
N

New Variants of Mirai and
Analysis

Zhen Ling1, Yiling Xu1, Yier Jin2, Cliff Zou3,
and Xinwen Fu4
1School of Computer Science and Engineering,
Southeast University, Nanjing, China
2University of Florida, Gainesville, FL, USA
3University of Central Florida, Orlando, FL,
USA
4University of Massachusetts Lowell, Lowell,
MA, USA

Synonyms

Botnet; DDoS; IoT; Malware

Definition

Mirai, which means “the future” in Japanese, is a
self-propagating malware that infects vulnerable
networked IoT devices so as to turn them into
part of a botnet that can be leveraged to perform
large-scale distributed denial-of-dervice (DDoS)
attacks.

Historical Background

The Mirai botnet was first discovered in
August 2016 (Mal 2016). It has been used
in massive DDoS attacks, including an attack

on KrebsonSecurity in September 2016 which
exceeded 600 Gbps (Krebs 2016), an attack on
OVH in September 2016 which exceeded 1 Tbps
(Klaba 2016), and an attack on Dyn in October
2016 (Hilton 2016) resulting in the cripple of
some well-known websites such as GitHub,
Twitter, Reddit, Netflix, Airbnb, and many others
(Williams 2016). At its peak, Mirai infected 600k
vulnerable IoT devices (Antonakakis et al. 2017),
whose IP addresses were spotted in 164 countries
(Herzberg et al. 2016). Since the source code for
Mirai was published on hackforums.net (Anna-
senpai 2016), the techniques can be digged
deeply and may be adapted in other malware
projects. The original creators of Mirai (i.e.,
Paras Jha, Josiah White, and Dalton Norman) has
pleaded guilty in December 2017 (Department
of Justice 2017) and sentenced to probation in
September 2018 (Department of Justice 2018).

Foundations

Overview
In this chapter, we first present our analysis of
the released source code of the Mirai malware
for its architecture, scanning, and prorogation
strategy (Antonakakis et al. 2017; Kambourakis
et al. 2017; Ling et al. 2018). We then discuss
why Mirai did not get attention in its proroga-
tion phase until it deployed the DDoS attack.
Finally, we present a new variant of Mirai that
can improve the propagation speed. The goal of
the study is to understand the impact of Mirai as
both a worm and botnet.

© Springer Nature Switzerland AG 2020
X.(S.) Shen et al. (eds.), Encyclopedia of Wireless Networks,
https://doi.org/10.1007/978-3-319-32903-1_174-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-32903-1_174-1&domain=pdf
http://link.springer.com/Botnet
http://link.springer.com/DDoS
http://link.springer.com/IoT
http://link.springer.com/Malware
https://doi.org/10.1007/978-3-319-32903-1_174-1


2 New Variants of Mirai and Analysis

Mirai Botnet
The Mirai botnet comprises four components as
shown in Fig. 1: bots, a C&C (command and
control) server, a scanListen server, and loader
servers. The bots are a group of hijacked loT
devices via the Mirai malware. Starting with
a scanning procedure on the port of the telnet
service, the bots continue to perform a password
dictionary attack using the username/password
list already hardcoded in the Mirai malware.
In this way, some vulnerable loT devices are
infected. The C&C server monitors the status of
the botnet and controls the bots by obeying the
commands from a botmaster, e.g., sending attack
commands. On receiving the attack commands,
the bots deploy various attacks such as distributed
deny-of-service (DDoS) attacks. The scanListen
server receives information of those newly dis-
covered vulnerable IoT devices and relays it to
the loader server. The loader server logs into a
vulnerable device and infects it by executing the
Mirai malware carried by the loader server. The
IoT devices can be classified into three types:
(1) IoT devices that close the telnet service port,
i.e., 23/2323 port. They are not accessible to the
bots since the TCP connections are cut off perma-
nently; (2) IoT devices that open the telnet service
port but their username/password is absent in
the username/password list of Mirai. The bots

can perform the brute force attack against them
but can never successfully compromise them; (3)
IoT devices that open the telnet service port and
their username/password is available in the list
of Mirai. These devices can be compromised.
Figure 1 illustrates the propagation procedure of
Mirai. The step-by-step process is explained as
follows.

