations
less frequently, which is a desirable property for many defense
systems.

Another approach in stabilizing system performance is to im-
plement a low-pass filtering on the estimate to remove its
high-frequency estimation error. A simple low-pass filter is an
exponentially weighted moving average (EWMA) filter. Denote
the filtered estimate of the attack severity as . When using
the EWMA filter, is

(10)

where . As decreases, the filtered estimate
becomes more smooth and stable, but slower in response to the
changes of attack severity.

Both (9) and (10) have their own advantage and disadvantage.
Equation (9) cannot respond to the attack severity changes that
are smaller than , but it can quickly and correctly respond to
a big attack change after just one discrete-time interval. On the
other hand, (10) can respond to an arbitrarily small change in the
attack severity, but it is slow in response to changes of the attack
severity due to its low-pass filtering. An adaptive defense system
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should select one of them in its design based on the specific
defense requirement of the system under protection.

IV. ADAPTIVE DEFENSE SYSTEM II: INTERNET

WORM INFECTION

Computer “worms” are programs that self-propagate across a
network exploiting security or policy flaws in widely used ser-
vices [22]. Because worms propagate without any human inter-
ference, they can quickly spread out to infect most vulnerable
hosts in the Internet before people put up any defense [16], [20].
In recent years, most fast-spreading worms, such as Code Red,
Slammer, Blaster, and Sasser [1], are “scan-based worms”: they
propagate through randomly scanning IP addresses to find, and
then compromise vulnerable computers in the Internet. In this
section, we study how to design an adaptive defense system for
defending against the infection by scan-based worms.

A. Adaptive Defense System Based on Modified TRW
Detection Algorithm

Because a scan-based worm blindly scans IP space to find
targets, a worm-infected host has a much lower probability to
set up successful connections than a benign host. TRW [5][6]
detects a worm-infected host based on the difference between
the number of successful connections and the number of failed
connection requests initiated by the host. Weaver et al. [23] pre-
sented a simplified version of TRW algorithm that is suitable for
both hardware and software implementation. For our adaptive
defense system for defending against Internet worm infection,
we deploy a modified version of the worm detector presented in
[23] as the underlying detection algorithm.

We are mostly interested in protecting enterprise networks
from worm infection, which is the first defense step before we
can effectively defend worm infection in the global Internet.
There are two types of worm infection for an enterprise network:
one is the infection initiated from infected hosts in the outside
Internet; another is worm infection among internal hosts in the
enterprise network. The simplified TRW detector [23] is suit-
able for detecting both types of attacks. If an outside infected
host is detected, the defense system puts the IP address of the
detected host in a “blacklist” on the edge routers, gateways, or
firewalls to filter any traffic from it; if an internal infected host
is detected, the defense system relies on “worm containment,”
such as the network segmentation theme in [19], to quarantine
the worm from spreading out. To decrease the damage caused
by false alarms, the defense system usually only blocks the de-
tected hosts on the destination port(s) used in their failed con-
nection requests.

The modified TRW detector we use in this paper works in
the following way: each source host that initiates a connection
attempt has an associated non-negative “counter,” which has
the initial value of zero. This counter decreases by one if the
source host initiates a successful connection, and increases by
one if the source host initiates an unsuccessful connection re-
quest. Multiple connection attempts from a source host targeting
the same destination host are treated as one connection attempt
(e.g., TCP/SYN retransmission before the timeout). A source

Fig. 3. Adaptive defense system architecture for defending against Internet
worm infection.

host is determined to be an attacker when its counter’s value
reaches .

The next step in designing the adaptive defense system is to
find out how to represent the “attack severity.” An enterprise
network has a fraction of unused IP addresses. All connection
attempts to these unused addresses, which are called “illegal
scans,” will always fail. We use the number of illegal scans ob-
served in a discrete-time interval, denoted by , to represent
the attack severity. The nice property of is that, as long as we
monitor illegal scans in front of the filter, the number of illegal
scans observed by the adaptive defense system is not affected
by the filtering action— correctly represents the worm attack
severity.

