
SPS: an SMS-based Push Service for Energy Saving
in Smartphone’s Idle State

Erich Dondyk
Amazon.com, Inc.
Cambridge, MA

Omar Nakhila
University of Central Florida

Orlando, Florida 32816

Cliff C. Zou
University of Central Florida

Orlando, Florida 32816

Abstract—Despite of all the advances in smartphone tech-
nology in recent years, smartphones still remain limited by
their battery life. Unlike other power hungry components in a
smartphone, the cellular data and Wi-Fi interfaces often continue
to be used even when the phone is in its idle state in order to
accommodate background (necessary or unnecessary) data traffic
produced by some applications. In addition, bad reception has
been proven to greatly increase energy consumed by the radio,
which happens frequently when smartphone users are inside
buildings. In this paper, we present a Short message service
Push based Service (SPS) system to save unnecessary power
consumption when smartphones are in idle state, especially in
bad reception areas. First, SPS disables a smartphone’s data
interfaces whenever the phone is in idle state. Second, to preserve
the real-time notification functionality required by some apps,
such as new email arrivals and social media updates, when a
notification is needed, a push server will deliver a wakeup text
message to the phone (which does not rely on data interfaces),
and then SPS enables the phone’s data interfaces to connect to the
corresponding server to retrieve notification data via the normal
data network. Once the notification data has been retrieved, SPS
will disable the data interfaces again if the phone is still in idle
state. We have developed a complete SPS prototype for Android
smartphones. Our experiments show that SPS consumes less
energy than the current approaches. In areas with bad reception,
the SPS prototype can double the battery life of a smartphone.

I. INTRODUCTION

Smartphones have penetrated the technology market at a
staggering rate. In fact, it is estimated that currently more
people own smartphones than personal computers throughout
the world [1]. However, despite of the tremendous functionality
smartphones provide, they still remain plagued by a short
battery life.

One of the main sources of energy consumption in smart-
phones is the wireless radio. Specifically, the data network
interfaces used for cellular data, such as 3G and 4G, and Wi-
Fi. The data interfaces inherently need a significant amount of
energy when transmitting and receiving data. In addition, ’tail
power phenomenon’ introduces additional energy consumption
for every retransmission [2]. The cause and possible solutions
to these internal sources of energy consumption have been
explored in other works [3] [4] [5]. However, there are also
two external factors that can significantly contribute to the total
amount of energy the data interfaces consume: bad reception
and data traffic in idle state.

Bad reception introduces a series of side effects that greatly
increase the amount of energy consumed by data interfaces.

Fig. 1. The communication interfaces of a smartphone. The data interfaces,
such as 3G, 4G, and Wi-Fi, are among the components of the smartphone
that consume the most energy. Our proposed energy-saving scheme exploits
the traditional cellular short message service (SMS) to facilitate real-time data
notification service that currently solely relies on the data service channels.

First, smartphones experiencing bad reception frequently dis-
sociate and reassociate with base stations or switch between
different cellular technologies such as 3G and 4G. This fre-
quent switching back and forth, known as the ping-pong effect,
produces additional energy costs. Secondly, bad reception
often causes retransmissions at the physical and transport
layers which also produces additional energy costs. Finally,
the smartphone radio is design to adjust their parameters when
experiencing bad reception in order to increase throughput
and decrease bit error. These adaptations generally result in
lower data rates and higher transmission powers, both of
which consume more energy. With the average smartphone
experiencing bad reception 47% of the time [6], the aggregate
impact of these side effects can significantly reduce the battery
life.

An average smartphone user interacts with his smartphone
for only 58 minutes per day [7]. The remaining of the day
smartphones are usually in the idle state. While in the idle
state, components such as the display and the processor are
normally turned off or placed in low power states to conserve
energy. However, the data interfaces often continue to be used
during the idle state to accommodate the data traffic generated
by some applications. In fact, study [6] shows that 19% of all
the traffic generated by a smartphone is generated during the
idle state. Most of this idle state traffic is unnecessary because
it provides no immediate functionality to the user and it is
often the result of careless application design.

