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ABSTRACT

Abstract—This dissertation investigates the privacy implications of WiFi communication

in Internet-of-Things (IoT) environments, focusing on the threat posed by out-of-network

observers. Recent research has shown that in-network observers can glean information

about IoT devices, user identities, and activities. However, the potential for information

inference by out-of-network observers, who do not have WiFi network access, has not

been thoroughly examined. The first study provides a detailed summary dataset, utiliz-

ing Random Forest for data summary classification. This study highlights the significant

privacy threat to WiFi networks and IoT applications from out-of-network observers.

Building on this investigation, the second study extends the research by utilizing a new

set of time series monitored WiFi data frames and advanced machine learning algorithms,

specifically xGboost, for Time Series classification. This extension achieved high accuracy

of up to 94% in identifying IoT devices and their working status, demonstrating faster

IoT device profiling while maintaining classification accuracy. Furthermore, the study

underscores the ease with which outside intruders can harm IoT devices without joining a

WiFi network, launching attacks quickly and leaving no detectable footprints.

Additionally, the dissertation presents a comprehensive survey of recent advancements

in machine-learning-driven encrypted traffic analysis and classification. Given the chal-

lenges posed by encryption for traditional packet and traffic inspection, understanding and

classifying encrypted traffic are crucial. The survey provides insights into utilizing ma-

chine learning for encrypted network traffic analysis and classification, reviewing state-
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of-the-art techniques and methodologies. This survey serves as a valuable resource for

network administrators, cybersecurity professionals, and policy enforcement entities, of-

fering insights into current practices and future directions in encrypted traffic analysis and

classification.
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CHAPTER 1: INTRODUCTION

The proliferation of Internet of Things (IoT) devices connected to WiFi networks has intro-

duced new challenges in maintaining the security and privacy of these networks. With the

increasing adoption of IoT devices in various domains such as healthcare, smart homes,

and industrial automation, the need to secure these devices against potential attacks has

become paramount. Attackers are increasingly targeting IoT devices due to their vulner-

abilities, using techniques such as packet sniffing and traffic analysis to gather sensitive

information [50].

This dissertation focuses on the privacy issues arising from the potential to fingerprint IoT

devices via their WiFi network connections, particularly investigating attacks conducted

by external attackers without network access. While existing research has primarily fo-

cused on attacks from within the network, such as through compromised devices or ma-

licious insiders, the possibility of attacks from outside the network presents a new and

challenging scenario.

In Chapter 2, The purpose of a survey paper is to provide a comprehensive and organized

overview of existing research, developments, and trends in a particular field or topic. It

only aims to summarize and synthesize existing knowledge, identify gaps or areas needing

further research, and provide insights for researchers, practitioners, and policymakers. it’s

served as valuable resources for those new to the field, as well as for experts looking for a

summary of the state of the art and future directions.

1



The main contribution of this chapter, providing a comprehensive overview and analysis of

encrypted network traffic analysis and classification utilizing machine learning techniques,

has significant impacts on the field of cybersecurity:

1. Enhancing network security monitoring and threat detection: By leveraging

machine learning to analyze encrypted network traffic metadata (packet sizes, tim-

ing, source/destination, etc.), this work enables the identification of malicious ac-

tivities, anomalies, and potential threats even in encrypted communications, which

traditional methods cannot inspect directly.

2. Improving encrypted traffic classification: The chapter explores various machine

learning approaches (supervised, unsupervised, reinforcement learning) and tech-

niques (statistical analysis, distance metrics) for accurately classifying different types

of encrypted traffic, applications, and protocols, crucial for network visibility and

policy enforcement.

3. Addressing the challenges of encryption: As encryption becomes more prevalent,

obscuring payload contents, the methods discussed in this chapter provide ways

to gain insights from encrypted traffic without compromising data confidentiality,

addressing a major challenge in cybersecurity monitoring.

4. Enabling proactive security measures: By detecting patterns and anomalies in

encrypted traffic using machine learning, this work allows for proactive security

measures, such as identifying zero-day attacks, advanced persistent threats (APTs),

and insider threats that evade traditional security controls.
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5. Applicability across domains: The chapter explores the application of encrypted

traffic analysis using machine learning in various domains, including Internet of

Things (IoT) devices, mobile applications, and web applications, demonstrating the

broad impact of this research.

6. Balancing security and privacy: The chapter highlights the importance of address-

ing privacy concerns and legal implications when conducting encrypted traffic anal-

ysis, promoting a balanced approach to cybersecurity that respects user privacy and

adheres to ethical and legal requirements.

Overall, this chapter’s main contribution advances the field of cybersecurity by provid-

ing effective methods to analyze and classify encrypted network traffic, enhancing threat

detection, network visibility, and proactive security measures while addressing the chal-

lenges posed by widespread encryption and considering privacy and legal aspects.

we delve into the existing literature surrounding encrypted traffic analysis, machine learn-

ing (ML) applications in cybersecurity, encrypted network traffic analysis and classifica-

tion, Internet of Things (IoT) security, and network traffic processing and inspection. This

comprehensive review sets the foundation for our research by highlighting the current

state of knowledge and identifying areas where further research is needed. We explore the

various techniques and methodologies used in previous studies and identify gaps that our

research aims to address [13]. 1

Chapter 3 is dedicated to the practical aspects of detecting IoT devices by monitoring en-

1Ibrahim A. Alwhbi, Cliff C. Zou, and Reem N. Alharbi. “Encrypted Network Traffic Analysis and
Classification Utilizing Machine Learning”. In: Sensors 24.11(2024).
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crypted wireless network traffic. We outline the threat model and assumptions, describe

the methodology for capturing out-of-network encrypted WiFi traffic, and detail the pro-

cess of data processing and profiling using machine learning algorithms. The chapter also

includes a discussion on observable data fields in out-of-network monitoring and presents

preliminary data analysis results. By focusing on out-of-network monitoring, we aim to

shed light on the potential vulnerabilities of IoT devices to external attackers.

The chapter presents findings from profiling 12 real-world IoT devices in different opera-

tional states and analyzing the prediction accuracy. Our most effective technique managed

to identify devices and their operational states (idle vs. active) with an average accuracy

of 95% [14]. 2

In this work, I was an equal contributor. I was involved in the conceptualization, data

collection, experimental setup, analysis, and writing of the paper. Although not the first

author, my contributions were pivotal in the research’s success.

This chapter is included in my dissertation because it represents a critical portion of my

research on the privacy issues associated with fingerprinting IoT devices through their

encrypted wireless network traffic. It directly aligns with the core objectives of my disser-

tation and is not being used in another dissertation.

In Chapter 4, we explore the concepts, techniques, and use cases of time-series data in the

context of IoT device detection. Time-series data plays a crucial role in understanding the

2Mnassar Alyami, Ibrahim Alharbi, Cliff Zou, Yan Solihin, and Karl Ackerman. “WiFi-based IoT De-
vices Profiling Attack based on Eavesdropping of Encrypted WiFi Traffic”. In: 2022 IEEE 19th Annual
Consumer Communications & Networking Conference (CCNC). 2022, pp. 385–392.
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behavior of IoT devices over time, allowing us to identify patterns and anomalies that can

be used for device detection. We define the problem statement, outline the threat model,

and discuss assumptions related to time-series data analysis. The chapter also presents a

system architecture for verifying collective movement and details the data processing and

analysis techniques used in our study. Results and discussions from this chapter provide

insights into the effectiveness of using time-series data for IoT device detection.

The chapter showcases the results from profiling 10 different real-world IoT devices in

various operational states and examining the prediction accuracy. Our most successful

method was able to identify the devices and their operational states (idle vs. active) with

an average accuracy of 94% [9]. 3

Chapter 5 concludes the dissertation by summarizing the findings from our investigation

into fingerprinting IoT devices from outside the network. We discuss the implications of

our research on network security and privacy, and outline future research directions in this

field. The chapter also reflects on the contributions of the dissertation and its potential

impact on the field of cybersecurity and IoT device security. By highlighting the chal-

lenges and opportunities in securing IoT devices connected to WiFi networks, we aim to

contribute to the development of more secure and privacy-preserving IoT systems.

In summary, this dissertation contributes to the understanding of privacy issues in IoT

device security and provides practical insights into detecting and mitigating attacks on IoT

devices connected to WiFi networks. The research presented here advances the field of

3I.A. Alharbi, A.J. Almalki, M. Alyami, C. Zou, and Y. Solihin. “Profiling Attack on WiFi-based IoT
Devices using an Eavesdropping of an Encrypted Data Frames”. In: Adv. Sci. Technol. Eng. Syst. J. 7
(2022), pp. 49–57.
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cybersecurity by addressing the challenges posed by external attackers without network

access, and opens up new avenues for securing IoT devices in an increasingly connected

world.
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CHAPTER 2: Literature Review, Encrypted Network Traffic

Analysis and Classification Utilizing Machine Learning

The main contribution of this chapter, providing a comprehensive overview and analysis

of encrypted network traffic analysis and classification utilizing machine learning tech-

niques, has significant impacts on the field of cybersecurity by enhancing network se-

curity monitoring and threat detection through the analysis of encrypted network traffic

metadata (such as packet sizes, timing, source/destination), enabling the identification of

malicious activities, anomalies, and potential threats even in encrypted communications,

which traditional methods cannot inspect directly. Additionally, it improves encrypted

traffic classification by exploring various machine learning approaches (supervised, un-

supervised, reinforcement learning) and techniques (statistical analysis, distance metrics)

for accurately classifying different types of encrypted traffic, applications, and protocols,

crucial for network visibility and policy enforcement.

The chapter addresses the challenges posed by encryption, which obscures payload con-

tents, by providing methods to gain insights from encrypted traffic without compromising

data confidentiality. Furthermore, it enables proactive security measures by detecting pat-

terns and anomalies in encrypted traffic, allowing for the identification of zero-day attacks,

advanced persistent threats (APTs), and insider threats that evade traditional security con-

trols. The applicability of these methods across various domains, including Internet of

Things (IoT) devices, mobile applications, and web applications, demonstrates the broad

impact of this research.
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Finally, the chapter highlights the importance of balancing security and privacy by ad-

dressing privacy concerns and legal implications when conducting encrypted traffic analy-

sis, promoting a balanced approach to cybersecurity that respects user privacy and adheres

to ethical and legal requirements. Overall, this chapter advances the field of cybersecurity

by providing effective methods to analyze and classify encrypted network traffic, enhanc-

ing threat detection, network visibility, and proactive security measures while addressing

the challenges posed by widespread encryption and considering privacy and legal aspects.

2.1 Utilize Machine Learning in Cybersecurity

Machine learning (ML) is a branch of artificial intelligence (AI) that empowers computers

to learn and improve from experience without being explicitly programmed. It involves

the development of algorithms that enable systems to automatically learn and make predic-

tions or decisions based on data. At its core, ML algorithms leverage statistical techniques

to identify patterns and relationships within datasets, allowing them to generalize from

past examples and make accurate predictions on unseen data.

In the context of cybersecurity, machine learning plays a crucial role in enhancing threat

detection, risk assessment, and anomaly detection. By analyzing vast amounts of data, ML

algorithms can identify patterns indicative of malicious activity, enabling early detection

and mitigation of security threats. ML techniques are particularly effective in cyberse-

curity due to their ability to process large-scale data in real-time and adapt to evolving

threats.
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We summarize the main cybersecurity application areas that people can utilize ML to

enhance cybersecurity defense and effectiveness:

• Threat Detection: ML algorithms can analyze network traffic, system logs, and user

behavior to identify abnormal patterns indicative of security threats such as malware

infections, intrusion attempts, and unauthorized access.

• Anomaly Detection: ML models can learn the normal behavior of systems and users

and detect deviations from this baseline, signaling potential security breaches or

anomalies. This approach is particularly useful for detecting zero-day attacks and

insider threats.

• Predictive Analysis: ML algorithms can predict potential security incidents based

on historical data and ongoing trends, enabling proactive risk management and mit-

igation strategies.

• Vulnerability Management: ML techniques can be used to identify vulnerabilities

in software and systems by analyzing code, network configurations, and historical

data, helping organizations prioritize and remediate security weaknesses.

• Behavioral Analysis: ML algorithms can analyze user behavior, application usage

patterns, and system interactions to identify suspicious activities and detect ad-

vanced persistent threats (APTs) that evade traditional security measures

9



2.2 Machine Learning (ML)

Machine Learning is a subset of artificial intelligence (AI) that focuses on developing

algorithms and models that enable computers to learn from data. Instead of being explicitly

programmed to perform a task, a machine learning system uses statistical techniques to

learn patterns and make predictions or decisions without being explicitly programmed for

the task [107, 75]. Machine learning is a specialized area within the study of artificial

intelligence (AI) that concentrates on creating algorithms and statistical models that allow

computers to carry out tasks without relying on explicit programming. The fundamental

concept underlying machine learning is to empower machines to acquire knowledge from

data and enhance their capabilities progressively [102].