Fig. 3 illustrates the architecture of the adaptive defense
system. Whenever the “detector” detects an infected host, it
sends the host IP to the “filter” where further scanning traffic
from the detected host is blocked. The defense system adap-
tively updates its detection parameter at each discrete-time
denoted by . Denote by , the number of il-
legal scans observed during the time interval from discrete-time

to ; as the detection parameter used from to
. Fig. 3 shows that at the end of discrete-time , the

adaptive defense system derives the optimal to use
for the next discrete-time interval based on the current attack
severity . The “optimization” module derives
based on the performance function

(11)

where is the cost factor of false positives and is the cost
factor of false negatives (damage caused by not detecting an
infected host quickly). As the detection parameter increases,
an infected host is able to send more scans and possible infection
traffic before it is detected and blocked; but fewer benign hosts
would be incorrectly blocked due to false positives. Therefore,

describes the tradeoff between false positives and false
negatives of the detection algorithm corresponds
to false positive cost and corresponds to
false negative cost.

B. Adaptive Defense System Based on “Probabilistic
Marking” Detection Algorithm

The TRW detection algorithm [5] is mathematically solid,
and is shown to be effective [6], [23]. However, it has the fol-
lowing weaknesses. First, it requires to monitor all legitimate
connections, which makes it hard to be deployed by ISPs for
the privacy issue of their customers. Second, upon receiving
a worm’s connection request, the detection algorithm usually
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needs to wait for a timeout in order to know that the connec-
tion request is failed, which makes it slow in response to fast-
spreading worms.

In this paper, we present a simple alternative worm detec-
tion algorithm, called “probabilistic marking,” based on illegal
scans only (scans to unused IP space): when the detector re-
ceives an illegal scan from a source host, the detector treats the
source host as an attacker with a probability . Consecutive il-
legal scans from the same source targeting the same destina-
tion host are treated as one illegal scan (e.g., due to TCP/SYN
retransmission).

Such a detection algorithm does not need to wait for a re-
sponse or a timeout to make its detection decision. If a net-
work has a large fraction of unused IP space, which is the case
for many U.S. networks, the probabilistic marking is an effec-
tive detection algorithm for fast-spreading worms since it can
quickly detect and block worm-infected hosts. In addition, the
probabilistic marking detection algorithm does not need to mon-
itor any legitimate traffic, which makes it easier to be deployed
on high-speed links and also free from privacy issues.

If the probability is fixed, an infected host will be detected
after the detector observes illegal scans from the host, where

is a geometric distributed random variable. In the adaptive de-
fense system, is the adaptive variable and is denoted as
for the value used during the time interval from the discrete-time

to . The adaptive defense system has the same architec-
ture as shown in Fig. 3 by replacing to .

Upon receiving an illegal scan, the probabilistic marking de-
tector has the probability and to incor-
rectly mark the scan’s source host. Therefore, one reasonable
performance function is

(12)

where the first item corresponds to false positive cost and the
second item corresponds to the false negative cost.

One interesting property of this performance function is that
it is linear in terms of the variable . Therefore,
has only two possible optimal values, denoted by

(13)

From (13), we can see that such an adaptive defense system is
in fact a traditional “on–off” defense system with fixed param-
eters: it activates filtering to block any host that sends illegal
scans when the monitored is over a predefined threshold

, and deactivates filtering when .
For an on–off defense system, the activation threshold is

usually selected based on experiments or people’s experiences.
The adaptive defense system with the performance function (12)
provides an explanation and guideline on how to choose an ap-
propriate threshold by letting . Although we still
need to choose the constants , based on experiments or ex-
periences, they have more concrete meanings than the abstract
threshold , and hence, easier to choose.

In (12), the constant means that the false alarm cost is se-
lected to be proportional to the number of blocked benign hosts.
If we believe that the false alarm cost increases more quickly

than the increase rate of the number of blocked benign hosts,
should be a function of . A simple function of such a rela-

tionship could be , where is a constant. Extended
from (12), the adaptive defense system will have the following
performance function :

(14)

The optimal for the above performance function
could be any value between 0 and 1. By using such a perfor-
mance function, the adaptive defense system is able to tune its
parameter smoothly between 0 and 1. Therefore, we prefer to
use (14) in the adaptive defense system design.

For the stability issue of the adaptive defense system, we can
use the similar approaches as what explained in Section III-D
by replacing with . First, the adaptive defense system
updates its detection parameters at the end of discrete-time
only when

(15)

where is the number of observed illegal scans in the last
update.