• Step 1 – Bots scanning loT devices: The
propagation starts with a single IP, which
is treated as a bot to ensure its consistency.
The bot scans and detects vulnerable IoT
devices over the Internet. The bot selectively
probes the 23/2323 port of public IP addresses
through TCP SYN scans. Note that some
IP addresses are whitelisted by Mirai,
including those of the US Postal Service,
the Department of Defense, the Internet
Assigned Numbers Authority (IANA), and
IP ranges belonging to Hewlett-Packard and
General Electric. Once a TCP SYN/ACK
packet is acquired from an loT device, a TCP
connection is to be established between the
bot and the IP address of the device. In order
to log into the telnet server, the bot randomly
selects a pair of usernames/password from
its dictionary and tries it out to check
whether the login is successful. By default,

New Variants of Mirai
and Analysis, Fig. 1
Propagation process of
Mirai

1 2

4

6

7

5

3



New Variants of Mirai and Analysis 3

N

the dictionary has altogether 62 pairs of
usernames/password. However, the password
cracking trials are no more than ten times for
a target.

• Step 2 – Bots reporting information to scan-
Listen server: After a bot compromises a
vulnerable IoT device, it reports the informa-
tion of the device to the scanListen server,
including the IP address, the port, and the
username/password of the target. The domain
name and port of scanListen server are also
hardcoded into the malware.

• Step 3 – scanListen server relaying
information to loader server: The scan-
Listen server receives the information of a
compromised loT device from the bot and
then forwards it to the loader server.

• Step 4 – Loader server installing Mirai:
The loader server first builds a TCP connec-
tion with the compromised device and then
logs onto the device with the cracked user-
name/password. After its login, the loader
server starts detecting file transmission tools
like wget or tftp on the target system. If a trans-
mission tool is available, the Mirai malware
is directly downloaded from the loader server
and executed. Otherwise, the loader server
connects to the telnet port of the target, reads
a tiny binary file whose function is similar to
that of wget, and writes echo into the target
device. The hex characters from the binary
file constitute the string for echo. Then the
output stream of echo is redirected into a
file and saved at the target device. Therefore,
the binary file is transmitted from the loader
server to the target. By executing the file, the
Mirai malware can be downloaded from the
loader server. Once the Mirai is executed, it
shuts down Telnet, SSH, and HTTP server on
the compromised device to avoid the login of
other malwares or administrators. Mirai also
binds to port 48101 for the assurance that only
one instance of the malwares is running on this
device.

• Step 5 – Bot registrating with C&C server:
Once the Mirai malware is installed and exe-
cuted on a vulnerable device, the device builds
a TCP connection, registers with the C&C

server, and gets involved in the Mirai botnet.
The domain name and port of the C&C server
are hardcoded into the malware. Then the bot
performs Step 1.

• Step 6 – Botmaster commanding bots to
conduct attacks: A botmaster can command
the bots to perform attacks by sending instruc-
tions via the C&C server. The Mirai malware
can be activated to launch various attacks like
UDP DoS attack, TCP DoS attack, HTTP
attack, and GREP attack.

• Step 7 – Botnet attacking a target: Once the
C&C server receives the attacking instructions
from the botmaster, it conveys the commands
to the bots. Finally, the bots perform attacks
against a target.

Scanning Strategy
The scanning algorithm of the released source
code of the Mirai is worth studying since it
is the key to its propagation speed. Therefore,
we thoroughly analyze the Mirai scanning
algorithm in Algorithm 1. It is discovered that
Mirai malware uses a uniform scanning strategy.
Specifically, Mirai randomly scans public IP
addresses and then randomly selects a pair of
usernames/password from a hardcoded list for
the dictionary attack. The TCP SYN scanning
technique is employed to probe the 23/2323
port of a device for the purpose of determining
whether the port is open. As can be seen from the
Mirai source code, 160 IP addresses are randomly
selected as target for the bot to scan. The bot
sends TCP SYN packets to those IP addresses
by using a raw socket. Then the raw socket is
checked so as to obtain SYN+ACK packets.

As long as the bot receives a SYN+ACK
packet, it establishes a TCP connection with the
IP address in the non-blocking mode and records
the connection in a table. After checking the raw
socket and recording the connections, the bot
checks the status of all TCP connections in the
table. If a TCP connection fails to be built within
5 s, the bot will give up the connection request.

Conversely, if the TCP connection to the
telnet port of an IP is established successfully,
the bot will select a pair of usernames/password



4 New Variants of Mirai and Analysis

Algorithm 1: Mirai Scanning Algorithm

Require:
(a) � - the number of SYN probes sent by Mirai each
time,
(b)m - the size of a table,
(c) table - TCP connection table,
(d) tableŒi� - store the ith TCP socket in table,
(e) tableŒi�:state - TCP connection state of the
ith entry of table, e.g., connecting or connected.