Machine learning models acquire knowledge from a dataset, which is usually split into two

parts: the training set and the testing set. The training data is utilized to instruct the model,

whereas the testing data assesses its performance. Features are the independent variables

or characteristics that the model utilizes to generate predictions or make judgments [70].

Machine learning algorithms refer to the mathematical models used to analyze data and

identify trends. These types can be classified into supervised learning, unsupervised learn-

ing, and reinforcement learning Figure 2.1. The model undergoes training using a dataset

that is labeled, meaning each input is associated with its corresponding output. The ob-

jective is to acquire knowledge of a transformation from given inputs to corresponding

outputs [99]. The model is provided with unlabeled data and must identify patterns or

structure within it without explicit instructions. The model acquires knowledge through

active engagement with an environment and receives feedback in the form of rewards or

10



punishments.

A model is a depiction of the acquired patterns from the training data. It could be a

mathematical formula, decision tree, neural network, or other structures. Common forms

of models include linear regression, decision trees, support vector machines, and neural

networks. In the training phase, the model acquires knowledge from the training data by

modifying its parameters to reduce the discrepancy between its predictions and the real

results. The testing phase assesses the model’s capacity to generalize by evaluating its

performance on fresh and unseen data. Metrics are utilized to quantify the effectiveness of

a machine learning model. Typical metrics used vary depending on the nature of the task,

such as classification or regression. These metrics commonly include accuracy, precision,

recall, F1 score, and mean squared error. When a model becomes too close to the training

data, including noise and outliers, it fails to apply this knowledge to new, unknown data

[20, 112]. Underfitting refers to the situation when a model is overly simplistic and fails

to accurately capture the underlying patterns in the data. This leads to subpar performance

on both the training and testing sets. The process of choosing, modifying, or developing

additional features from the raw data to improve a model’s performance [82].

Machine learning is utilized in many fields such as image and speech recognition, natural

language processing, recommendation systems, healthcare, finance, and numerous other

sectors. The area is constantly progressing due to breakthroughs in algorithms, hardware,

and the accessibility of extensive datasets.

Machine learning can be classified into three primary categories:
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Figure 2.1: Types of machine learning.

• Supervised Learning: Supervised learning involves training an algorithm using a

dataset that is labeled, meaning each input is paired with its corresponding accurate

output. The model acquires the ability to establish a relationship between the given

inputs and outputs, enabling it to generate predictions for novel, unobserved data

[36].

• Unsupervised Learning: Unsupervised learning pertains to the analysis of unlabeled

data, in which the algorithm must discern patterns or relationships without explicit

instructions. Clustering and dimensionality reduction are frequently encountered

tasks in unsupervised learning [27].

• Reinforcement Learning: Reinforcement learning entails an autonomous agent ac-
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quiring the ability to make decisions through iterative interactions with its environ-

ment. The agent is provided with feedback in the form of rewards or penalties,

which helps it to learn and adopt optimal behavior [88].

2.2.1 Utilize Machine Learning in Cybersecurity

Machine learning (ML) is a branch of artificial intelligence (AI) that empowers computers

to learn and improve from experience without being explicitly programmed. It involves

the development of algorithms that enable systems to automatically learn and make predic-

tions or decisions based on data. At its core, ML algorithms leverage statistical techniques

to identify patterns and relationships within datasets, allowing them to generalize from

past examples and make accurate predictions on unseen data.

In the context of cybersecurity, machine learning plays a crucial role in enhancing threat

detection, risk assessment, and anomaly detection. By analyzing vast amounts of data, ML

algorithms can identify patterns indicative of malicious activity, enabling early detection

and mitigation of security threats. ML techniques are particularly effective in cyberse-

curity due to their ability to process large-scale data in real-time and adapt to evolving

threats.

We summarize the main cybersecurity application areas that people can utilize ML to

enhance cybersecurity defense and effectiveness:

• Threat Detection: ML algorithms can analyze network traffic, system logs, and user
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behavior to identify abnormal patterns indicative of security threats such as malware

infections, intrusion attempts, and unauthorized access.

• Anomaly Detection: ML models can learn the normal behavior of systems and users

and detect deviations from this baseline, signaling potential security breaches or

anomalies. This approach is particularly useful for detecting zero-day attacks and

insider threats.

• Predictive Analysis: ML algorithms can predict potential security incidents based

on historical data and ongoing trends, enabling proactive risk management and mit-

igation strategies.

• Vulnerability Management: ML techniques can be used to identify vulnerabilities

in software and systems by analyzing code, network configurations, and historical

data, helping organizations prioritize and remediate security weaknesses.

• Behavioral Analysis: ML algorithms can analyze user behavior, application usage

patterns, and system interactions to identify suspicious activities and detect ad-

vanced persistent threats (APTs) that evade traditional security measures

2.3 Encrypted Network Traffic Analysis And Classification

Traffic analysis, a methodical examination of network activity, plays a vital role in various

domains, offering insights into patterns and anomalies within network traffic [4]. However,

the advent of network traffic encryption has posed formidable challenges to traditional

analysis methods, rendering plaintext payload extraction less effective [10, 18]. Machine

14



learning emerges as a potent solution, capable of extracting valuable insights from en-

crypted traffic analysis without accessing content [19]. This paradigm shift allows for the

development of sophisticated algorithms that discern patterns and classify encrypted traffic

accurately, overcoming the limitations posed by encryption protocols [21].

From the inception of the internet, identifying devices through network traffic classifica-

tion has piqued interest, with research extending to both WiFi and ethernet traffic. Such

studies have demonstrated that traffic classification can pinpoint a variety of information,

encompassing IoT devices and mobile application activities [106], with previous investi-

gations primarily focusing on traffic as observed by an insider, capturing TCP/IP packets.

This method exposes distinct network features of the device, such as using the destination

port number as a unique identifier for different IoT devices, as noted in [94]. Addition-

ally, timing aspects like packet interarrival times have been highlighted as sufficient for

deep learning-based device fingerprinting [17]. These techniques, however, are not appli-

cable for adversaries outside the network due to IP traffic being encapsulated at a higher

layer, obscuring key network features. Our approach differs by leveraging features ac-

cessible to an observer outside the WiFi network. Recent advances in defending against

website fingerprinting [1] and data plane intrusion detection [68] have shown promising re-

sults, indicating a growing interest in enhancing network security through advanced tech-

niques. Studies on rogue access point detection [56, 57], deep learning-based eavesdrop-

ping attacks [31], investigating the effect of traffic sampling on machine learning-based

network intrusion detection approaches [11], and a scalable and dynamic ACL system for

in-network defense [61] further underscore the importance of continuous research in secur-

ing wireless networks. AutoDefense, a reinforcement learning-based autoreactive defense
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against network attacks [81], and adversarial learning attacks on graph-based IoT malware

detection systems [2] also contribute to the evolving landscape of network security. Addi-

tionally, our work is related to hardware fingerprinting and device classification research.

Hardware fingerprinting focuses on clock skew measurements for device authentication,

as discussed in [111], prioritizing hardware traits over device-specific characteristics. This

focus is less ideal for identifying individual devices. Conversely, other efforts aim to cate-

gorize devices into broad types [112], such as power or sensor-based devices, which, while

useful for understanding device functionality, lack the precision required for differentiat-

ing devices with similar operational traits and traffic profiles.

The research most similar to our proposed WiFi profiling attack is by Acar et al. [3],

which identified devices, their states, and user activities through traffic analysis across

WiFi, Zigbee, and Bluetooth, suggesting traffic spoofing as a defense but they not showing

the machine learning results to proof the experiment and ensure the model performance.

Their method, however, relied on a rogue access point to gather WiFi data, implying an

in-network perspective, akin to other studies [7, 94, 16, 17], which necessitate physical

or sophisticated means to access the target’s encrypted network. In contrast, we assume a

scenario with an out-of-network adversary, who can monitor WiFi traffic without needing

to infiltrate the network.

Statistical techniques for detecting cyberattacks on computer networks based on an analy-

sis of abnormal traffic behavior” published in the International Journal of Computer Net-

work and Information Security in 2020. This paper likely discusses various statistical

methods used to detect cyberattacks by analyzing abnormal traffic behavior on computer
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networks.

In the context of ”Encrypted Network Traffic Analysis and Classification,” this reference

could be relevant in several ways. First, it may discuss statistical techniques used in the

analysis of network traffic, including encrypted traffic. These techniques could involve

identifying patterns or anomalies in encrypted network traffic to detect potential cyberat-

tacks or security threats.

Furthermore, the paper might delve into how the encryption of network encrypted traf-

fic poses challenges for traditional methods of network traffic analysis and classification.

Encrypted traffic can obscure important information, making it difficult to detect mali-

cious activities or classify network traffic accurately. Therefore, understanding statistical

techniques for analyzing encrypted traffic and detecting abnormalities becomes crucial in

ensuring network security.

Overall, this reference could provide insights into statistical methods used for analyzing

encrypted network traffic, detecting cyberattacks, and how the insecurity introduced by

encryption affects the analysis and classification of network traffic.

An essential component of network security and monitoring is the analysis and classi-

fication of encrypted network traffic, particularly since encryption is increasingly used

to safeguard sensitive information [6]. Encryption guarantees the secrecy of data during

transmission, but it also presents difficulties for network security monitoring as it obscures

the payload. Analyzing encrypted traffic is vital for detecting malicious actions, discover-

ing anomalies, and assuring the overall security of a network [22]. Despite the encryption
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of the payload, it is still possible to analyze metadata such as packet size, timing, and

source/destination information. Identify recurring patterns within encrypted metadata that

may suggest specific activities or protocols. In specific situations, organizations imple-

ment SSL/TLS interception procedures that utilize a trustworthy certificate to decode and

examine encrypted traffic [112]. This strategy gives rise to privacy concerns and may face

opposition due to possible ethical and legal complications.

Conduct an analysis of encrypted traffic to identify any variations from the usual patterns

of behavior. Utilize machine learning algorithms to detect harmful behavior by analyz-

ing historical data and behavioral patterns. Employ signature-based detection to recognize

patterns linked to established threats, even when they are concealed within encrypted data.

Formulate heuristics to detect anomalies or suspicious patterns in encrypted traffic. An-

alyze current traffic patterns in relation to established baselines in order to identify any

abnormal behaviors. Endpoint Detection and Response (EDR) refers to the capability of

endpoint security systems to monitor and analyze encrypted traffic at the endpoint. This

allows for the identification of possible threats and the gathering of valuable information.

Utilize behavioral analytics to identify anomalous behaviors on endpoints. Utilize DPI to

scrutinize the contents of encrypted packets [111, 58, 103, 8].

Deep Packet Inspection (DPI) can be utilized to detect and identify harmful payloads or

suspicious activity occurring within encrypted network traffic. Engage in the exchange

of information: Take part in groups focused on sharing threat intelligence to be informed

about emerging threats and methods of assault. Engage in collaboration with other or-

ganizations to strengthen the joint defense against emerging dangers. It is important to
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note that the efficacy of encrypted traffic analysis depends on the use of various methods

and technologies. Organizations must diligently maintain a delicate equilibrium between

the imperative for security and the preservation of user privacy and adherence to legal

requirements. Furthermore, it is crucial to be updated on the most recent advancements

in encryption and decryption technology in order to effectively respond to ever-changing

security risks [39, 10, 18, 19].

2.4 Encrypted Traffic Analysis for Three Major Applications

In current cyber world, there are many applications involve encrypted network traffic and

have needs to be analyzed and classified by their stakeholders. However, from the per-

spective of technological merit and broader impact, in this paper we focus on providing

analysis and survey of three major applications: Internet-of-Things, mobile devices and

applications, and web applications.

The IoT has transformed our interaction with the physical world by establishing connec-

tions between devices, sensors, and systems over the internet [110]. The interlinked net-

work produces huge quantities of data, which may be utilized and examined using sophis-

ticated technologies like deep learning and machine learning. IoT devices are equipped

with a multitude of sensors that provide real-time data. Deep learning models can be

utilized to process and analyze the sensor data, deriving significant insights and patterns.

Machine learning algorithms can anticipate the potential failure or maintenance needs of

IoT devices by analyzing past data. Implementing this proactive strategy aids in minimiz-
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ing periods of inactivity and enhancing the overall effectiveness of IoT implementations.

Deep learning models have the capability to analyze user behavior, preferences, and his-

torical data in order to customize website content according to individual users.