On the other hand, some of the idle state data traffic
is necessary. For example, new email arrivals, social status
updates, and instant messages all require real-time notification
to their users. Currently, push services are the mechanism
by which notifications are delivered to smartphones, which
rely on long-lived TCP connections between smartphones and



the push server [8]. Such a connection serves as a “virtual
circuits” by which notification data that the smartphone has not
requested can be “pushed” to the smartphone. Therefore, the
data interfaces in current smartphones are required to remain
active even during the idle state in order for smartphones to
maintain data channel to receive notifications. Such an always-
on approach for data interfaces consume significant battery
power during the long idle state time period.

In this paper, we remove the always-on requirement for
data interfaces, and present a Short message service Push
based Service (SPS) to save unnecessary power consumption
when smartphones are in idle state, especially in bad reception
areas. SPS disables a smartphone’s data interfaces whenever
the phone is in idle state—this will remove all the energy
wasted in maintaining data interfaces in idle state, and remove
energy consumed by the unnecessary idle state data traffic.
To preserve the real-time notification functionality required
by some apps, such as new email arrivals and social media
updates, when a notification is needed, a wakeup short message
service (SMS) message will be received by the phone, and
then SPS enables the phone’s data interfaces to connect to
the corresponding server to retrieve notification data via the
normal data network (either broadband cellular data connection
or WiFi connection). Once the notification data has been
retrieved, SPS will disable the data interfaces again to conserve
energy during the phone’s idle state.

Besides energy conservation, the proposed SPS can provide
additional benefits. First, it enables a smartphone user to better
control what idle state data traffic is allowed during the phone’s
idle state. This is especially useful for mobile users who have
unlimited or cheap text messaging but limited cellular data
plan. Second, SPS also enables a mobile user to control how
frequent she wants to receive notifications from the push server
by specifying her preference in SPS configuration. This will
prevent the mobile user from being too much distracted by a
burst of notifications.

Our contributions in this paper are:

• We have proposed an SMS push based scheme to con-
serve energy consumption when smartphones are in idle state,
especially at bad reception areas. The scheme exploits the
traditional cellular text messaging as a side channel in facil-
itating network data communication when the data interfaces
are disabled during phone’s idle state.

• We have developed a prototype server and an Android client
that controls the data interfaces and utilizes the SMS based
push service proposed in this paper. Our prototype allows
us to simulate the notification traffic between a server and
multiple smartphone applications. This enables us to measure
the energy saving obtained using the proposed scheme. In
addition, we have developed a server and client that use
the push service commonly employed by current Android
applications, Google Cloud Messaging (GCM) [9]. In this
way, we are able to measure how our proposed SPS compares
against traditional push services in term of notification delay
and energy consumption.

The remaining of the paper is organized as follows. We
discuss related work in Section II. Section III presents the
proposed energy saving scheme. Section IV presents the

evaluation of the proposed energy saving scheme, and finally
Section V concludes this paper.

II. RELATED WORK

Previous works on the impact of the cellular data interface
in the battery life of smartphones have focused on the RCC
power states [3] [4] [5]. These works conclude that the
RCC state machine introduces significant energy inefficiencies
because of the power state promotion overhead and the tail
effect. These works propose modifying the inactivity timers
used to transition from high power states to low power states.
Our work is different because it addresses external factors,
such as unnecessary idle state traffic and bad reception, that
significantly contribute to the overall energy consumed by the
radio.

Zhang et al. proposes E-MiLi (Energy-Minimizing idle
Listening) the reduce energy consumption of Wi-Fi compo-
nents [10]. By analyzing real-world Wi-Fi traffic traces, the
author determines that idle listening is responsible for 60% to
80% of the Wi-Fi’s energy consumption. To reduce the energy
consumption during idle listening, E-MiLi reduces the clock-
rate of the radio during idle listening and reverts to full clock-
rate when the radio transmits or receives packets. Our work is
different from Zhang’s because our proposed SPS reduces the
Wi-Fi’s energy consumption in smartphones caused by external
factors such as bad reception and unnecessary idle state traffic.