Ensure: Discover the vulnerable devices
1: while TRUE do
2: if time interval since last SYN probe>D 1s then
3: Send � probes using a raw socket
4: end if
5: while TRUE do
6: Read SYN+ACKs packets from the raw socket
7: if error jj no data for reading jj no entries in

table then
8: break
9: else if the ith entry of table is empty then

10: Build a connection,
tableŒi�:state D connecting

11: end if
12: end while
13: for i D 1 W m do
14: if the connection in tableŒi� times out then
15: if tableŒi�:state DD connected then

16: re-connect(try times < 10), otherwise
free tableŒi�

17: else if tableŒi�:state DD connecting
then

18: free tableŒi�
19: end if
20: else if tableŒi�:state DD connecting

then
21: Set the tableŒi� in write file descriptor set

(wr fdset)

22: else if tableŒi�:state DD connected
then

23: Set the tableŒi� in read file descriptor set
(rd fdset)

24: end if
25: end for
26: Select the write and read file descriptors
27: for i D 1 W m do
28: if tableŒi� in wr fdset then
29: if connection error for tableŒi� then
30: free tableŒi�
31: else if connection success for tableŒi�

then
32: tableŒi�:state D connected
33: end if
34: end if
35: if tableŒi� in rd fdset then
36: while TRUE do
37: if connection error for tableŒi� then
38: re-connect(try times < 10), otherwise

free tableŒi�
39: break
40: else if no data for reading then
41: break
42: else if data for the last command then
43: if login success then
44: report to scanListen server
45: else if login fail then
46: re-connect(try times < 10),

otherwise free tableŒi�
47: end if
48: else
49: send one command
50: end if
51: end while
52: end if
53: end for
54: end while

at random from the hardcoded list. Meanwhile,
according to the feedback from the target device,
the login can be verified as either a success
or a failure. If the bot receives no response
from the device in 30 s, the login is deemed
as a failure, and another trial goes on. The
bot cuts off the unsuccessful connection and
builds a new TCP connection to guess a random
username/password again. However, such trials
are only limited to ten times for Mirai to crack
the username/password of a target IP.

Why Mirai Did Not Get Attention During
Propagation
Since Mirai propagation did not cause the large-
scale network congestion in the Internet in con-
trast to the propagation of Code Red worm (Zou
et al. 2002), Mirai did not get attention during the
propagation. To shed light on this phenomenon,
we perform extensive simulations of Mirai prop-
agation and analyze the time of TCP connection
setup between a bot and a telnet port opened
device to reflect the network state.



New Variants of Mirai and Analysis 5

N

We simulate the original Mirai propagation
using NS3. Recall that we divide the IP address
space into three categories. We use empirical data
to set the number of the devices in each category.
Mirai grows to a peak of 600,000 infections at
the end of November 2016 (Antonakakis et al.
2017), and the total number of IP addresses is
3,417,112,576 besides the IP addressed in the
Mirai whitelists. Therefore, the proportion of
vulnerable IoT devices is 0.0176%. Additionally,
according to the results shown in ZoomEye (Zoo
2017), 11.1% online hosts open the telnet ports.
To simplify the calculation, we round the propor-
tions of the devices with open telnet ports and
vulnerable telnet services to the nearest integer.
Thus, in our simulation, we assume 10% of IoT
devices in the IP space open the telnet port
and 1% of the devices with the telnet service
are vulnerable. Assume that the total number
of devices in our simulated network is 65536.

By using Monte Carlo method, we select 6325
devices that open telnet port, and 64 devices can
be compromised by Mirai malware. Due to the
limitation of computing power of IoT devices, the
empirical results from Figure 6 in Antonakakis
et al. (2017) show that the scanning bandwidth
of 80% bots is smaller than 2000 Bps. Since the
size of a TCP SYN scanning packet is 74 bytes,
most bots can only probe around 30 IP addresses
to scan their telnet ports in each round, rather
than 160 IP addresses used in the Mirai source
code. Thus, we change the scanning rate to 30
in our simulation. Figure 2 illustrates the net-
work topology used in the simulation experiment.
We use the NS3 global routing by building a
global routing database for the topology using
a Dijkstra Shortest Path First (SPF) algorithm,
and we set the throughput of devices and routers
as 1000 Mbps. The TCP connection setup time
between a bot and a telnet port opened device

Device2
Device256 Device1

Device1

Device2

Device2

Device256

Device1

Device256
Device2

Device256Device1

Device256

Device2

Device1

Device256

Device2
Device1

Network1

Subnetwork1 Subnetwork16

Subnetwork1

Network2

Root Router

Network16

Subnetwork16

Subnetwork1 Subnetwork16

New Variants of Mirai and Analysis, Fig. 2 Network topology used in the simulation experiment