This improves the user experience by providing customized suggestions and material to

each user. Websites can utilize NLP models to comprehend and provide more natural re-

sponses to user inquiries. These applications can be implemented in chatbots, customer

support services, and other interactive elements, hence enhancing the user-friendliness

of websites [108]. Image and Video Processing: Deep learning demonstrates excep-

tional performance in the field of image and video recognition. Applications can leverage

these functionalities for tasks like facial recognition, object detection, and content tagging,

hence improving user engagement and security [89, 67].

Machine learning algorithms have the capability to recognize atypical patterns or behav-

iors in application data, aiding in the identification of potential security concerns, fraud-

ulent activities, or system faults. Anonymization and Encryption: Machine learning can

improve data security by using advanced techniques like anonymization and encryption.

This guarantees the security of sensitive information that is exchanged between IoT de-

vices, websites, and applications.

Machine learning models can utilize user behavior patterns to detect anomalous behaviors,

facilitating the timely identification of security breaches. The proliferation of AI technol-

ogy has led to heightened apprehensions over data privacy and ethical implications. Imple-

menting stringent privacy safeguards and strictly adhering to ethical norms are crucial for

employing deep learning and machine learning in IoT, websites, and applications [17, 12].
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Scalability is crucial in deep learning and machine learning architecture to accommodate

the increasing volume of data.

2.4.1 Internet of Things

The IoT encompasses a diverse range of interconnected objects, from industrial systems to

household devices, interconnected through embedded electronics and software, facilitat-

ing data exchange and analysis among these entities [25]. Emerging IoT applications span

various sectors, including healthcare, agriculture, and military, presenting new challenges

in device management, data handling, and security [30]. Extensive research addresses ar-

chitecture, communication protocols, and security mechanisms to ensure the successful

commercialization of IoT technologies [32], with the utilization of empowering technolo-

gies like cloud computing and edge computing amplifying both opportunities and risks [9,

48], necessitating robust security measures to safeguard against potential threats.

The advent of encrypted network traffic poses significant challenges for analysis and clas-

sification, but leveraging machine learning techniques offers promising solutions. The

(IoT) plays a pivotal role in this landscape, facilitating vast data generation from intercon-

nected devices and systems. Machine learning, particularly deep learning models, proves

invaluable in processing and extracting insights from the sensor data produced by IoT de-

vices, aiding in anomaly detection and predictive maintenance [55]. Furthermore, machine

learning algorithms can enhance user experience on IoT-enabled websites by personalizing

content based on user behavior and preferences, while natural language processing mod-

els improve user interaction [66, 70]. In the realm of image and video processing, deep
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Figure 2.2: IoT crypto system shows how plain text is converted into codeword after using
cryptographic algorithms.

learning excels in tasks like facial recognition and object detection, enhancing security and

user engagement [74]. Additionally, machine learning techniques such as anonymization

and encryption play crucial roles in ensuring data security, particularly in the exchange of

sensitive information between IoT devices, websites, and applications [76, 78, 80]. As the

volume of data continues to grow, scalability becomes imperative for deep learning and

machine learning architectures to effectively analyze encrypted network traffic and classify

patterns, ensuring robust security measures in an increasingly encrypted landscape.

22



2.4.2 Mobile Devices and Applications

Since the invention of iPhone, mobile devices and mobile applications have quickly grasped

both our daily lives and the world of business. Mobile devices remove the physical barriers

between any people, connecting anyone instantly through calls, texts, video chats, and so-

cial media apps, etc. They enable Internet access and information gathering at any places

or time, significantly enhancing people’s daily life and business transactions. Because of

such importance of mobile devices and applications, attackers have developed many ways

to extract information and user privacy via captured mobile devices’ encrypted traffic.

Such attacks become more challenging since attackers can easily eavesdrop the network

traffic between mobile devices and the Internet via Wifi or cellular wireless channels.

B. Ahlgren. [5] showcased how encrypted traffic patterns analysis can discreetly deduce

sensitive personal information, even over encrypted WiFi networks, without requiring net-

work access credentials . While achieving a commendable recall rate of 86%, indicating

potential inadvertent disclosure of personal information by applications, the experiment

also reveals room for improvement, with a significant false positive rate. Furthermore,

the techniques employed for app identification extend to fingerprinting other encrypted

communications like VoIP and website visits, making mobile apps particularly suscepti-

ble targets due to their transparent ranking system and simplicity of data collection [95].

Notably, these techniques, demonstrated using standard 802.11g WiFi, are anticipated to

be applicable across various wireless communication protocols, including long-distance

protocols like 4G LTE used in cellular networks [97]. The scenario examined involves a

passive observer seeking to deduce information about users connected to a WiFi Access
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Point (AP), highlighting the potential implications of encrypted network traffic analysis

utilizing machine learning in uncovering sensitive information without compromising net-

work security.

2.4.3 Website Fingerprinting

López et al. [79] demonstrated that an assailant can discern the specific webpage a client

is visiting through the use of a classification algorithm, which processes observed packet

sequences. The crux of the classification lies in the concept of distance between packet

sequences, where a greater distance suggests that the sequences are less likely to originate

from the same webpage. Since then, various metrics for calculating distance have been

employed by different researchers, including comparing the frequency of unique packet

lengths or adaptations of the Levenshtein distance. The chosen distance metric reflects

the approach to utilizing features to differentiate between webpages. These features are

derived, whether directly or indirectly, from the packet sequences to enable comparative

analysis.

The foundational insight presented by [98] showed that webpage category is inherently

multi-modal. Numerous variables can induce variations in a webpage: the network’s state,

random changes in advertisements and content, updates over time, and the unpredictable

sequence of resource loads. Even the client’s setup might influence how the page is ren-

dered. To manage such multi-modal datasets, an attacker should amass sufficient data to

cover representative samples from each variation. For instance, an attacker might collect

data reflecting two different loading scenarios of a webpage: one under low-bandwidth
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and another under high-bandwidth conditions. The classifier we employ is tailored to han-

dle multi-modal classes, allowing for the different modes within a category to be unrelated

to each other.

Another category of website fingerprinting attack is based on resource size. The HTTP

1.0 specification mandates that individual resources of a web page, such as images, scripts,

etc., be fetched over distinct TCP connections. This allows an attacker who can distinguish

between these various connections to deduce the total size of each resource. The initial

research into this type of vulnerability was conducted in the era of HTTP 1.0, with Cheng

et al. in 1998 [29], Sun et al. in 2002 [104], and Hintz in 2003 [52] demonstrating that

knowledge of resource sizes could facilitate webpage identification. However, the subse-

quent HTTP 1.1 standard, which employs persistent connections, alongside advancements

in browsers and privacy-protection technologies, have rendered such resource size based

attacks less effective against more recent systems.

2.4.4 Procedure of Machine-Learning-Based Classification of Network Traffic

In this section, we systematically introduce the major steps and the procedure in network

traffic analysis and classification by utilizing the machine-learning method. The high-level

architecture is shown in Figure 3.9 [35, 109, 23, 42, 44, 47]. In the following, we explain

each block of the procedure in detail.

Data collection: The landscape of Internet traffic is constantly changing due to the advent

of novel forms of traffic, devices, and applications. Hence, it is necessary to gather well-

recognized Internet traffic while taking into account emerging trends in dealing with un-
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Figure 2.3: Procedure of typical encrypted network traffic analysis and classification based
on machine learning.

known traffic. Much earlier work on traffic classification relies on capturing non-encrypted

network traffic, which is not suitable for analyzing encrypted traffic for most Internet ap-

plications presently.

Lalmuanawma et al. [73] showed that most of the accessible public datasets lack labels or

were labeled using unreliable techniques, such as deep packet inspection, which is ineffec-

tive with encrypted traffic, or port-based labeling, which is ineffective with dynamically

allocated ports.

Data collection could have very different formats depending on where it is collected, such

as the data-link frames captured on an encrypted WiFi channel or the encrypted IP packets

captured on Ethernet or routers. Data collected could also be complete when capturing

100% of traffic going through or being sampled via various sampling methods.

Data representation and preprocessing: Various techniques have been employed to

depict traffic. Moore et al. [83] present an extensive collection of characteristics derived
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from the packet size and inter-arrival time, TCP flags, port numbers, and IP addresses.

Additional approaches take into account the domain names and the contents of protocol

requests. Time series features are utilized for precise classification at a detailed level.

An alternative method being suggested is the depiction of the patterns of communication

between the entities involved using unconventional formats.

Images have recently been used to depict traffic flows. The selection of data format is

determined by the classification algorithm employed. For instance, the time series pre-

sentation is employed for classification based on Markov Models, while the image-based

representation is utilized for classification based on deep learning, among other methods

[77].

Before the network traffic data can be analyzed, it also needs to be preprocessed carefully.

Data preprocessing is necessary because it will help clean up messy and/or inconsistent

data, reduce data dimension and normalize data scale to improve analysis efficiency, re-

duce overfitting and bias in training, etc. [54] In summary, data preprocessing acts as an

indispensable foundation for successful machine learning. It ensures the data are clean,

prepares them for the model’s learning process, and ultimately improves the accuracy, ef-

ficiency, and generalizability of ML predictions and classifications.

Feature extraction: In machine learning, feature extraction is the process of transform-

ing raw data into a set of more relevant and informative features. Feature extraction helps

identify and extract the key features that actually matter for the prediction task by machine-

learning models. It will greatly reduce data complexity and dimensions, selecting only

those input dimensions that contain the most relevant information for solving the particu-
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lar problem.

Khalid et al. [65] provided a good survey on feature selection and extraction techniques

in machine learning. The research conducted by Hakak et al. [45] is an example of work

showing the importance of feature extraction techniques in identifying fake news more

efficiently.

MLmodel selection and refinement: After data have been collected and processed, the

next step is to use the right machine-learning model so that we can achieve the best traffic

analysis and classification performance. Choosing the right machine-learning model is

crucial for making the most of our data. Numerous ML models have been presented so far

and utilized in various fields. Factors to consider include problem type, data characteris-

tics, model complexity, interpretability, availability of resources, etc. [91]

ML model selection should be an iterative process that requires us to continuously refine

our selected model and its parameter settings to better fit the target application and re-

sources available. Therefore, as shown in Figure 3.9, this step has an iterative loop with

the next step of ’ML model training’.

ML model training: Machine-learning training is the process of feeding data into a

machine-learning model to help it learn and improve its ability to make predictions or

classifications. The data are typically divided into three sets: the training set used to

train the model, the validation set used to monitor performance during training and pre-

vent overfitting, and the test set used for final evaluation after training is complete. Two

main factors need to be considered in model training. First is the computational resource
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needed for training and the resource available for future real-world deployment. Second

is the potential bias and fairness issues, especially when ML is used in social-impactful

applications.

Deployment: Deployment is the process of making a trained machine-learning model

accessible and operational in the real world, where it can be used to make predictions or

classifications on new, unseen data. For network traffic analysis and classification, it can

be deployed in a cloud platform on received real-time monitored data, on the premises if

an organization deploys it on its own server due to various concerns, or on edge devices

with limited connectivity or for strict real-time requirements [87].

Classification For encrypted network traffic analysis, classification means to discover

more insight information based on captured unknown encrypted traffic, such as the IoT

device type or even working status, what applications generate the captured traffic, whether

the encrypted data are audio, video streaming, or images, etc.

Feedback and evaluation: The classification results given by the machine-learning model

can be further evaluated or verified based on either the classification outcome via other

ways or human manual inspection. This feedback and evaluation will help users to un-

derstand better what are the potential weaknesses or problems with the applied machine-

learning system and then redesign or refine all the previous procedure steps in the whole

process shown in Figure 3.9 to improve classification performance.
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2.4.5 Network Traffic Processing and Inspection

This section provides an overview of common methods and techniques for processing

and inspecting network traffic that have been extensively utilized in the literature through-

out the years. This section aims to facilitate the reader’s understanding of the process of

network traffic processing and to highlight the issues that have arisen due to network en-

cryption. Anomaly detection is a versatile technique that may be used in various fields,

including network intrusion detection, to identify abnormal or suspicious activity and be-

havior.

A strategy based on anomaly detection estimates a model of ”normal network activity,”

and evaluates future activity on the network by comparing its probability to the learned

model. By employing this method, it becomes feasible to differentiate between a usual

and potentially harmful network activity as opposed to one that is harmless. This catego-

rization is founded on specific heuristics or principles and seeks to identify instances of

misuse or atypical conduct.

In order for an anomaly-based intrusion detection system to accurately detect suspicious

traffic, it is essential for the system to be trained to understand typical system behavior.

For instance, there are several ways available for detecting volumes. These techniques are

used to monitor the traffic load of a network in order to detect abnormalities that cause

major changes in traffic volume, such as flooding attacks.