Ding et al. investigate how bad reception increases the
amount of energy consumed by the smartphone radio [6]. The
author developed a more accurate model of smartphone battery
life. Furthermore, Ding proofs that bad reception significantly
increases the amount of energy that the smartphone radio
consumes. Ding concluded that buffering idle state traffic
while the smartphone is experiencing bad reception could
reduce energy consumption by up to 21.5%. Our approach
is different from Ding’s because it allows the smartphone to
continue to receive notification even if there is bad reception.
In addition, our approach also addresses energy consumption
due to unnecessary idle state traffic.

There are several works that study energy consumption of
the push mechanisms employed in smartphones. Haverinene
et al. and Gupta et al. investigates how the keep-alive traffic
used by push mechanisms affects the battery lifetime of
smartphones in WCDMA and LTE networks respectively [11]
[12]. Both authors propose modifying the RCC parameters to
reduce the impact on keep-alive traffic in the battery life. Meng
et al. proposes using buffers and a number of middle agents
to reduce energy consumption of push mechanism used by
instant message applications in smartphones [13]. Dinh et al.
compares the energy consumed by an application that uses
push services against an application that uses polling to retrieve
unsolicited data from a server [14].

Our work is different from all the above works because,
rather than fine tuning the current push mechanism employed
in smartphones, we propose disabling data interfaces during
phone’s idle state to conserve energy and using a completely
different push mechanism based on SMS channel instead of
traditional data channel. This new mechanism is transparent
to smartphone users, does not affect real-time notification



requirement for normal apps, and significantly saves energy
consumption especially in areas with bad reception.

III. PROPOSED ENERGY SAVING SCHEME

In this section we describe our proposed SPS energy
saving scheme. Basically speaking, it contains two parts: radio
frugality policy, and SMS-based push service.

A. Radio Frugality Policy

We decrease battery impact of the wireless radio by reduc-
ing the amount of active time of data interfaces throughout the
day. We achieve this by disabling the data interfaces whenever
the smartphone is not being used, i.e., when the smartphone
is in the idle state. And, enabling the data interfaces when
the smartphone returns back to the active state. Under this
radio frugality policy, the user of a smartphone continues to
receive phone calls and text messages when the phone is in
idle state and is able to use the data service whenever he/she
uses the phone. Thus, from the user’s perspective, data service
appears uninterrupted. Because statistical study shows that
smartphones spend the majority of the day in the idle state [7],
this radio frugality policy significantly reduces the amount of
time the radio is being used unnecessarily. The proposed radio
frugality policy mimics the policies mobile platforms apply
to other power hungry components such as the display and
processor. These policies treat power hungry components as
expensive resources, and thus, try to minimize the amount of
time they are used.

The proposed policy saves energy by addressing two of
the main sources of energy consumption in smartphone radio
when the phone is in idle state. First, it reduces the impact of
bad reception in the radio. Bad reception prompts the radio to
consume significantly more energy regardless of whether the
smartphone is in the idle or active state. This is due to the
frequent dissociation and reassociation with base stations[15],
and radio link power adaptation during back reception stage
[6]. Since on average a smartphone experiences bad reception
47% of the day [6], bad reception contributes significantly
to the overall energy consumed by the radio. Because a
smartphone spends on average around 23 hours per day in
idle state [7], this radio policy reduces the majority of bad
reception side effects on the radio energy consumption.

Second, the proposed policy reduces the amount of unnec-
essary traffic produced by smartphones. On average, 19% of
all the traffic generated by a smartphone is produced during the
idle state [6]. Most of this idle state traffic can be considered
unnecessary because it provides no immediate functionality
to the user. Idle state network traffic is often the result of
careless application design, such as not taking the extra steps to
consider the smartphone’s state before generating network traf-
fic. But also, it is the result of smartphone operating systems
not enforcing stricter resource allocation policies for the data
interfaces. In Android and iOS, for example, applications do
not require a special set of permission to use the data interfaces
while the smartphone is in the idle state. Thus, it is easy for
a developer to make an application that mistakenly continues
to produce network traffic even while the smartphone is in the
idle state.

It should be noted that the radio frugality policy will not
be active when the smartphone is in active state. This policy
is only used when the phone is in idle state.