Second, the adaptive defense system can also use filtered
, denoted by , in its optimization, where

(16)

V. EVALUATION

We have presented how to design the adaptive defense system
for two major classes of attacks in the previous two sections.
In this section, we evaluate the performance of these adaptive
defense systems based on either simulation experiments or real
attack traces.

A. Defense Against SYN Flood DDoS

We study the performance of using the adaptive defense
system in protecting the server “net.yahoo.com”—which
hop-count information is included in the data provided by the
authors in [4]. For this server, the detection tradeoff in terms of

versus is shown in Fig. 1 (based on 24-bit HCF filtering).
1) General Cost Function: First, we study the adaptive de-

fense system with the general cost function (4). During the en-
tire simulation, we assume the server receives a constant 1000
normal SYN packets within each discrete-time interval (such
as 30 s). The spoofed SYN flood attack varies its attack inten-
sity as shown in the top figure in Fig. 4. The simulated SYN
flood attack includes two types of attack dynamics: 1) attacking
traffic gradually increases its intensity (from time 0 to 500) and
2) all distributed attacking hosts begin to send attacking packets
at the same time (from time 700 to 800).

The bottom figure in Fig. 4 shows how the adaptive defense
system automatically tunes its detection parameter . This figure
shows that as the DDoS attack becomes more severe, the adap-
tive defense system will implement more aggressive detection
and filtering by decreasing , i.e., decreasing to reduce false
negatives at the cost of increasing accordingly. When attack
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Fig. 4. SYN flood attack scenario and the response by the adaptive defense
system based on the general cost function(4).

Fig. 5. Verification of the estimation formula (3).

intensity recedes, the adaptive defense system returns back to
the normal conservative detection and filtering status.

In this simulation experiment, ; the absolute values
of and do not matter because of the performance function
(4). If we select a different ratio between and , the adaptive
defense system will correspondingly become more aggressive
or more conservative as the attack severity changes. In a real
implementation, we need to rely on experiments, the server’s
defense requirement, and people’s experiences to select a pair
of suitable cost factors and .

The detection tradeoff curve in Fig. 1 shows that and
are piecewise linear functions of . In addition, the performance
function (4) is a linear function of and . Therefore, the
performance function (4) is a piecewise linear function of with
the inflexion points at the integer values of . This is the reason
why the optimal chosen by the adaptive defense system are
always integer values, as shown in Fig. 4.

To verify the attack severity estimation formula (3), we draw
the real value , the observed value , and the estimated
value as functions of discrete-time in Fig. 5. This figure
clearly shows that the estimation formula (3) provides accurate
estimation results for the attack severity at any time.

The adaptive defense system uses (9) to determine when to
update its detection parameter. In the above experiment,

and the adaptive defense system only updates 76 times (the
simulation lasts 1000 discrete-time).

Fig. 6. The response by the adaptive defense system based on the buffer-aware
performance function (7).

Because the variance of is inversely proportional to the
number of received packets in a discrete-time interval, as shown
in (8), we have not used the low-pass filter (10) on in the
experiment since the defense system observes a relatively large
number of SYN packets in each discrete-time interval. There-
fore, Fig. 4 shows that the adaptive defense system can quickly
updates its parameter when the attack changes. If an adaptive de-
fense system can only observe a small number of SYN packets
in a discrete-time interval, it can use the low-pass filter (10) to
stabilize its estimated attack severity .

2) Buffer-Aware Performance Function: Next, we study the
adaptive defense system based on the buffer-aware performance
function (7). The discrete-time interval s, which is the
same as the previous simulation. We assume that normal SYN
packets have the average sojourn time s in the pending
buffer; attack packets have the average sojourn time s
(most attack packets will stay in the buffer until time-out). We
assume that the pending buffer can support connection
requests at the same time.

The SYN flood attack follows the same dynamics as what
used in previous experiment. Fig. 6 shows the attack scenario
and how the adaptive defense system adjusts its detection pa-
rameter . means the defense system deactivates its
filtering functionality. This figure and Fig. 4 show that both
adaptive defense systems have the similar responses. The differ-
ence is that the adaptive defense system here has a continuously
changing optimal since (7) is a nonlinear function of .