Feature-based anomaly detection seeks to address the limitations of volume-based solu-

tions by analyzing various characteristics of network data. The bulk of anomaly detection
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systems typically involve two phases, which are training and testing [34, 15, 38, 37].

The first part involves constructing a profile of usual behavior, whereas the testing phase

involves comparing current traffic with the model generated during the training phase.

Machine or deep learning techniques are mostly employed to detect anomalies. Neverthe-

less, anomaly detection frequently encounters challenges such as (i) elevated rates of false

positives, (ii) the challenge of acquiring dependable training data, and (iii) the persistence

of training data and the changing behaviour of the system (Fig 5).

Shone et al [101]. assert that the dynamic characteristics of contemporary networks, in-

cluding the continuous growth in traffic speed, volume, and variety, inevitably lead to a

lack of a comprehensive and universally accepted solution for detecting anomalies.

The multitude of protocols and the variety of data in modern connections make it more

challenging to distinguish between normal and abnormal behavior. This complexity hin-

ders the establishment of an accurate baseline and expands the potential for exploitation

or zero-day attacks. While anomaly-based detection approaches can be highly efficient

in the field of network security, signature-based techniques have the capability to analyze

and examine a broader range of applications.

Signature-based network inspection is a method used to classify and characterize traffic,

primarily through the use of deep packet inspection (DPI) techniques. DPI serves as a

fundamental element in various network systems, including traffic monitors, classifiers,

packet filters, network intrusion detection, and prevention systems.

Different layers of the OSI architecture utilize Deep Packet Inspection (DPI) in various
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network components [41, 43, 46, 49]. The OSI model layers are presented in Fig 6. In

contrast to the initial stages of packet inspection, where DPI was limited to examining

packet headers (such as proxies and firewalls), the present scenario necessitates the inspec-

tion of packet content across all layers of encapsulation due to the increased complexity

and obfuscation of protocols.

Governments, Internet and Communications Service Providers (ISPs/CSPs), and other

organizations largely depend on Deep Packet Inspection (DPI) technology to accurately

monitor and analyze network traffic [51, 53].

Utilizing DPI can enhance the quality of service (QoS) by discerning various types of

content and streaming them in a tailored manner. Similarly, through the analysis of the

contents of the incoming packets, one can detect and scrutinise suspicious and malicious

activity.

In the field of network security, the use of signature-based network inspection techniques

can be highly effective if security software developers are already aware of similar assaults.

As previously said, DPI is the fundamental process used in typical applications within

the field of network security, analytics, and other related areas. The need for advanced

traffic analysis and the ongoing rise in network speeds have prompted extensive research

to continuously develop innovative Deep Packet Inspection (DPI) methods.

Network intrusion detection systems have evolved into highly effective instruments for

network administrators and security specialists in recent decades, aiding in the identifica-

tion and prevention of a broad spectrum of threats. Snort and Suricata are widely used

32



network intrusion detection system (NIDS) solutions that employ pattern matching and

regular expressions to analyze network data. In contrast, Zeek/Bro utilizes scripts to fa-

cilitate automation, making it more convenient. The research community has also made

endeavours to enhance the efficiency of NIDS by utilizing either standard hardware, such

as graphics processing units (GPUs) and parallel nodes, or dedicated hardware, such as

ternary content-addressable memories (TCAMs), application-specific integrated circuits

(ASICs), and field-programmable gate arrays (FPGAs).

Nevertheless, these works have the capability to analyze network traffic that lacks encryp-

tion, as they extract significant data from the content of network packet payloads. Traffic

classification and network analytics play a crucial role in ensuring quality of service (QoS)

at both central network traffic intake points and end-host computers. To precisely identify

the incoming traffic, a detailed analysis should be conducted, examining both the packet

header and payload.

Most traffic categorization methods primarily focus on flow-based strategies, which try

to categorize flows based on the application that generates them, rather than individual

packets. Several studies have suggested several techniques for determining the application

linked to a traffic flow [60, 62, 64, 69, 71].

2.5 Strategies in Analyzing and Classifying Encrypted Network Traffic

Encrypting network traffic is crucial for ensuring data privacy and security, but it also

poses challenges for analyzing and classifying that traffic for various purposes such as
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Figure 2.4: Encrypted traffic analysis and inspection phases.

network management, security monitoring, and traffic optimization. However, there are

approaches to analyze and classify encrypted network traffic even without decrypting it

fully, leveraging machine learning and deep learning techniques.

In the following, we summarize strategies that can be utilized to perform effective analysis

and classification of encrypted network traffic for various purposes while preserving data

privacy and security.

• Feature Extraction: Even though the payload of encrypted traffic is not

accessible, features can still be extracted from the encrypted data. These

features could include packet size, inter-arrival times, packet direction,
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protocol headers, and statistical properties of encrypted payloads.

• Dimensionality Reduction: High-dimensional feature spaces can be re-

duced using techniques like Principal Component Analysis (PCA) or

autoencoders to capture the most relevant information while discarding

noise.

• Model Training: Various machine learning algorithms such as Random

Forests, Support Vector Machines (SVM), or neural networks can be

trained on the extracted features to classify different types of network

traffic.

• Deep Learning Approaches: Deep learning models, especially Recurrent

Neural Networks (RNNs) or Convolutional Neural Networks (CNNs),

can be effective in learning patterns and representations from sequential

or spatial data, which can be applied to encrypted network traffic analy-

sis.

• Transfer Learning: Pre-trained deep learning models on related tasks

such as natural language processing or image classification can be fine-

tuned for encrypted network traffic analysis, leveraging the learned rep-

resentations.

• Anomaly Detection: Unsupervised learning techniques can be applied to

detect anomalies in encrypted traffic by learning the normal behavior of

the network and flagging deviations from it.

• Traffic Classification: Supervised learning techniques can be used to
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classify encrypted traffic into categories such as IoT devices, websites,

or apps based on their behavioral patterns and communication protocols.

• Ensemble Methods: Combining multiple models or classifiers through

ensemble methods like bagging or boosting can improve classification

accuracy and robustness.

• Privacy Considerations: It’s crucial to ensure that the analysis of en-

crypted traffic respects user privacy and regulatory requirements. Tech-

niques like differential privacy or secure multiparty computation can be

explored to achieve this.

• Continuous Learning: Given the evolving nature of network traffic pat-

terns and security threats, continuous learning mechanisms should be

employed to adapt the models to new data and emerging trends.

2.5.1 Limitations

Networking services such as asymmetric routing, NATing, and tunneling have an impact

on the performance of traffic classifiers. Hence, it is imperative to account for these net-

work dynamics while constructing a traffic classifier. The features must be selected in a

manner that ensures they are not influenced by any of these network functions [84].

The curse of dimensionality refers to the challenge of efficiently classifying data, particu-

larly in real-time processing, when speed is crucial. It is crucial to thoroughly analyse the

time and processing complexity aspects of data preparation, data representation or feature
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computation, and classification computation overhead. Within this particular framework,

three primary factors are crucial: memory capacity, computational intricacy, and process-

ing duration. Developing a resilient yet precise classifier is crucial, yet efficiency is essen-

tial in certain scenarios, particularly for time-sensitive network services (such as intrusion

detection) [85].

Actual implementation: Despite the substantial research on ML traffic categorization,

there are only a limited number of classification frameworks/tools available. Despite pri-

vacy issues, DPI continues to be widely employed. Furthermore, technical obstacles such

as traffic velocity and large-scale data could potentially hinder the practicality of captur-

ing and analyzing this traffic. Additionally, a constraint in real-world implementation is

the need to continuously train the models, as well as adjust for new or unfamiliar traffic.

Additionally, the optimization of model parameters, taking into account specific network

features like as speed and fragmentation, may impose limitations on the performance of

implemented models [96].

Obfuscation: The propriety of classifying and obfuscating information is a subject of con-

troversy. From a privacy standpoint, classification is regarded as an intrusion that under-

mines user privacy. Nevertheless, in terms of network administration, attackers can employ

obfuscation techniques to evade detection of their attacks. Classification is preferred by

security and QoS applications in this situation, whereas obfuscation is favored by privacy

[90].

Traffic sampling: The process of collecting a representative subset of network traffic data

for analysis and monitoring purposes. An obstacle to the implementation of traffic classi-
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fication applications is the need for high-speed capabilities in the core network. Due to the

impracticality of extracting features from packets at a very high speed, traffic sampling is

used as an alternative. Modifying traffic characteristics and statistical data can potentially

detrimentally affect the accuracy of classification [93].

As shown in Table 2.1, our survey provides a comprehensive overview of machine learning-

based methods for analyzing and classifying encrypted network traffic.

2.6 Summary and Recommendations

Summary: In this chapter, we have provided a comprehensive overview of utilizing ma-

chine learning techniques for encrypted network traffic analysis and classification. The

growing prevalence of encryption poses significant challenges for traditional traffic anal-

ysis methods, necessitating the adoption of advanced techniques capable of extracting

insights from encrypted data without compromising privacy and security.

Through this work, we have demonstrated the effectiveness of machine learning approaches

in addressing these challenges. By leveraging techniques such as feature extraction, di-

mensionality reduction, anomaly detection, and traffic classification tailored for encrypted

scenarios, it is possible to gain valuable insights into network traffic patterns and behav-

iors, even in the presence of encryption.

However, it is crucial to acknowledge the limitations and challenges associated with en-

crypted traffic analysis. The curse of dimensionality, obfuscation techniques, privacy con-
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siderations, and the need for continuous learning must be carefully addressed to ensure the

practical implementation and long-term effectiveness of these solutions.

Recommendations: Based on the findings of this work, we recommend the following:

1. Continued research and development in machine learning techniques specifically de-

signed for encrypted traffic analysis, with a focus on improving accuracy, efficiency,

and scalability.

2. Collaboration between academia, industry, and regulatory bodies to establish guide-

lines and best practices for ensuring user privacy and data security while enabling

effective network monitoring and security.

3. Exploration of privacy-preserving techniques, such as differential privacy and secure

multiparty computation, to enable encrypted traffic analysis while maintaining strict

privacy guarantees.

4. Adoption of continuous learning mechanisms and adaptive models to keep pace

with the ever-evolving landscape of network traffic patterns, security threats, and

encryption technologies.

5. Integration of machine learning-based encrypted traffic analysis solutions into ex-

isting network security frameworks and tools, enabling more comprehensive and

effective threat detection and mitigation.

6. Interdisciplinary research efforts combining expertise from fields such as computer

science, cybersecurity, machine learning, and data privacy to holistically address the
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challenges of encrypted traffic analysis.

By embracing machine learning techniques and proactively addressing the associated chal-

lenges will enable robust, privacy-preserving encrypted network traffic analysis, paving

the way for enhanced cybersecurity, network optimization, and secure adoption of tech-

nologies involving IoT devices, mobile applications, and website fingerprinting.
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Survey Paper Year Description
Unencrypted Traffic

Buczak et al. [24] 2016 Introducing data mining and machine learning
techniques for cybersecurity intrusion detection

Jing et al. [59] 2018 Reviewing security data and analytical methods
for detecting DDoS and Worm attacks

Fernandes et al. [40] 2019 Summarizing network data types and tech-
niques for anomaly detection

Kwon et al. [72] 2019 Examining deep learning methods applied to
network anomaly detection

Encrypted Traffic
Velan et al. [105] 2015 Summarizing approaches for analyzing en-

crypted traffic, mainly focusing on traditional
machine learning methods

Rezaei et al. [92] 2019 Reviewing deep learning techniques for the
classification of encrypted traffic

Conti et al. [33] 2018 Reviewing studies that focus on network traffic
analysis targeting mobile devices

Pacheco et al. [86] 2018 Introducing machine learning solutions for net-
work traffic classification

Shen et al. [100] 2023 Providing a comprehensive survey on ma-
chine learning-powered encrypted network traf-
fic analysis, including traffic classification,
anomaly detection, and feature extraction tech-
niques

Our Survey 2024 Providing a comprehensive survey on ma-
chine learning-based methods for analyzing en-
crypted traffic, covering goals such as network
asset identification, network characterization,
privacy leakage detection, and anomaly detec-
tion in IoT, website, and mobile application

Table 2.1: Comparison of existing surveys with our work.
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CHAPTER 3: Detecting IoT Devices by Monitoring Encrypted

Wireless Network Traffic

This chapter presents a novel technique for identifying Internet of Things (IoT) devices by

passively monitoring encrypted wireless network traffic from outside the target network.

The main contribution is the development of an effective method that allows an adversary

to profile and detect various IoT devices, as well as discern their operational states (active

or idle), without requiring any access to the network itself. This is achieved by capturing

and analyzing patterns in the encrypted WiFi traffic metadata, such as packet sizes and

flow characteristics, and applying a data summary machine learning algorithms to classify

the devices based on their unique traffic signatures.