6 New Variants of Mirai and Analysis

11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TCP Connection Setup Time (millisecond)

C
D

F

Scan rate = 30, open port = 10%, proportion = 1%
Scan rate = 160, open port = 10%, proportion = 20%
Scan rate = 160, open port = 10%, proportion = 50%
Scan rate = 160, open port = 20%, proportion = 50%
Scan rate = 160, open port = 40%, proportion = 50%

New Variants of Mirai and Analysis, Fig. 3 TCP connection setup time distribution with different configurations

New Variants of Mirai and Analysis, Table 1 The pro-
portions of devices with open telnet port and vulnerable
telnet service

Devices with open telnet
port

Devices with telnet service
are vulnerable

10% 20%

10% 50%

20% 50%

40% 50%

is used to determine if the network is congested.
Figure 3 illustrates that the Mirai does not cause
network congestion by using empirical parame-
ters in the simulation. Therefore, we can infer
that the infected devices cannot generate a large
amount of propagation traffic due to the limited
computing power of vulnerable IoT devices.

Besides the limitation of IoT device comput-
ing power, another reason why Mirai does not
cause network congestion is that the proportions
of devices with open telnet port and vulnerable
telnet service, respectively, are small. We assume
the bot can probe 160 IP addresses in each round
as the source code set and set two proportions
in Table 1. The NS3 simulation results in Fig. 3
show that until we set 40% of IoT devices in the
IP space with open telnet port and 50% of the
devices with telnet service that are vulnerable, the

time of TCP connection setup becomes longer. At
that point, the Mirai propagation has caused net-
work congestion. Therefore, Mirai cannot cause
network congestion by scanning and infecting a
small number of devices with open telnet port and
vulnerable telnet service.

According to the real-world observation
(Antonakakis et al. 2017), the proportion of
devices with open telnet port and vulnerable
telnet service are much lower than the 40%
and 50%, respectively, and the limitation of
IoT devices computing power cannot probe
160 IP addresses every round either. Therefore,
Mirai did not cause network congestion and get
attention during the propagation.

New Mirai Variants
We design new scanning strategies in order to
boost the propagation. In contrast to the malware
such as the Code Red worm (Zou et al. 2002)
that exploits software vulnerabilities, the Mirai
malware not only scan the devices to discover
the open telnet port but also crack the user-
name/password using a hardcoded dictionary so
as to successfully infect IoT devices. Therefore,
the propagation speed of Mirai is much slower
than that of the Code Red worm.

To optimize the scanning strategy, the prob-
ability that a bot successfully finds the right



New Variants of Mirai and Analysis 7

N

New Variants of Mirai
and Analysis, Fig. 4 The
Mirai propagation speed
using different cracking
strategies

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

1400

Propagation Time (second)

N
um

be
r 

of
 B

ot
s

Random sername/password pair selection
Non−repeat username/password pair selection

New Variants of Mirai
and Analysis, Fig. 5 The
Mirai propagation speed
using different password
cracking times

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

Propagation Time (second)

N
um

be
r 

of
 B

ot
s

Mirai propagation simulation, attempts = 5
Mirai propagation simulation, attempts = 10
Mirai propagation simulation, attempts = 15
Mirai propagation simulation, attempts = 20
Mirai propagation simulation, attempts = 25
Mirai propagation simulation, attempts = 30

pair of username/password is the key parameter,
we denote as q here. The original Mirai scan-
ning strategy randomly selects a pair of user-
name/password from a hardcoded list for the
dictionary attack. Since there are 62 pairs of
username/password in the dictionary and the bot
tries at most 10 times on a target, we can derive
q D Œ1 � .61=62/10�. Our variant of Mirai does
not try the same password/username pair more
than once. If the bot tries at most ten times on a
target as the original Mirai, q can be improved
to q D 10=62. The simulation result in Fig. 4

shows that non-repeat username/password pair
try strategy can improve the Mirai propagation
speed.

The value of q varies as the username/password
cracking times change. Based on the analysis of
the original Mirai scanning strategy, we carry
out Mirai propagation simulations on a scale of
username/password cracking times. The cracking
times are set at 5, 15, 20, 25, and 30, respectively.
The simulation results are displayed in Fig. 5. It
is observed that with the number of attempts
increased (i.e., q increases), the rise of the



8 New Variants of Mirai and Analysis

propagation speed ensues. Another observation
is that as the number of attempts increases, the
gain (acceleration) of the propagation speed falls.
Thus we can devise a new variant of Mirai by
keeping the username/password cracking times
at 20 so as to fasten the Mirai propagation speed.