3) Performance Comparison: Since the second adaptive de-
fense system [the one based on (7)] explicitly optimizes its per-
formance to allow the server to accept the maximum number of
normal packets, its performance, in terms of accepted normal
traffic, should be better than the first adaptive defense system
[the one based on the general cost function (4)]. In the above two
experiments, we also obtain the information of accepted normal
packets. To see the adaptive defense performance, we also con-
duct a baseline experiment where a fixed-parameter HCF with

is deployed, which is the recommended setting in [4].
Fig. 7(a) and (b) shows the defense performance in terms of the
number of accepted normal SYNs for these two adaptive de-
fense systems, respectively.

Compared with the fixed-parameter defense, at the normal sit-
uation when the server is under no attack or light attack, both
adaptive defense systems have a much smaller false positive
probability and can accept almost all normal incoming SYN
requests. When the server is under heavy SYN flood attack,
both adaptive defense systems will implement the most aggres-
sive detection and filtering actions ( ), and hence, be able
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Fig. 7. Performance of adaptive defense systems compared with the fixed-parameter system.

to accept more normal requests than the fixed-parameter de-
fense system. Therefore, an adaptive defense system achieves a
better performance than a fixed-parameter defense system both
in normal situations and under severe attacks. The fixed-param-
eter defense system uses a set of settings that is optimal only
for a specific attack condition, which is not suitable for a real
implementation where people expect a defense system to work
well under various network conditions.

The results shown in Fig. 7 do not mean that the adaptive de-
fense system based on the general cost function (4) is worse than
the other one. The defense system based on (4) requires no con-
gestion information to be provided by the server under protec-
tion. A separated “access control” system can be implemented
in between the server and general adaptive defense system to
insure that the server has a good response time for all accepted
connection requests.

Fig. 7 also shows that we do not need to design a very accurate
adaptive defense system in order to improve the performance
of an underlying nonadaptive detection algorithm. As long as
we use the adaptive defense principle to adjust a system’s set-
tings, the defense performance will be improved more or less.
In fact, we run the experiment shown in Fig. 4 many times with
different values of and , the adaptive defense system al-
ways improves its performance compared with the fixed-param-
eter system in terms of the number of accepted normal requests
(similar results as shown in Fig. 7).

B. Defense Against Internet Worm Infection

In this section, we use a monitored Slammer propagation
trace to study the performance of the adaptive defense system.
The trace is a tcpdump data containing all user datagram
protocol (UDP) packets (targeting at port 1434) received by a
/16 network. Because of the simple and distinct signature of
Slammer worm—each scan packet contains 376 bytes payload
[15]—we know that all such UDP packets in the trace belong
to Slammer.

This Slammer trace recorded 5 min duration of Slammer in-
fection traffic. The top figure in Fig. 8 shows the number of
Slammer UDP packets received in each second. The discrete-

Fig. 8. Slammer attack and the response by the adaptive defense system based
on TRW detection.

time interval is set to be one second in the adaptive defense
system design. Thus, this figure shows the dynamic of .
The monitored /16 network has two Internet connections. At
the 150 s shown in Fig. 8, one of these two connections went
down, which is the reason why the monitored Slammer scans
dropped suddenly. At the 217 s, one internal computer in the
/16 network was infected and began to send out a large amount
of infection traffic, which caused the monitored Slammer scans
dropped suddenly for the second time.

1) Modified TRW Detection Algorithm: The bottom figure
in Fig. 8 shows how the adaptive defense system responds to
the attack changes by adjusting its detection threshold . In
this experiment, . When , the system
is taking the most aggressive defense action: any host will be
blocked as soon as the defense system observes one illegal scan
from it (only blocking the host for the port used in its illegal
scans).

Fig. 9 shows the number of worm scans entering the
/16 network—the other worm scans are blocked by the defense
system (the peak level of original worm scans is 1000 per
second). For comparison, we also show in this figure the case
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Fig. 9. Worm scans passing the defense system.