By leveraging machine learning techniques on encrypted traffic metadata, this work un-

veils a significant vulnerability in IoT ecosystems, where adversaries can covertly gather

sensitive information about the types and operational states of devices within a target

network. The findings emphasize the need for enhanced security measures and privacy-

preserving mechanisms to mitigate such passive monitoring attacks on encrypted wireless

networks.

3.1 Threat Model and Assumptions

Figure 3.1 illustrates how an adversary can passively monitor wireless traffic from a tar-

get’s WiFi router or access point (AP) without connecting to the network, simply by being
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within the AP’s transmission range. The adversary might use wardriving, warcycling, or

warwalking, employing a non-intrusive sniffing tool to discreetly capture nearby WiFi net-

work traffic. This method ensures no active network penetration.

The adversary’s goal is to gather information about connected devices, such as the number,

types (e.g., light bulbs, smart TVs, laptops), and operational states (idle or active). This

monitoring can unintentionally reveal sensitive information, such as household or business

size and economic status. Identifying device types may also uncover vulnerabilities in cer-

tain IoT devices, posing potential security threats. This passive surveillance is especially

concerning for IoT devices, which often lack robust security measures and may serve as

entry points for broader network attacks. Understanding these vulnerabilities is crucial for

developing effective cybersecurity strategies.

3.2 Capturing of Out-of-Network Encrypted WiFi Traffic

Illustrated in Figure 3.9 is the attacker’s presumed system setup, which is composed of two

primary components: the initial training for device profiling (offline phase) and the sub-

sequent device recognition process (online phase). During the offline stage, the attacker

connects various IoT devices to a WiFi gateway. Using sniffing tools, the network traffic is

captured and the data is subsequently categorized by device name based on their MAC ad-

dresses. The collected data undergoes preprocessing to eliminate extraneous information

such as irrelevant network traffic, beacon, and broadcast frames, followed by the distilla-

tion of pertinent features into a csv format ready for supervised learning (detailed further
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Figure 3.1: Threat model.

in Section 3.3). These features are then fed into various machine learning algorithms to

determine the most accurate model for later real-time identification (online phase).

In the online stage, the attacker briefly captures network traffic from the target’s AP, typi-

cally for a period like 30 seconds, and replicates the preprocessing done during the offline

phase. This step, elaborated on in Section 3.2.2, involves no prior knowledge of the de-

vices but employs statistical and standard filtering to remove noise unrelated to data pat-

terns. Features are extracted from the cleaned data using a Python script.

The final step employs the pre-trained model to ascertain the type of each device and its

operational status. The forthcoming sections will delve into the details of each phase in
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Figure 3.2: IoT device profiling attack system.

this attack strategy.

3.2.1 Out-of-Network WiFi Traffic Capturing

We conducted initial tests with various well-known sniffing tools, namely Airodump-ng

and Kismet, to capture raw 802.11 wireless frames. Both tools have the capability for

either single-channel or multi-channel surveillance, employing frequency hopping to cycle

through channels. Airodump-ng differentiates itself by saving captured data in a pcap file

format, while Kismet records data within an SQLite3 database. The pcap files generated

by Airodump-ng are readily compatible with network analyzers such as Wireshark for

packet inspection. Our setup included the use of an Alfa AWUS036ACM external wireless

adapter set to monitor mode, as depicted in Figure 3.3.a.

This was essential as built-in WiFi cards typically filter out packets not addressed to them.

Upon reviewing the captured data, we noticed a prevalent number of small-sized packets,

which is atypical given the commonly observed pattern of internet traffic known as the

elephant-mouse phenomenon. In our case, larger packets, like those typically spanning

45



1,500 bytes including smart TV and camera video packets, were absent.

Our findings indicate that the capture range of both Airodump-ng and Kismet is limited

to packets no larger than 472 bytes. Although this range is adequate for certain signal

intelligence tasks—for instance, rogue access point (AP) detection as demonstrated by

researchers who utilized Kismet to distinguish rogue APs by signal strength—there are

constraints. Given the limitations encountered with Airodump-ng and Kismet, we pro-

ceeded to evaluate an alternative sniffing tool known as Airtool.

Airtool is a complimentary network traffic analysis tool designed for Mac computers,

leveraging the Mac’s native network interface card (NIC) for operations, as seen in Figure

3.3.b. This tool can passively monitor WiFi traffic and save the data in pcap format, which

is compatible with Wireshark for in-depth traffic analysis. To assess the efficacy of Airtool

in capturing comprehensive traffic data, we conducted a parallel traffic capture on a Mac-

Book operating outside of the network and another laptop connected within the network,

using Wireshark to record the laptop’s bi-directional traffic with the AP.

Our comparative analysis of the traffic data, as summarized in Table 3.1, revealed that

Airtool captures a broader range of frames, including control and management frames

within the data-link layer, which Wireshark does not typically collect in its in-network

traffic logs.

These additional frames, often ranging from 0 to 39 bytes, contribute to Airtool logging

more entries. In contrast, Wireshark interprets WiFi data-link layer frames as Ethernet

II frames, resulting in a smaller recorded size for the same WiFi packet. Consequently,
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Table 3.1: Airtool testing: comparison of passive Airtool capture with Wireshark.

Packets/Frames Size Range Wireshark Airtool
#IP Packets #Frames #Data frames

0-19 0 2428 0
20-39 0 5593 199
40-79 2441 0 0

80-159 260 2890 2883
160-319 108 239 239
320-639 173 194 190

640-1279 241 255 255
1280-2559 13574 13846 13846

Total 16797 25445 17612

many packets that Wireshark categorized in the 40-79 byte size range were recorded in

the 80-159 byte range by Airtool. Even after filtering out the control and management

frames from Airtool’s dataset, our comparison affirmed that Airtool did not significantly

miss packets, reinforcing its reliability. Therefore, we have chosen Airtool as the sniffing

tool for our experimental testbed.

3.3 Pre-processing of captured WiFi traffic

Following the capture of encrypted WiFi traffic by Airtool software, the collected pcap file

format traces are subjected to analysis with Wireshark. The initial stage involves a detailed

pre-processing of this raw trace data, which includes several critical steps:

• Extraction of Bidirectional Flows: The focus is on extracting the traffic flows related

to the MAC address of the targeted WiFi router, essential due to Airtool’s capabil-
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(a) Sniffing using Alfa WiFi interface and either
Airodump-ng or Kismet software.

(b) Sniffing using MacBook built-in WiFi inter-
face and Airtool software.

Figure 3.3: Two ways of setting up out-of-network capturing.

ity to capture traffic from multiple access points (APs) simultaneously. We nar-

row down to only data frame types, discarding control and management MAC-layer

frames which don’t align with the desired data profiling pattern. This is accom-

plished using a specific Wireshark display filter:

< (wlan.sa == "Router’s MAC" && wlan.da == "Router’s MAC")

&& wlan.fc.type == 2 >

• Conversion to CSV: The pcap files are converted into CSV format to facilitate further

processing in the subsequent steps.

• Noise Frame Removal: Frames produced by some MAC addresses that are iden-

tified as noise are eliminated. Such frames usually appear singly and are filtered

by retaining only those frames that show bidirectional communication traffic, thus

showcasing both transmission and reception activities.

• MAC Address Replacement: In this phase, MAC addresses are replaced with corre-
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sponding device names and their operation statuses for easier dataset labeling. This

replacement aids in dataset organization but is only conducted during the offline

training stage. The process is omitted during the online attack phase to ensure labels

are applied appropriately for classification training and testing verification.

• Feature Extraction via Python Script: Utilizing a Python script, we extract and com-

pute statistical features, as will be further detailed in Section 3.3.5. This culminates

in the creation of a dataset ready for both offline training and subsequent perfor-

mance evaluation testing.

These steps systematically refine the raw data, ensuring it’s primed for in-depth analysis

and aiding in the identification of devices based on their network traffic patterns.

3.3.1 Data Processing and Profiling Based on Machine Learning

In this part of our discussion, we initiate by exploring the data fields that are visible and

can be harnessed during out-of-network monitoring activities. Following this, we propose

and illustrate two distinct data processing methodologies designed to produce represen-

tative datasets that can be efficiently integrated into machine learning (ML) classification

frameworks: Time-series data and Summary data.
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3.3.2 Observable Data Fields in Out-of-Network Monitoring

In the context of monitoring activities carried out on a secure WiFi network from an exter-

nal standpoint, the data available for observation is limited due to encryption protocols like

WPA-PSK, which secure the content at and above the data-link layer. As a result, the ob-

servable components are confined to the MAC-layer frame header, along with the frame’s

observation timestamp and its signal strength. Within the MAC-layer frame header, valu-

able information can be extracted such as the source and destination MAC addresses, the

frame type, and the frame’s size.

Initially, it was hypothesized that signal strength could serve as a beneficial attribute for

analysis, potentially indicative of the device’s hardware characteristics or its proximity to

the access point (AP), distinguishing between mobile and stationary devices. However,

subsequent experimental analysis revealed that signal strength is influenced by a multi-

tude of unpredictable elements, including interference from nearby WiFi networks and the

impact of environmental factors like object reflections, absorption, and deflection within

the vicinity. Due to these variables introducing significant inconsistencies, signal strength

was ultimately excluded from our device profiling methodology.

3.3.3 Preliminary Data Analysis

To delve into the nuances of IoT device traffic, we embarked on an analysis of traffic

data collected over a five-minute span from three distinct IoT devices selected for demon-

stration purposes: a smart light bulb, a smart plug, and a WiFi-enabled printer. Mid-
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way through this observation period, we altered the operational states of these devices by

switching off the light bulb and plug, and ceasing printing operations, rendering the printer

inactive.

The investigation focused on two primary types of header-based characteristics: (a) flow-

related features and (b) volume-related features, observable within a predetermined time-

frame. Flow-related characteristics are concerned with the patterns of data transmission,

including frequency and duration, while volume-related attributes measure the data traffic

in terms of bytes. Despite the seemingly restricted scope of available data, it provides

ample information to create distinctive profiles or signatures, highlighting the unique sta-

tistical variances across different device categories. For instance, the printer demonstrated

a notable difference in the quantity of packets received compared to the light bulb and

plug, as depicted in Figure 3.4. Conversely, the smart light bulb and plug showed par-

ticular packet size tendencies, predominantly sending packets of 82 bytes and 92 bytes

respectively. This differentiation in packet sizes is further illustrated in Figure 3.5 through

a word cloud, suggesting the potential for adversaries to develop precise device signatures

based on these statistical indicators.

(a) Smart light bulb (b) Smart plug

Figure 3.4: Word cloud of sent packet sizes from two devices.
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Figure 3.5: Traffic flow of three devices.

Moreover, the analysis allowed for the detection of changes in device operational statuses.

A slight increase in data traffic, as shown in Figure 3.4, was observed across all devices,

attributed to the AP transmitting commands to deactivate the bulb and plug, and halt the

printer. This pattern represents a short-lived network fluctuation, perceivable only momen-

tarily, which contrasts with the more prolonged statistical features derived from extended

observation windows (exceeding 20 seconds). Consequently, inferring the operational

states of devices with minimal traffic variation proves challenging. Conversely, devices

with more advanced network functionalities and storage capacities, such as Alexa, smart

TVs, and WiFi cameras, demonstrate significant traffic reductions when transitioning to

an idle state. For example, an idle Alexa device receives far fewer packets since it’s not

engaged in processing voice commands or performing internet searches, such as checking

weather forecasts or delivery statuses.
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3.3.4 Machine Learning Algorithms

We selected a variety of machine learning (ML) models for our study, including Ran-

dom Forest (RF), Support Vector Machine (SVM), and Naı̈ve Bayes (NB), to conduct

both learning and inference tasks. RF has been highlighted in the literature [63, 40] for

its exceptional performance in classifying network traffic across a comparison of 11 ML

models. We also opted for SVM and NB, considering the diversity in the sequence sizes

within our time-series dataset. SVM is recognized for its efficacy in handling multidimen-

sional datasets, which aligns well with IoT devices characterized by high traffic volume.

Conversely, NB is known to perform well with smaller datasets, making it an ideal choice

for devices that generate less frequent and smaller volumes of network traffic [111]. In our

approach to classifying IoT devices, we include an additional category named ’unknown’.

This category encompasses all devices for which the classifier cannot assign a class with

a certain level of predefined confidence.