B. SMS-based Push Service

In current smartphone world, push services use long-lived
TCP connections to create “virtual circuits” from push servers
to smartphones. Using these virtual circuits, push services are
able to send data that the smartphones have not requested.
However, to maintain the virtual circuits, the data network
interfaces of smartphones must remain on at all times. Thus,
disabling the data interfaces by our proposed scheme while
a smartphone is in the idle state would prevent notifications
from being delivered to the smartphone. This may not be
acceptable for some useful real-time apps, such as email, social
networking, or instant messages.

To allow smartphones to continue receiving notifications
even while the data interfaces are disabled, we propose using
SMS as a side channel to facilitate the delivery of notification
data. Because SMS uses traditional cellular technology to route
and deliver messages [16], it enables the push service to inform
a smartphone of incoming notification even when the phone’s
data interfaces are disabled.

The first step for an application to receive notifications
through the proposed SMS-based push service is to register the
phone’s number with the application server. This can be easily
done when the app is installed and connects to the application
server for the first time. The application server then stores the
phone number for future use. Once the application server has
new data for the app, it simply sends a wakeup SMS message
to the smartphone using the phone number received during
the registration process. The SMS message may contain an
optional but small payload (e.g., the ID of the app, type of the
notification message, or the complete notification data itself if
it can be fit into one SMS message), or contains no payload at
all. Upon receiving the SMS wakeup message, the SPS client
code on the smartphone will enable the data interfaces (3G/4G
cellular and/or Wi-Fi) to synchronize with the server using a
data connection (or, if the SMS message payload contains all
the necessary information, assimilate the message directly).
Figure 2 illustrates the complete procedure of our proposed
SPS scheme.

Besides allowing the data interfaces to be disabled while
the smartphone is in idle state, the SMS push is inherently
more energy efficient than typical push services on data
channels. First, maintaining the virtual circuit between the
smartphone and the server required by traditional push ser-
vices introduces additional and unnecessary idle state traffic.
It requires the smartphone to re-establish a long-lived TCP
connection with the push service every time the smartphone
loses and regains data connection, switches wireless data tech-
nology, or changes gateway. In addition, it requires periodic
transmissions of keep-alive packets to prevent firewalls or
NATS from dropping the long-lived TCP connection [11].
Because SMS uses traditional cellular technology to route and
deliver messages, the proposed SMS push does not produce
any unnecessary idle state traffic. Furthermore, SMS messages
are delivered through cellular control channels, and as a result,
the radio does not enter the high power state when receiving
an SMS notification [17].



(a)

(b)

(c)

(d)
Fig. 2. SMS-based push service procedure for the proposed SPS in phone’s
idle state. (a) When the application server has new data for the smartphone
while the phone’s data interfaces are disabled, it first sends an SMS message
to the smartphone. (b) The SMS notification prompts the smartphone to enable
its data interfaces and send a sync request message to the application server
using the regular data service. (c) The application server replies to the sync
request by sending the new data to the smartphone. (d) Once the smartphone
receives the new data, it disables its data interfaces again if it remains in idle
state. The phone can still receive voice calls or SMS messages via traditional
cellular service.

If a smartphone user wants to further save energy consumed
in phone’s idle state, or reduce the amount of SMS notification
messages issued by SPS push server, the user can easily
configure the SPS push server to deliver SMS notification
messages in a more intelligent way, such as deliver each SMS
message only after it accumulates up to n notification requests,
or after such as 10 minutes has passed. By configuring the
parameter to be infinity, the user can completely remove energy
consumed by data interfaces during phone’s idle state.

IV. PROTOTYPE AND EVALUATION

Currently, third-party app servers that want to push noti-
fications to smartphones do so by using a public or private
push service, such as “Google Cloud Messaging for Android”
[9]. These services then deliver the notifications to the corre-
sponding push service client running in the target smartphone
by using a protocol such as SMPP or MQTT.

To measure the energy utilization of the proposed SPS
scheme, we have developed an SPS push server and an
Android client prototype. The source codes of the server and
client used throughout the evaluation are available online at
http://www.cs.ucf.edu/∼czou/SPS.