Fig. 10. TRW-based adaptive defense system by using (15) for stability.

of a fixed-parameter system, where . Note that since
the number of vulnerable computers in a local network is
usually much smaller than the number of addresses allocated
to the network, only a very small percentage of passed worm
scans could possibly cause infection. Of course, if we are very
concerned with the worm infection, we can increase the ratio of

to make the defense system quickly updates its threshold
to 1 when increases (at the cost of increasing the

number of falsely blocked normal hosts).
As shown in Fig. 8, the optimal detection parameter in

the adaptive defense system changes frequently since we have
not used any stability method. If we want the adaptive defense
system to have a more stable configuration, we can use (15)
to update the detection parameter only when the change of
attack intensity exceeds a threshold . When we choose

, Fig 10 shows how the adaptive defense system updates its
detection parameter. Comparing with the previous one shown
in Fig. 8, we can see that the defense system in Fig. 10 is more
stable, but it has a small delay in response to the increases of
worm scan traffic at the beginning.

For the evaluation of false positives, [5] and [23] have used
real network traces to show that the TRW algorithm has very
limited false positives (most of those falsely detected hosts are
web crawlers or proxies). Since our adaptive worm defense
system uses the similar underlying detection algorithm, we do
not repeat such an evaluation here.

2) “Probabilistic Marking” Detection Algorithm: For the
probabilistic marking detection algorithm and its adaptive de-
fense system (14), Fig. 11 shows how the defense system re-

Fig. 11. Slammer attack and the response by the adaptive defense system based
on probabilistic marking detection.

sponds by adjusting the detection parameter . In this ex-
periment, . When , the system is taking
the most aggressive defense action: any host will be blocked as
soon as the defense system observes one illegal scan from it.

VI. CONCLUSION

To defend against various network attacks, we introduce an
“adaptive defense” principle based on cost minimization—a de-
fense system adaptively adjusts its configurations according to
the network condition and attack severity in order to minimize
the combined cost introduced by false positives and false nega-
tives at any time. Actually, this basic “adaptive defense” idea
has already been used in many other areas, such as the epi-
demic disease control in the real world [25], the five-level ter-
rorism alert system [3], etc. The major issue is to find out how
to use this basic principle to design a practical defense system.
In this paper, we present concrete adaptive defense systems to
defend against two major network attacks: SYN flood DDoS
attack and Internet worm infection. The adaptive parameter up-
date includes simple estimation and optimization, thus the com-
putational overhead is very small.

The adaptive defense is a high-level system design and there
are many good but nonadaptive detection and filtering algo-
rithms. Therefore, we believe the adaptive defense can be built
on top of various nonadaptive detection and filtering algorithms,
which makes it applicable for a wide range of security defenses.

There are still many work to do to refine the adaptive defense
design. First and most importantly, the adaptive mechanism re-
quires the knowledge of the detection tradeoff curve in terms
of false positives versus false negatives. We can obtain such
a detection performance curve based on past attacks and sim-
ulations. However, a new attack that has a different statistical
pattern will have a different detection tradeoff. In this case, the
adaptive defense system will produce suboptimal defense due
to the nonaccurate detection tradeoff curve used. We will study
how to improve the defense performance in this case. One pos-
sible way is to continuously update and derive the correct de-
tection tradeoff for a new ongoing attack based on the observed
attack and detection results.
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In addition, we need to further study how to choose the cost
factors and quantitatively according to the defense require-
ments. Third, in order to understand accurately the impact of
false positives/negatives, we plan to evaluate the adaptive de-
fense system based on real monitored traces that include both
attack and normal traffic. Finally, when defense settings are
adaptive, attackers might be able to influence the detection in
such a way as to deny service to legitimate traffic. We have pre-
sented the primary study on how to improve system robustness
in Section III-D. We plan to further study this system robustness
issue.

APPENDIX

ESTIMATION OF THE ATTACK SEVERITY

Assume that the detection system makes detection deci-
sion for each packet independently with the false positive
probability and the false negative probability . Suppose
within a discrete-time interval, the detection system observes

incoming SYN packets, among which packets are attack
packets, while the other packets are normal packets. Since
the real attack severity is , , and .

Let the binary random variable when the th attack
packet is detected, and when this attack packet is not
detected ( ). Let the random variable
when the th normal packet is incorrectly detected as an attack,
while when this normal packet is correctly treated as a
normal one ( ). Thus, we have

The observed attack severity, , is derived by

The mean value of is

which means the estimation formula for attack severity is

is an unbiased estimate of , i.e.,

The variance of the estimate is
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