3.3.5 Device Profiling based on Summary Data

In this methodology, we classify IoT devices based on traffic characteristics that are cap-

tured within a predefined time frame. As depicted in Figure 3.6, we segment the monitored

traffic, which spans n seconds, into intervals or windows of W seconds each. This process

begins with an initial time window [tstart . . . tend], and we systematically advance both the

start and end of this window by W seconds, provided that tend +W ≤ n. Consequently,

from n seconds of observed data, we can derive n
W

sample points.
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Figure 3.6: Summary data processing and classification.

To further augment the dataset with additional sample points, we employ a sliding window

technique with a step size of s = W
2

, meaning we shift the window [tstart . . . tend] by s sec-

onds instead of the full window size W . This adjustment effectively doubles the number

of data points to
(

n
W

× 2
)
− 1. Identification of each device within these time windows

is achieved through its MAC address, which facilitates the subsequent extraction and la-

beling of features. Upon compiling our dataset, we proceed to construct three classifiers

utilizing the selected ML algorithms: SVM, NB, and RF.

We list all 14 extracted features from monitored packets within each time window:

• The number of packets sent from the device to AP.

• The number of packets received by the device from AP.
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• The variance of inter-arrival time.

• The average number of consecutively sent packets before seeing a received packet.

• The average number of consecutively received packets before seeing a sent packet.

• Total number of bytes in sent packets.

• Total number of bytes in received packets.

• Number of different sizes in sent packets.

• Number of different sizes in received packets.

• Maximum packet size.

• Mode of sent packet lengths (i.e., the packet size that appeared most in the monitor-

ing window).

• Mode of received packet lengths.

• The variance of sent packet size distribution.

• The variance of received packet size distribution.

3.4 Evaluation

In this section, we first discuss our testbed to collect the dataset and our evaluation metrics.

Then, we present our evaluation results on the testbed trace.
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3.4.1 Testbed Setup and Evaluation Metrics

We established a testbed consisting of 10 different IoT devices and 2 non-IoT devices (a

smartphone and a laptop), all connected to the Internet via a WiFi router. To gather ground

truth data, we recorded the network activity of all devices over a monitoring period of

one hour. Table 3.2 presents the devices and their operational modes used in our dataset

capture setup. While these scenarios do not cover the full range of device functionalities,

they represent a variety of common usage patterns. From the captured raw packets, we

created two datasets (in time-series and summary data formats as detailed in the previous

section) and randomly divided each dataset into two groups, allocating approximately 75%

of the instances for training and 25% for testing.

We evaluate our classification models using the following aspects: Accuracy, Precision,

Recall and F1 Score. Let us denote true prediction as T , broken further into true positives

TP and true negatives TN . Likewise, false prediction is denoted as F , broken into false

positives FP and false negatives FN . Accuracy is measured as T
T+N

, Precision is mea-

sured as TP
TP+FP

, Recall is measured as TP
TP+FN

, and F1 is measured as 2× Precision×Recall
Precision+Recall .

3.4.2 Model Accuracy Results

Table 3.2 presents the comparative accuracies of different ML models using time-series

versus summary data with a 30-second time window applied in the evaluation. The test

incorporates non-IoT devices such as a laptop and an iPhone. Across all scenarios, the

evidence indicates that the summary data consistently outperforms the time-series data
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Figure 3.7: Overall performance of summary data-based profiling.

in terms of accuracy. Furthermore, the Random Forest (RF) model surpasses the other

two ML models in predictive precision. It is postulated that time-series patterns require

an extensive duration of trace observation to be effectively discerned, potentially over a

30-minute period, to execute an attack. Nonetheless, such prolonged surveillance is con-

sidered impractical for realistic attack situations. As illustrated in Table 3.3, the summary

data profiling method provides more precise outcomes than the time-series approach for

all models and devices. This greater accuracy can be attributed to the more discriminative

feature set in the summary data, which effectively profiles a diverse array of devices.

For example, the consistent packet transmission of a TV is readily identifiable, unlike

the variable Google Home traffic, which the time-series data may not capture, but which

becomes evident when analyzed through packet size in the summary data.
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Table 3.2: Accuracy of ML models.

Data Type SVM NB RF
Time Series Non-IoT 0.34 0.25 0.41
Time Series IoT 0.57 0.74 0.68
Summary Data Non-IoT 0.51 0.41 0.94
Summary Data IoT 0.65 0.77 0.96

Additionally, the data reveals that the RF algorithm demonstrates superior performance

compared to the SVM and NB algorithms across all tests using summary data. Figure

3.7 further delineates these evaluation metrics, reinforcing the dominance of RF: it excels

beyond SVM and NB across all metrics, attaining a minimum of 95% in each.

3.4.3 Working Status Detection and Detection Speed

Our analysis extends to assess whether the RF model can discern the operational status

of devices that have dual working modes—namely, busy versus idle. The findings on this

aspect are conveyed in Figure 3.8, which depicts classification accuracies exceeding 90%,

with certain exceptions such as the iPhone in idle mode and Amazon Echo in both active

and idle modes.

Notably, the Amazon Echo experiences the lowest accuracy rate; 28.1% of the time, an

Echo in busy mode is mistakenly classified as being in idle mode. This discrepancy pri-

marily stems from the quick execution of certain commands (like illuminating a light),

which generates minimal traffic. Consequently, the resulting traffic pattern bears resem-

blance to that of an idle state.
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Figure 3.8: Confusion matrix of our IoT devices classification based on summary dataset
using RF machine learning algorithm.

As elucidated in Section 3.3.2, certain devices, including printers, plugs, doorbells, smart

bulbs, and baby monitors, do not exhibit significantly different traffic patterns when tran-

sitioning between working states. Therefore, in our experimental setup, each of these

IoT devices is represented by a single model, without differentiation between operational

states.

Additionally, we examined the influence of time window duration on accuracy by adjusting

the window from 20 to 60 seconds, as illustrated in Figure 3.9. A notable observation was

a 3% improvement in accuracy with the RF model when the window was extended to 30

seconds; however, the accuracy plateaued for windows ranging from 30 to 60 seconds.

Hence, we designated the 30-second window as the standard for our evaluations.
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Figure 3.9: Impact of time window size on accuracy.

3.4.4 Discussion

Our study has confirmed that it is indeed feasible for an attacker to profile IoT devices

from outside the network without needing to gain access. By examining elements like the

quantity of data packets, the intervals between their arrivals, the dimensions of the packets,

and the pattern of their size distribution, we can accurately identify the types of devices and

often discern their operational states. This method of attack is straightforward (it requires

neither network access nor specialized tools), swift (yielding over 95% accuracy within a

mere 30 seconds), and stealthy (leaving no traces that can be tracked).

Implications: of such an attack are considerable, particularly in terms of privacy risks.

For one, it paves the way for clandestine corporate espionage. A potential attacker could

simply drive by a commercial vicinity to deduce information about the level of business

activity, the economic status of customers, potential earnings, or even identify devices for

subsequent cyber attacks. On a more advanced level, the technique can be used to monitor
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and follow mobile devices like cars, drones, or phones. Deploying a fleet of drones across

a broad area could enable the classification and tracking of various signal-emitting devices,

providing insights into their interactions and movements.

The scalability of this out-of-network profiling attack remains an open question. While

the approach is proven effective within our experimental setup, its applicability in a real-

world, uncontrolled environment is yet to be explored and will be a subject of our future

research.

As for defensive strategies, constructing a solid barrier against such device fingerprint-

ing, particularly at the data-link layer, comes with significant implementation costs. For

instance, encrypting the MAC header information could mask the identities of devices

and decrease the likelihood of a successful attack, but it’s not a complete solution and

the associated overheads for key management and encryption could render it unfeasible

[67]. Defenses designed for network or application layers do not translate effectively to

the data-link layer. One alternative defense could be to employ obfuscation using virtual

identifiers, such as virtual wireless clients (VWC)[1, 26], which generate multiple virtual

network interfaces for each physical network card. By distributing a device’s traffic across

several virtual clients, either randomly or by a set of rules, we might introduce enough

randomness to thwart an attacker’s attempt to correlate different MAC addresses with a

single WiFi device.
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3.5 Summary and Recommendations

Summary: This chapter has detailed the methodology for detecting IoT devices through

passive monitoring of encrypted wireless traffic. By capturing and preprocessing traffic

data, extracting relevant features, and employing machine learning models by using data

summary and random forest model, it is possible to profile and identify connected IoT

devices without directly accessing the network. This approach highlights the potential pri-

vacy risks posed by passive surveillance techniques and underscores the need for enhanced

security measures in IoT deployments.

Recommendations:

1. Developing robust defensive mechanisms to obfuscate IoT device traffic patterns and

prevent device fingerprinting attacks. Potential strategies include encrypting MAC

header information, employing virtual wireless clients (VWCs) to distribute traffic

across multiple virtual interfaces, or introducing controlled randomness in traffic

patterns.

2. Enhancing security measures and privacy-preserving mechanisms in IoT device com-

munications, such as implementing end-to-end encryption and limiting the exposure

of device metadata.

3. Raising awareness among IoT device manufacturers, network administrators, and

end-users about the risks posed by passive monitoring attacks and the importance of

implementing appropriate countermeasures.
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4. Conducting further research to assess the scalability and effectiveness of this attack

technique in real-world, uncontrolled environments, and exploring potential mitiga-

tion strategies.

5. Collaborating with regulatory bodies and industry stakeholders to establish guide-

lines and best practices for secure IoT device deployment and network traffic moni-

toring.

While the technique presented in this chapter highlights a significant vulnerability in IoT

ecosystems, it also underscores the need for proactive measures to enhance the security

and privacy of wireless networks and connected devices. By addressing these challenges

through rigorous research, innovation, and collaboration, we can pave the way for a more

secure and trustworthy IoT landscape.
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CHAPTER 4: Time-Series Data: Concepts, Techniques, and Use

Cases

This chapter investigates the feasibility of fingerprinting and identifying Internet of Things

(IoT) devices by eavesdropping on their encrypted WiFi network traffic from outside the

network. It presents a detailed analysis of capturing and processing time-series data from

the wireless traffic of various IoT devices. By extracting statistical features and applying

machine learning techniques like XGBoost on the time-series data, the proposed approach

demonstrates the ability to accurately classify and profile different types of IoT devices

based on their network traffic patterns, even when observing the traffic from outside the

encrypted WiFi network. The results show promising accuracy of up to 94% in identifying

and distinguishing between active and idle states of 10 different IoT devices, highlighting

potential privacy concerns and the need for enhanced security measures in IoT device

communications.

4.1 Problem Statement, Threat Model, and Assumptions

In this section, we first define the problem statement that serves as a strong motivation for

the proposed research. Afterward, we present the threat model that needs to be covered by

the proposed study. Finally, we discuss the considered assumptions while conducting the

proposed research.
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4.1.1 Problem Statement

The TCP/IP paradigm is used for communicating devices on networks. The IP address

at the Network Layer and the MAC address at the Data Link Layer can be used to iden-

tify the devices on the network. Spoofing identities have been used to get around these

identifying mechanisms and access restricted resources. Using WiFi traffic analysis, an

attacker can ”fingerprint” devices to determine private user behavior [58]. For instance, by

continuously watching the camera’s bitrate, the attacker could ascertain the movements of

objects inside a building [111]. Moreover, the attacker can predict which vulnerabilities

are available to exploit depending on the type of IoT devices in the network. However,

extensive research has been conducted on fingerprinting the IoT devices using eavesdrop-

ping from the inside network [103]. This research performs a detailed investigation and

proves that fingerprinting the IoT devices eavesdropping from outside the network is not

only possible but also a straightforward process. The developers of the IoT devices must

need to consider some extra security constraints to overcome those privacy threats.

4.1.2 Threat Model

In the proposed research, we consider that the attacker aims to target the information

of IoT devices using a targeted WiFi network. Moreover, the attacker is also interested

in the number and type of unique IoT devices, e.g., Laptop, Smart TV, Light Bulb, etc.

Moreover, the attacker is also interested in getting the mode of those devices, such as

idle or active. The attacker intends to gain maximum sensitive information by gathering
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the devices’ data. For example, the device type may reveal potential vulnerabilities to

software/hardware status. The number of devices may reveal the customers in business,

the number of employees, or the family size. The type and number both can reveal the

status of socioeconomic.

Considering this as a potential threat model, we aim to perform a detailed investigation that

fingerprinting the IoT devices eavesdropping from outside the network is a straightforward

process. This threat should be considered in the first place.

4.1.3 Assumptions

In the proposed research investigation, we assume that the attacker continuously observes

the network traffic outside the network using the targeted WiFi or access point. We also

believe that the attacker is physically in the signal range of the access point, so he can

perform eavesdropping using a sniffing tool and gather the nearby WiFi network traffic.