A. Prototype

We implemented our prototype SPS push server using
Java on an Amazon AWS server. As previously discussed, to
deliver a sync notification the SPS server first sends an SMS
message to the smartphone. These SMS messages are specially
formatted for the SPS client running in the smartphone. Specif-
ically, each message starts with the key phrase “Server Hello”
and contains a universally unique identifier (UUID) [18]. The
key phrase allows the SPS client running on a smartphone
to distinguish SPS notifications from regular SMS messages
sent to the user. Once the SPS client has detected an SPS
notification, it retrieves the notification data from the SPS
server by enabling the data interfaces of the smartphone and
send the unique notification ID to the push server. The SPS
push server uses this UUID to retrieve the appropriate message
from a message queue and sends it back to the smartphone
using the newly established data channel.

There are multiple methods to send SMS messages pro-
grammatically from a computer. In our prototype, we use the
SMTP SMS gateways provided by cellular carriers mainly
because they are free of charge. These gateways are able
to convert SMTP messages to SMS messages. To use these
gateways, our prototype push server simply sends an email
to phonenumber@carrierdomain.com. The prototype
server uses Oracle’s JavaMail library [19] to connect with
Gmail server and uses Gmail as a proxy to send an SMS
message to one of these SMTP SMS gateways. We deploy
this method in our prototype because it is cost free, although
it is not the quickest delivering method.

In real deployment, third-party servers generate the no-
tification traffic and then should use the SPS push service
to deliver the message. For our experiments, the notification
traffic is simulated by the prototype SPS server itself. The
prototype server generates notification traffic that follows a
Poisson process.

The SPS client is implemented as an Android app that auto-
matically begins running in the background when a smartphone
is powered on. The SPS client is responsible for both enforcing
the proposed radio frugality policy and handling the SMS-
based push service. The SPS client automatically disables or
enables the data interfaces (both 3G/4G and Wi-Fi) every time
the smartphone enters the idle or active state respectively. In
addition, the SPS client monitors all incoming SMS messages
looking for SPS notifications. If an SPS notification text mes-
sage is received, the SPS client first deletes the text message
and then begins the server sync process. To do this, the SPS
client enables the data interfaces, retrieves the data from the
application server using a TCP connection, and disables the
data interfaces again. By discarding the SPS text message, the
client prevents the SPS notification text message from reaching
the Android text messaging application, and thus, making the
SPS operation transparent to smartphone users.

Throughout our experiments the SPS push server runs in
an Amazon AWS server and the SPS client runs in an LG
MS840 Android smartphone with a 1,540 mAh battery. The
LGMS840 smartphone is able to use 1xRTT CDMA, EVDO,
and LTE network technologies throughout the experiments. In
addition, we have implemented a test Android app and a test
application server that uses the current Google’s GCM push



(a) (b)

(c) (d)
Fig. 3. Battery charge used by SPS vs GCM of (a) a social user, and (b)
a business user, experiencing bad reception. Battery charge used by SPS vs
GCM of (c) a social user, and (d) a business user, experiencing good reception.

service [9]. We use the GCM implementation to compare how
the proposed SPS performs against traditional data channel
based push services.

Finally, it is worth mentioning that although we only use
sync notifications in all the experiments, our prototype does
support data notifications purely using SMS channel without
data channel involved. In this mode, as long as the notification
data is not big, it can be directly encoded into one or several
SMS messages sent to the smartphone, where the SPS client
absorbs notification data without any further action. Such
notification method would consume even less energy than SPS
sync notifications because the data interfaces do not need to
be enabled after receiving an SMS notification message.

B. Battery Usage

To measure the battery impact of the proposed scheme,
we simulated notification traffic and use the SPS and the
GCM implementations to handle it, respectively. In addition,
we define two types of users to study how the number of
notifications affects push service energy consumption. The first
type, the social user, is defined as a user that actively uses
Facebook, WhatsApp, email. The second type, the business
user, is defined as a user that only needs real-time notifications
for email service. Given that on average Facebook, Whatsapp,
and email applications receive 82, 116, and 105 notifications
throughout the day [20] [21] [22], we define the social user
and business user notification traffic as on average 303 and 105
notifications per day respectively. We simulate the notification
traffic using a Poisson process, and assume that all notifications
are received within a 16-hour time window in each day.