Future Directions

In this chapter, we study Mirai and propose new
Mirai variants. We carefully introduce the prop-
agation process of Mirai. Extensive NS3 simu-
lations suggest that if the number of vulnerable
devices is small, infected devices would not cause
network congestion. This is why Mirai did not get
attention during its propagation. To understand
the potential impact of future Mirai attacks, we
study new scanning strategies of Mirai that may
adopt a non-repeating username/password crack-
ing strategy and raise the number of cracking
attempts so as to significantly boost the propa-
gation speed. Our work in this chapter raises the
alarm again for the IoT device manufacturers to
better secure their products.

References

Anna-senpai (2016) [FREE] world’s largest net:Mirai
botnet, client, echo loader, CNC source code release.
https://hackforums.net/showthread.php?tid=5420472

Antonakakis M, April T, Bailey M, Bernhard M, Bursztein
E, Cochran J, Durumeric Z, Halderman JA, Invernizzi
L, Kallitsis M, Kumar D, Lever C, Ma Z, Mason
J, Menscher D, Seaman C, Sullivan N, Thomas K,
Zhou Y (2017) Understanding the Mirai Botnet. In:
Proceedings of the 26th USENIX security symposium
(Security)

Department of Justice (2017) Justice department
announces charges and guilty pleas in three computer
crime cases involving significant DDoS attacks. https://
www.justice.gov/opa/pr/justice-department-announces-
charges-and-guilty-pleas-three-computer-crime-cases-
involving

Department of Justice (2018) Hackers’ cooperation with
FBI leads to substantial assistance in other complex
cybercrime investigations. https://www.justice.gov/
usao-ak/pr/hackers-cooperation-fbi-leads-substantial-as
sistance-other-complex-cybercrime

Herzberg B, Bekerman D, Zeifman I (2016) Breaking
down Mirai: an IoT DDoS botnet analysis. https://
www.incapsula.com/blog/malware-analysis-mirai-dd
os-botnet.html

Hilton S (2016) Dyn analysis summary of Friday
October 21 attack. https://dyn.com/blog/dyn-analysis-
summary-of-friday-october-21-attack

Kambourakis G, Kolias C, Stavrou A (2017) The Mirai
botnet and the IoT zombie armies. In: Proceedings of
the IEEE military communications conference (Mil-
com)

Klaba O (2016) Octave klaba twitter. https://twitter.com/
olesovhcom/status/778830571677978624

Krebs B (2016) KrebsOnSecurity hit with record DDoS.
https://krebsonsecurity.com/2016/09/krebsonsecurity-
hit-with-record-ddos

Ling Z, Liu K, Xu Y, Gao C, Jin Y, Zou C, Fu X, Zhao W
(2018) IoT security: an end-to-end view and case study.
https://arxiv.org/pdf/1805.05853.pdf

Mal (2016) Linux/Mirai, how an old ELF malcode
is recycled. http://blog.malwaremustdie.org/2016/08/
mmd-0056-2016-linuxmirai-just.html

Williams C (2016) Today the web was broken by
countless hacked devices. https://www.theregister.co.
uk/2016/10/21/dyn_dns_ddos_explained

Zoo (2017) Zoomeye. https://www.zoomeye.org/
Zou CC, Gong W, Towsley D (2002) Code red worm prop-

agation modeling and analysis. In: Proceedings of the
9th ACM conference on computer and communication
security (CCS)

https://hackforums.net/showthread.php?tid=5420472
https://www.justice.gov/opa/pr/justice-department-announces-charges-and-guilty-pleas-three-computer-crime-cases-involving
https://www.justice.gov/usao-ak/pr/hackers-cooperation-fbi-leads-substantial-assistance-other-complex-cybercrime
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack
https://twitter.com/olesovhcom/status/778830571677978624
https://twitter.com/olesovhcom/status/778830571677978624
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://arxiv.org/pdf/1805.05853.pdf
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained
https://www.theregister.co.uk/2016/10/21/dyn_dns_ddos_explained
https://www.zoomeye.org/

	New Variants of Mirai and Analysis
	Synonyms
	Definition
	Historical Background
	Foundations
	Overview
	Mirai Botnet
	Scanning Strategy
	Why Mirai Did Not Get Attention During Propagation
	New Mirai Variants

	Future Directions
	References