We assume that the attacker can’t join or break the network. To this end, in the proposed

research investigation, we prove that fingerprinting the IoT devices from the outside of the

network eavesdropping is possible. Moreover, the existing research focuses on the IoT

devices operated at 2.4GHz; we consider the same. However, the proposed study can be

applied to 5GHz as well.
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4.2 Verification of Collective Movement

In this section, we first present the system architecture, and then we discuss how the at-

tacker captures the network traffic from outside of the network. After that, we present the

pre-processing of the captured data.

4.2.1 System Architecture

In the proposed investigation, we consider the system architecture illustrated in Figure 2

where the attacker uses to access the WiFi network. The system architecture consists of

two stages, offline and online. The first stage (offline) is the attacker’s profiling model

training and building stage, where an attacker uses his computer and many IoT devices

to conduct experiments in order to build the profiling model of each IoT device. On the

other hand, the second stage (online) is the attacking stage, where the attacker monitors a

WiFi network, trying to identify all IoT devices in the WiFi network based on monitored

data and profiling models built in the offline stage. In the first stage (offline), the attacker

configures maximum IoT devices which are connected to the nearby WiFi gateway. The

attacker accesses the network traffic using a sniffing tool, where the traffic data would

be labeled as the device name using the MAC address. The collected data is then pre-

processed, where we removed the noise (e.g., network traffic gathered from nearby WiFi

networks, data link layer broadcast frames, WiFi protocol beacon frames), and dumped

the valuable features into a CSV file for applying the machine learning techniques. In

particular, we apply several machine learning algorithms and achieve accuracy up to 95%
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for device identification.

In the second stage (online), the attacker applies a sniffing tool and targets the victim’s

access point for a short period of, for example, 30 seconds, and stores the traces for pre-

processing. To this point, we never require prior knowledge of the IoT devices for pre-

processing, which we will explain in detail later in the following subsection. Precisely, we

use standard and statistical filtering techniques to eliminate the noise from the data frames

which do not represent the patterns of data. After that, we use Python scripting to extract

the features from pre-processed data. Finally, we were able to predict the type of devices

and their activity.

4.2.2 Traffic Capturing From Outside of the WiFi Network

In order to capture the data frames from outside of the WiFi network, we first test to

use the two most popular sniffing tools, Kismet1 and Airodump-ng2. Kismet stores the

network traces as SQLite3 database, whereas Ariodump-ng dump the traces into a capture

file format such as pcap3.

The output of pcap is used to perform packet inspection as the output is in a compatible for-

mat, where the packet inspection can be done via a network analyzer such as Wireshark4.

We use those sniffing tools because of their capability to sniff raw 802.11 frames. Besides,

both of them are able to monitor single-channel and multi-channel using frequency hop-

ping. For the hardware, we use an external wireless adapter (Alfa AWUS036ACM) as the

built-in WiFi cards don’t serve our purpose because they are programmed to accept the
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data packets which are particularly addressed to the machine’s interface card.

Once the captured traffic is analyzed, we observe that a significant proportion of captured

packets contradicts the elephant-mouse internet traffic phenomenon [16]. The elephant

flows of 1500 bytes were unable to see for all the available devices, including the video

packets captured from a Camera or a smart TV. The proposed investigation shows that the

aforementioned tools can only capture a limited range of packets in terms of their sizes.

For example, they are able to capture the packet up to the frame size of 472 bytes; however,

this size is enough for particular applications such as signal intelligence. Due to such

limitations of Kismet and Airodump-ng, we consider another sniffing tool called Airtool5.

The Airtool sniffer is a MAC’s built-in sniffing tool that can passively sniff WiFi traffic

and store the traces in a pcap format which can be further analyzed using Wireshark.

We simultaneously run Wireshark on a different laptop connected to the network to record

its own incoming/outgoing network traffic to the AP in order to confirm the accuracy

of the traffic caught by Airtool which is running on an out-of-network MacBook. The

traffic between the second laptop connected to the network and the AP was considered for

comparison of those two traces.

4.2.3 Data Pre-Processing on Captured Data

Once the encrypted WiFi traffic data is captured using the Airtool software, the output in

pcap format is analyzed using the Wireshark tool. In particular, the following steps are

taken to analyze the captured data:
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1. We start with the traffic broadcasting in both directions to the MAC address of the

WiFi network under investigation. This is required since Airtool could potentially

monitor WiFi traffic from many neighboring APs. Only data frame types are kept

since all other control, and management MAC-layer frames do not adequately depict

the profiling data pattern.

2. We export the pcap files into the csv files for the following steps number 3 and 4.

3. We eliminate noisy frames that some MACs produced. Since they often only ap-

peared as a single frame, these noise frames are simple to filter out. By just keeping

traffic frames with bi-directional communication traffic, they are filtered away.

4. To make dataset labeling easier, we swap out the MAC addresses for the relevant

device names and their operational status. This step is included only in the offline

training stage.

5. The dataset required for both offline training and performance testing is eventually

obtained using a Python script that extracts and calculates statistical characteristics.

4.3 Data Processing and Analysis

In the section, we first discuss the observable Data Fields, and then we discuss data anal-

ysis. Finally, we discuss device profiling on time-series data.
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Figure 4.1: The total number of data packets captured with respect to the IoT device. Many
devices’ names show whether they are in active or in an idle state.

4.3.1 Useful Data from Network Monitoring

As we have discussed earlier, the process of out-of-network monitoring. Here, we present

the observable data fields on a secured WiFi network where everything above the data-link

layer is encrypted because of WiFi protocol WPA-PSK. Because of this encryption, the

only observable data is the MAC-layer frame header, signal strength, and the observation

timestamp. The frame header provides the source and destination’s MAC addresses, frame

size, and frame type. However, the signal strength cannot be used as it has been affected by

several factors such as neighboring WiFi networks, deflection, absorption, and reflections

of the surrounding objects. Therefore, in the proposed investigation, we neglect the signal
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strength and only use the MAC layer frame header.

4.3.2 Data Analysis

As discussed earlier, we consider 10 different IoT devices and collected their data through

out-of-network monitoring. we show the total percentage of captured data from each de-

vice. To provide insights into the monitored traffic, we measure the working and idle

status of all the IoT devices. We can observe that the number of received packets from

TV is more than the other IoT devices such as the camera and Google. All of the other

devices’ captured data are comparatively way less than those three devices. Consequently,

the camera and google both display different behavior with regard to packet sizes. Specif-

ically, the camera and google both appear to send the majority of their packets at a fixed

size of 170 bytes and 140 bytes, respectively. We will discuss this part in the following

section.

We believe that the attacker can easily build the signature. Moreover, the attacker can also

change the status of those IoT devices. As we can see, there is a huge difference between

the active and idle states of the devices which means the AP initiated communication to

send an off signal to those devices. On the other hand, due to the notable decline in flow

when switching to the idle state, the working condition of other devices with better network

capabilities and memory storage, such as iPhones, printers, and Amazon, is impressively

noticeable. For instance, Amazon will only get a small number of packets when it is idle

because the user is not searching the Internet. Similarly, we show a detailed transmission

of data packets from each IoT device. In particular, we show the total number of packets
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sent from the access point to the IoT device, which is represented by 1, and the total

number of packets sent from IoT devices to the access point, which is represented by 0.

Moreover, the figure depicts both the total data captured in the active and idle states of all

the devices.

4.3.3 Machine Learning Techniques

In order to execute our investigation, we choose several classification methods, and a pop-

ular machine learning model XGBoost [28]. We consider XGBoost because of its superior

performance, especially for the problems of network classification among other popular

machine learning models. Because our data is captured in two different sequence sizes, so

we consider precision, recall f-1 score, and support vector machine (SVM) as performance

metrics to tackle the time series data.

4.3.4 Profiling on IoT Devices using Time-series Data

Processing time-series data is simple. The captured traces from the Data-link layer are

converted into a string of three-feature items. The monitored frame is then converted into

three numeric values: the size of packet P , the direction of packet X , and the arrival time

Y , where 0 represents the transmitted packets and 1 represents the received packets by

an IoT device. Following those numeric values, we can obtain the series of data such as

{P0, X0, Y0}, {P1, X1, Y1}, ..., {Pn, Xn, Yn}.

This method’s main disadvantage is that it needs a lot of packets to supply all the data
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points needed for categorization or machine learning training. In our case, we are dealing

with a heterogeneous system monitored inside a specific time window; certain devices

(such as Smart TV) generate a large volume of data packets while others only produce

very sparse packets (such as smart light bulb). For instance, if we compare how long it

takes the light and TV to collect a 100-packet series, the TV just needs one second of

visible data while the light needs approximately 30 minutes.

To overcome this challenge, we use a two-level categorization technique, starting with a

traffic intensity threshold. Devices are divided into two groups in the first level according

to whether there is a high or low volume of traffic. Then, in accordance with the volume of

device traffic, we use an appropriate sequence size. Using ML algorithms, the second level

determines the prediction probability. A prediction is made if the probability rises above a

certain threshold; else, the data is labeled as an ”unknown” device. After you finish your

AirTool data capturing, suppose you have N IoT devices. Split the packets into N files (or

N tabs in Excel). Each file contains packets that all associate with one IoT device’s MAC

(either as source MAC, or destination MAC). Just keep the data in the following format:

Timestamp From/To AP Packet length
t 1 0 n 1
t 2 1 n 2
t 3 1 n 3
t 4 0 n 4
t 5 0 n 5
t 6 1 n 6

Table 4.1: We use 1 to denote the packet is sent from AP to the IoT device, 0 to denote the
packet is sent from the IoT device to the AP. Timestamp is according to time order.
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Once the dataset is created, we extracted the following features from the monitored traffic

in each time window:

1. Single feature data sequence: The simplest data for classification is a single se-

quence of packet length. There are three ways for such data sequence. We use the

above example table to illustrate:

a) From-AP only packet length data: (n 2, n 3, n 6, . . . . . . ).

b) To-AP only packet length data: (n 1, n 4, n 5, . . . . . . ).

c) Both-directional packet length data: (n 1, n 2, n 3, n 4, n 5, n 6, . . . . . . ).

2. Two-feature data sequence:

a) We use both the direction and the packet length as two-feature dataset:

t2 − t1 t3 − t2 t4 − t3 t5 − t4 t6 − t5 t7 − t6

n1 n2 n3 n4 n5 n6

b) Another way is to ignore direction, but use packet interarrival time and packet

length as two-feature dataset (remove the first packet since there is no interar-

rival time for it):

1 1 0 0 1

n2 n3 n4 n5 n6

3. Three-feature data sequence: We use interarrival time, direction, and packet length

for the three-feature dataset.
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Justification for Feature Selection

Profiling IoT devices using time-series data involves extracting and utilizing features that

best capture the distinctive patterns of device communication. The three primary features

used in this analysis are packet length, direction, and interarrival time. Each of these

features contributes uniquely to the classification and profiling of IoT devices, providing a

comprehensive understanding of their traffic behavior.

Packet Length: Packet length is a critical feature because it reflects the amount of data

being transmitted in each packet. Different IoT devices have varied functionalities and

purposes, leading to distinctive packet sizes. For instance, a smart TV streaming video

content will have consistently larger packet sizes compared to a smart light bulb, which

transmits minimal data for simple commands. By analyzing packet lengths, we can iden-

tify patterns specific to each device type, making it a valuable feature for classification.

Direction (From/To AP): The direction of packets (whether they are sent to the Access

Point (AP) or received from it) provides insights into the communication flow of the IoT

device. Devices have different communication behaviors based on their operational states

and roles. For example, a security camera might frequently send data to the AP (uploads)

while occasionally receiving configuration commands (downloads). By distinguishing be-

tween packets sent to and from the AP, we capture this directional flow, which aids in

differentiating devices based on their communication patterns.

Interarrival Time: Interarrival time, the time gap between consecutive packets, offers

valuable information about the device’s activity and usage patterns. Devices with periodic
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updates, such as environmental sensors, have regular interarrival times, whereas devices

with sporadic usage, like a smart thermostat, might have irregular patterns. Interarrival

time helps in understanding the temporal dynamics of the traffic, providing an additional

layer of differentiation among devices.

Combining Features for Enhanced Profiling:

• Single-feature data sequence (Packet Length): This simple approach focuses solely

on packet length, categorized by direction, providing a baseline understanding of

the traffic patterns.

• Two-feature data sequence (Direction and Packet Length): Combining direction

with packet length enhances the classification by incorporating the flow of com-

munication along with the data size, making it easier to distinguish devices with

similar packet lengths but different communication patterns.

• Two-feature data sequence (Interarrival Time and Packet Length): Ignoring direc-

tion but using interarrival time and packet length captures the temporal and size-

related aspects of the traffic, useful for identifying devices with distinct temporal

patterns.