We ran the social and business user notification traffic
simulations for 3 hours using both the SPS and GCM im-

(a) (b)
Fig. 4. The delay to push a notification using (a) SPS scheme, and (b)
Google’s GCM scheme.

plementations. In addition, we performed each experiment in
an area with bad reception, where the signal strengths for
1xRTT/EVDO and LTE are on average -110 dBm and -130
dBm respectively, and also in an area with good reception,
where the signal strength for 1xRTT/EVDO and LTE are on
average -85 dBm and -94 dBm respectively. Throughout each
experiment we record the battery’s state of charge. The state
of charge is calculated by the Android operating system to
indicate how much of the battery’s capacity has been used.
Figure 3 shows the result.

Figure 3 shows that SPS consumes significantly less energy
than GCM when the smartphone is in bad reception area. In
fact, given our test environment, the result figures show that
the battery of a smartphone using SPS would last twice as long
as that of a smartphone using GCM.

Figure 3 shows that SPS also consumes less energy than
GCM when the smartphone is in a good reception area. Com-
paring energy use between good reception and bad reception,
we can conclude that bad reception is a major power drainage
factor, and the proposed SPS works best if a smartphone
stays a long period in bad reception areas throughout a day
(which happens frequently for employees who daily work
inside metal-framed buildings).

C. Delay

We measure the delay of delivering a notification using SPS
against GCM. The results are shown in Figure 4. It takes on
average 9.8 sec to deliver a notification using our prototyped
SPS system. On the other hand, it takes on average 2.1 sec to
deliver notification using GCM.

We further analyze the time delay of SPS notifications by
recording each event that occurs on the prototype server and
Android app. To ensure that our measurements are accurate,
we synchronize the smartphone and the push server using a
pool.ntp.org time server [23]. We can split the SMS push
notification delay into three parts:

• The SPS push server sends an email to the email proxy;
• The email proxy sends SMS message to the smartphone;
• The smartphone activates data interfaces to retrieve notifica-
tion data from the SPS push server.

Figure 5 shows the time delay for the three parts in SPS
notification. On average, 1.9 sec are spent in sending the
notification to the proxy email server used in our cost-free



(a) (b) (c)
Fig. 5. Time delay in SPS scheme. (a) Delay between the application server
and the email proxy. (b) Delay between the email proxy and the smartphone.
(c) Delay to retrieve the new data from the application server.

implementation; and 6.2 sec is spent by the cost-free email
proxy to complete SMS message delivery. We used the SMTP
SMS gateway method in our prototype because it is provided
by the cellular carriers free of cost. There are alternative
methods to send SMS notifications without involving an SMTP
gateway, which could reduce the SPS delay significantly by
removing the email proxy from the notification transmission
procedure.

In addition, we observe that the extra step of enabling
the data interfaces before retrieving the notification data adds
minimal delay. On average, it takes 630 msec for SPS to sync
with the application server while GCM takes 487 msec.

V. CONCLUSION

In this paper we propose a new energy saving scheme to
reduce unnecessary power consumption when smartphones are
in the idle state, especially when they are in bad reception
areas. First, our scheme implements a policy that disables the
data interfaces every time the smartphone enters the idle state
and re-enables it every time the smartphone enters the active
state. By doing this, the proposed policy is able to neutralize
two of the main sources of energy consumption related to
the data interfaces: bad reception and unnecessary idle state
traffic. To support real-time notification functionality required
by some apps, we propose a notification system that relies
on SMS to temporarily enables the data interfaces to retrieve
notification data through normal data channel. This SMS-based
method allows smartphones to continue to receive notifications
even when the data interfaces are disabled.

We developed a prototype of the proposed energy saving
scheme and tested in a realistic environment. Our evaluation
shows that SPS consumes significantly less energy than the
current approach. In fact, using the proposed SPS the battery of
a smartphone lasts twice longer than using the current system
when the smartphone is experiencing bad reception.