• Three-feature data sequence (Interarrival Time, Direction, and Packet Length): This

comprehensive approach leverages all three features, providing a robust dataset that

captures size, temporal dynamics, and directional flow. This rich feature set en-

hances the machine learning model’s ability to accurately profile and classify IoT

devices.
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The heatmap of feature correlations further justifies the selection, showing significant re-

lationships among these features, which collectively contribute to a more accurate and

reliable classification model. The combination of these features ensures a thorough analy-

sis, addressing the inherent heterogeneity and diverse communication patterns of various

IoT devices.

4.3.5 Training and Testing

Let us denote the dataset sequence of one IoT device as: (d1, d2, d3, d4, . . .) For single-

feature dataset, di = ni. For two-feature dataset, such as (2.a) dataset, d3 = (t4 − t3, n3),

which is a two-entry vector. For three-feature dataset, d3 = (t4 − t3, 1, n3), which is a

three-entry vector. We utilize the initial portion of the dataset (either the first half based on

the number of packets or the first half based on time, either is acceptable) as the training

dataset to train a machine learning algorithm. During the training stage, we assume prior

knowledge of the IoT device’s identity. In the testing stage, the testing data (the latter half

of the dataset) is denoted as (dm, dm+1, dm+2, dm+j, . . .), where j represents the size of

the testing window. We aim to classify the IoT device using only these j + 1 data entries,

allowing our system to profile and classify a monitored IoT device within that specified

time window.

Initially, a large value can be chosen for j, as long as the testing data permits. If the classi-

fication is successful, the testing window can be reduced (i.e., the value of j is decreased).

A smaller value of j indicates that our profiling process is faster.
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Figure 4.2: Machine learning model accuracy on Precision, Recall, and F1-Score.

4.4 Results and Discussion

In this section, we first present the testbed settings and the evaluation metrics. Afterward,

we show the IoT devices’ packets transmission and their reception in terms of packet

length, and time. Finally, we show the evaluation results and prove that the outsider in-

truder can significantly harm the IoT devices without joining the WiFi network.
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4.4.1 Testbed and Evaluation Metrics

With the help of a WiFi router, we built up a testbed with 10 distinct IoT devices. We use

AirTool to capture the WiFi data frames be- tween all IoT devices and the WiFi router for

an appropriate amount of time in order to collect enough data. Once the data is captured,

we use a time-series format and randomly split the dataset into two groups, 20% for testing

and 80% for training. The following metrics are used to assess our classification models:

Precision, Recall, F1 Score, and Accuracy. Let’s use the abbreviation T to stand for true

prediction, further subdivided into true positives and true negatives. The letters F stand

for false prediction, which is further divided into false positives and false negatives. The

following equations are used to measure the Precision, Recall, F1 Score, and Accuracy,

respectively. Accuracy, Precision, Recall and F1 Score. Let us denote true prediction as T ,

broken further into true positives TP and true negatives TN . Likewise, false prediction

is denoted as F , broken into false positives FP and false negatives FN . Accuracy is

measured as T
T+N

, Precision is measured as TP
TP+FP

, Recall is measured as TP
TP+FN

, and F1

is measured as 2× Precision×Recall
Precision+Recall .

4.4.2 Results

We chose a 30-minute time window size for evaluation. We believe that long-term ob-

served traces can teach us more about time-series patterns than short-term ones, which

call for much longer time observations to carry out the attack. As we were facing a chal-

lenge in working with imbalanced data, for example, data captured from some devices
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are extremely high such as TV or Camera, whereas other devices are barely showing any

record for example Nest, Light. To balance such data, we use SMOTE analysis to prove

the significance of the results. Figure 4.3 shows the confusion matrix of prediction ac-

curacy using a SMOTE analysis on the XGBoost model. The Figure shows that the IoT

device ”Printer active” captures maximum true labels, whereas the IoT device ”google

idle” captures minimum true labels.

Finally, we show the accuracy of all 10 IoT devices in each active and idle state with

respect to Precision, Recall, and F1-Score. In this chapter, we investigated the feasibility

of fingerprinting IoT devices by eavesdropping on encrypted WiFi traffic from outside the

network. We defined the problem statement, presented the threat model, and discussed

our assumptions. We then described our system architecture, how we captured traffic

from outside the network, and pre-processed the data. Our analysis of the captured data

revealed insights into the behavior of different IoT devices in terms of packet transmission

and reception. We used machine learning techniques, including XGBoost and time-series

classification, to classify the devices based on their traffic patterns. The results showed

promising accuracy, with the XGBoost model. In Figure 4.3, we show that the model

achieves up to 94% accuracy, demonstrating the potential for identifying and profiling IoT

devices based on their WiFi traffic characteristics.

In this chapter, we explored the feasibility of fingerprinting IoT devices by monitoring

their encrypted WiFi traffic from an external attacker’s perspective. The training and test-

ing methodology involved dividing the dataset into sequences based on time or the number

of packets, using initial portions for training and the latter portions for testing. This setup
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Figure 4.3: Predicted labels of each IoT device.

allowed for evaluating the performance of machine learning algorithms, particularly fo-

cusing on how accurately and quickly an IoT device could be profiled within a specified

time window. The training process assumed prior knowledge of the device’s identity, while

the testing process aimed to classify the device using a minimal number of data entries to

expedite profiling.
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The results demonstrated that the machine learning models, especially XGBoost, could

achieve high accuracy in classifying IoT devices based on their encrypted traffic patterns.

The evaluation metrics used, including Precision, Recall, F1 Score, and Accuracy, pro-

vided a comprehensive view of the model’s performance. The analysis of the confusion

matrix revealed the variability in prediction accuracy among different IoT devices, high-

lighting that some devices were easier to classify accurately than others. This variability

underscored the importance of addressing imbalanced data, which was mitigated using

the SMOTE technique to ensure a more balanced representation of device activity in the

training dataset.

Overall, the chapter’s findings underscore significant privacy risks associated with the abil-

ity of an external attacker to profile IoT devices by passively eavesdropping on their WiFi

traffic. This research highlights the necessity for device manufacturers to implement mea-

sures that obfuscate traffic patterns and for users to adopt best practices to mitigate these

risks. Additionally, the study suggests that traditional encryption protocols like WPA2 are

insufficient to prevent such attacks, as they do not hide metadata visible at the link layer.

These insights pave the way for further research and development of more robust counter-

measures to enhance the security and privacy of IoT ecosystems.

4.5 Summary and Recommendations

Summary: In this chapter, we investigated the feasibility of fingerprinting and profil-

ing IoT devices by externally eavesdropping on their encrypted WiFi traffic. Through
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capturing time-series data, extracting statistical features, and applying machine learning

techniques like XGBoost, we demonstrated the ability to accurately classify different IoT

devices and their active/idle states based solely on their network traffic patterns observed

from outside the network.

Recommendations: The key findings and recommendations from this work are as fol-

lows:

1. The results highlight significant privacy risks, as an external attacker can potentially

identify the types and number of IoT devices in a target network, as well as detect

their operational modes, simply by sniffing the wireless traffic.

2. Device manufacturers should implement additional measures to obfuscate and ran-

domize the network traffic patterns of their IoT devices, making it more difficult for

external observers to fingerprint them based on time-series traffic analysis.

3. The use of encrypted WiFi protocols like WPA2 is not sufficient to prevent such

fingerprinting attacks, as they only encrypt the payload data and not the metadata

visible at the link layer.

4. Network-level anomaly detection systems should be developed to identify potential

eavesdropping and fingerprinting attempts based on suspicious sniffing activities

around the network perimeter.

5. IoT device users should be made aware of these privacy risks and adopt best prac-

tices, such as enabling MAC address randomization, using wired connections where

possible, and minimizing the exposure of IoT devices to external networks.
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6. Further research is needed to develop more robust countermeasures against such

fingerprinting attacks, as well as to investigate the feasibility of extending this ap-

proach to other network types and protocols used in IoT ecosystems.

By highlighting these risks and providing recommendations, we aim to raise awareness

and drive the development of more secure and privacy-preserving IoT systems, which are

becoming increasingly prevalent in our daily lives.
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CHAPTER 5: Conclusion

This dissertation delves into the privacy vulnerabilities posed by out-of-network eaves-

dropping on encrypted WiFi traffic. Through a comprehensive investigation involving 22

IoT devices, including 3 non-IoT devices, we demonstrate that eavesdropping on IoT de-

vices is not only feasible but also a relatively straightforward process.

Leveraging WiFi frame timing and header information, we employ machine learning tech-

niques to infer and fingerprint the presence of IoT devices in a network, as well as their

operational status. Our models exhibit exceptional accuracy, with data summary achieving

up to 95% accuracy and time series up to 94% accuracy in identifying devices and their

working status. These results highlight the significant threat posed by outside intruders,

who can exploit IoT devices without joining a WiFi network and launch attacks swiftly

and stealthily.

The survey presented in this dissertation explores various classification approaches for

encrypted network traffic from IoT devices, websites, and mobile applications. The clas-

sification methods for IoT devices primarily focus on device fingerprinting and OS iden-

tification, which are instrumental in device management and security. Similarly, website

classification methods aim to detect privacy leaks and malicious activities, such as finan-

cial fraud, through techniques like web fingerprinting and user action identification. Mo-

bile application classification methods center around network traffic analysis, QoE metric

measurement, and anomaly detection, aiding in service optimization and security enhance-

ment.
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While these classification methods offer valuable insights, they also raise concerns regard-

ing network security and user privacy. Countermeasures to mitigate these risks were dis-

cussed, emphasizing the importance of balancing security and privacy considerations. In

conclusion, the classification of IoT devices, websites, and mobile applications is crucial

for ensuring network security and providing personalized services. However, it necessi-

tates careful consideration of its implications for security and privacy. Future research

should focus on developing innovative approaches to address these challenges and ensure

the safe and efficient operation of IoT devices, websites, and mobile applications.

In summary, this dissertation sheds light on the vulnerabilities of IoT devices to out-of-

network attacks and provides valuable insights into classification approaches for encrypted

network traffic. By addressing these challenges and implementing appropriate security

measures, we can enhance the security and privacy of IoT devices and networks, as well

as websites and mobile applications, ensuring a safer and more secure digital ecosystem.

5.1 Discussion and Future Work

Our findings demonstrate the feasibility of an outside-of-network attacker successfully

identifying IoT devices without connecting to a WiFi network. This highlights significant

vulnerabilities in current network security practices. The ability to determine device types

and operational modes using characteristics such as packet count, inter-arrival time, and

packet size distribution underscores the sophistication of potential attacks. Moreover, the

ease with which this attack can be executed without leaving any discernible traces raises
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serious privacy concerns.

The implications of such a profiling attack are profound. For instance, an attacker could

drive near a business to gather information about its economic activity, clientele, and rev-

enue trends. This information could be used for malicious purposes, such as targeting

businesses with weak security measures or tailoring attacks to exploit specific vulnera-

bilities. Furthermore, this attack could be extended to track mobile devices in complex

scenarios, such as monitoring the movement of vehicles or drones. The ability to map

out device communication and movement patterns poses significant threats to privacy and

security.

Given the importance of our experimental findings in real-world scenarios, it is crucial to

further develop and implement security measures to mitigate the risks posed by out-of-

network profiling attacks. One approach is to enhance encryption and security protocols

to protect against such attacks. This could involve developing new encryption methods or

enhancing existing ones to make them more resistant to profiling attacks. Additionally,

implementing stricter access control measures and authentication protocols can help pre-

vent unauthorized access to network traffic.

Privacy-preserving techniques are another area of focus for future work. These techniques

aim to obfuscate or anonymize IoT device traffic to prevent identification and profiling.

For example, using techniques like data masking or encryption can help protect sensitive

information from being intercepted and analyzed by attackers. Furthermore, developing

new methods for detecting and mitigating profiling attacks can help organizations better

protect their networks and devices.
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Regulatory considerations are also crucial in addressing the risks associated with profiling

attacks. Advocating for regulatory measures to enforce stronger security practices for IoT

devices and networks can help mitigate the risks posed by such attacks. This could involve

implementing standards and guidelines for IoT device manufacturers to adhere to, as well

as providing incentives for organizations to adopt more secure practices.

Continued research is essential to further explore the full extent of privacy risks posed

by out-of-network profiling attacks. This includes conducting additional experiments and

simulations to better understand the capabilities and limitations of such attacks. Addition-

ally, developing more effective countermeasures and security solutions will be crucial in

mitigating the risks associated with these attacks.

In conclusion, our research highlights the serious privacy and security risks posed by out-

of-network profiling attacks on IoT devices. By expanding on our findings and exploring

new avenues for research and development, we can better protect against these threats and

ensure the security and privacy of IoT devices and networks.
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