REFERENCES

[1] J. Heggestuen. (2013) One in every 5 people in the world own a
smartphone, one in every 17 own a tablet. [Online]. Available: http://
www.businessinsider.com/smartphone-and-tablet-penetration-2013-10

[2] Free apps drain smartphone energy on ’advertising modules’.
[Online]. Available: http://www.purdue.edu/newsroom/research/2012/
120404HuSmartphone.html

[3] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“Characterizing radio resource allocation for 3g networks,” in Proceed-
ings of the 10th ACM SIGCOMM conference on Internet measurement.
ACM, 2010, pp. 137–150.

[4] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of 4g
lte networks,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services. ACM, 2012, pp. 225–238.

[5] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement. ACM, 2010,
pp. 281–287.

[6] N. Ding, D. Wagner, X. Chen, Y. C. Hu, and A. Rice, “Characterizing
and modeling the impact of wireless signal strength on smartphone
battery drain,” in Proceedings of the ACM SIGMETRICS/international
conference on Measurement and modeling of computer systems. ACM,
2013, pp. 29–40.

[7] J. Fetto. (2013) Americans spend 58 minutes
a day on their smartphones. [Online]. Available:
http://www.experian.com/blogs/marketing-forward/2013/05/28/
americans-spend-58-minutes-a-day-on-their-smartphones/?WT.srch=
PR EMS smartphones 052813 press

[8] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.-P.
Weinmann, IOS Hacker’s Handbook. John Wiley & Sons, 2012.

[9] Google cloud messaging for android. [Online]. Available: http:
//developer.android.com/google/gcm/index.html

[10] X. Zhang and K. G. Shin, “E-mili: energy-minimizing idle listening in
wireless networks,” Mobile Computing, IEEE Transactions on, vol. 11,
no. 9, pp. 1441–1454, 2012.

[11] H. Haverinen, J. Siren, and P. Eronen, “Energy consumption of always-
on applications in wcdma networks,” in Vehicular Technology Confer-
ence, 2007. VTC2007-Spring. IEEE 65th. IEEE, 2007, pp. 964–968.

[12] M. Gupta, S. C. Jha, A. T. Koc, and R. Vannithamby, “Energy impact
of emerging mobile internet applications on lte networks: issues and
solutions,” Communications Magazine, IEEE, vol. 51, no. 2, pp. 90–
97, 2013.

[13] L.-S. Meng, D.-s. Shiu, P.-C. Yeh, K.-C. Chen, and H.-Y. Lo, “Low
power consumption solutions for mobile instant messaging,” Mobile
Computing, IEEE Transactions on, vol. 11, no. 6, pp. 896–904, 2012.

[14] P. C. Dinh and S. Boonkrong, “The comparison of impacts to android
phone battery between polling data and pushing data,” in IISRO Multi-
Conferences Proceeding. Thailand, 2013.

[15] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
ACM, 2011, p. 5.

[16] K. Amri and T. Ceglarek. Sms: How does it work? [Online]. Available:
http://services.eng.uts.edu.au/userpages/kumbes/public html/ra/sms/

[17] M. Sauter, 3G, 4G and Beyond: Bringing Networks, Devices and the
Web Together. John Wiley & Sons, 2012.

[18] A universally unique identifier (uuid) urn namespace. [Online].
Available: http://www.ietf.org/rfc/rfc4122.txt

[19] Javamail. [Online]. Available: http://www.oracle.com/technetwork/java/
javamail/index.html

[20] The average facebook user receives 82 notifications everyday. [Online].
Available: https://twitter.com/UberFacts/status/263487232613163008

[21] S. McGlaun. Whatsapp handles 50 billion messages daily, more
than sms delivery. [Online]. Available: http://www.slashgear.com/
whatsapp-handles-50-billion-messages-daily-more-than-sms-delivery-21313892/

[22] Q. Hoang. Email statistics report, 2011-2015. [Online].
Available: http://www.radicati.com/wp/wp-content/uploads/2011/05/
Email-Statistics-Report-2011-2015-Executive-Summary.pdf

[23] How do i use pool.ntp.org? [Online]. Available: http://www.pool.ntp.
org/en/use.html


