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ABSTRACT 

A big challenge in blockchain and cryptocurrency is securing the private key from 

potential hackers. Nobody can rollback a transaction made with a stolen key once the network 

confirms it. The technical solution to protect private keys is the cryptocurrency wallet, 

software, hardware, or a combination to manage the keys. In this dissertation, we try to 

investigate the significant challenges in existing cryptocurrency wallets and propose innovative 

solutions. Firstly, almost all cryptocurrency wallets suffer from the lack of a secure and 

convenient backup and recovery process. We offer a new cryptographic scheme to securely 

back up a hardware wallet relying on the side-channel human visual verification on the 

hardware wallet. Another practical mechanism to protect the funds is splitting the money 

between two wallets with small and large amounts. We propose a new scheme to create 

hierarchical wallets that we call deterministic sub-wallet to achieve this goal. The user can send 

funds from the wallet with a large amount to a smaller one in a secure way. We propose a 

multilayered architecture for cryptocurrency wallets based on a Defense-in-Depth strategy to 

protect private keys with a balance between convenience and security. The user protects the 

private keys in three restricted layers with different protection mechanisms. Finally, we try to 

solve another challenge in cryptocurrencies, which is losing access to private keys by its user, 

resulting in inaccessible coins. We propose a new mechanism called lean recovery transaction 

to tackle this problem. We make a change in wallet key management to generate a recovery 

transaction when needed. We implement a proof-of-concept for all of our proposals on a 

resource-constraint hardware wallet with a secure element, an embedded display, and one 

physical button. Furthermore, we evaluate the performance of our implementation and analyze 

the security of our proposed mechanisms. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem and Motivation 

As blockchain and cryptocurrencies become increasingly popular and practical in 

various areas from purchasing a coffee to transferring vehicle ownership, they also become 

more attractive targets for hackers. Every week, we read the news of stealing money from 

exchanges, servers, and cryptocurrency owners. A big challenge in Bitcoin and almost all 

blockchains is securing the private keys. Blockchain usually uses elliptic-curve asymmetric 

cryptography to control the ownership of coins or accounts. For example, a user signs a 

transaction with her private key to transfer coins to another one, and the blockchain network 

verifies the signature of the transaction with her public key. After being confirmed by the 

blockchain network, the transaction, unlike the traditional bank transfer, cannot be rolled back 

by anyone. 

Consequently, the private key has full control of the crypto funds, and the most crucial 

task of the user is keeping her private keys safe. It is one of the essential challenges in 

cryptocurrencies [1]. Existing systems require a particular software or hardware called crypto 

wallet to store the private keys and sign the transactions. Crypto wallets have a spectrum from 

online wallet to cold wallet while many experts believe the most secure one is the hardware 

wallet. It usually is a dedicated cryptographic device in the form of a USB stick, Bluetooth 

device, or smart card. Even though the hardware wallet is secure in many aspects, some 

essential issues should be addressed. In this work, we consider these issues and propose 

innovative schemes to solve them. 
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1.2 Crypto Wallet Security 

At first, we consider the security of the existing hardware wallets and search to find an 

appropriate hardware device to implement that. So, we find a secure hardware wallet must have 

direct input and output like a display and few buttons to communicate with the user directly 

without trusting to the terminal such as a computer and smartphone. Furthermore, a hardware 

wallet must have a Secure Element to store secrets and keys and perform cryptographic 

operations. As we believe, the most promising device to build a secure hardware wallet is the 

smart card (IC card). However, the traditional smart cards do not have any display and button 

and have fundamental vulnerabilities. Thus, in the first research we focus on smart card security 

and implement such attacks to one the most pervasive smart cards. Then, we propose using a 

server-based solution to solve the digital signature security issue in the traditional smart card. 

We published the paper of the result of our research and attack implementation in the 2018 

International Conference on Computing, Networking and Communications (ICNC-2018) as 

“Secure Smart Card Signing with Time-based Digital Signature” [2].  

1.3 Crypto Wallet Backup Problem 

The first significant problem in current hardware wallets is the backup and recovery 

process. Almost all of them use a word list (mnemonics) to back up private keys and restore 

them when needed. The user must write these words on a piece of paper and keep it safe. This 

method converts the seed of private keys from digital form to physical form and moves the 

problem to the outside of the wallet. In this work, we propose a new digital scheme for backup 

and recovery using Elliptic-Curve Diffie-Hellman (ECDH) algorithm [3]. This new approach 

is very convenient for a user because she does not need to write a word list and keep it safe. At 

the end of the backup process, the user has two same crypto wallets, and she can use both of 
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them as a functional wallet without any additional recovery step. We did this research and 

development and published our paper in the 2019 IEEE Global Communications Conference 

(GLOBECOM-2019) as “New Secure Approach to Backup Cryptocurrency Wallets” [4]. 

1.4 Super-Wallet/Sub-Wallet Model 

The second issue in crypto wallets is separating funds between wallets. Even though 

the hardware wallet is a secure option, it is risky that the user puts all of her funds on one device 

and uses that for day-to-day purchase. A smart and simple solution is proposed in [1] called 

super-wallet/sub-wallet model. The super-wallet is like a saving account that stores a large 

amount of money and only refills the same owner’s sub-wallet infrequently when needed. The 

sub-wallet is like a spending account that saves a small amount of fund used by the user for 

daily expenses. Therefore, if the user’s sub-wallet is lost or hacked, she does not lose a 

significant amount of money. 

In the classic model, every time a user wants to refill her sub-wallet, she sends the fund 

from the super-wallet address to the sub-wallet address. This process is straightforward but has 

significant drawbacks. First, each time the user refills the sub-wallet, the super-wallet creates 

a transaction and publishes that to the blockchain network. Thus, she pays a miner fee for each 

such transaction. Also, she should wait for confirmation, so refilling the sub-wallet takes time. 

Also, refilling the sub-wallet is risky because a hacker could perform Man-In-The-Middle 

(MITM) attack to replace the original sub-wallet address by his address to receive fund from 

the super-wallet. Furthermore, the user must maintain the backup of both super-wallet and sub-

wallet. 

To resolve these challenges in the super-wallet/sub-wallet model, we propose a new 

scheme that we call deterministic sub-wallet. In this model, the sub-wallet seed is derived from 
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the super-wallet seed. The super-wallet calculates the sub-wallet addresses and transfer the 

fund to them in only one blockchain transaction. To refill, the user transports a sub-wallet seed 

from the super-wallet to the sub-wallet instead of creating a blockchain transaction. 

Consequently, this model can refill multiple sub-wallet addresses with only one mining fee and 

one-time waiting for confirmation. It is secure because the super-wallet does not need to get 

the sub-wallet addresses from the outside of the wallet, and it prevents the MITM attack. Also, 

there is no need to back up the sub-wallet, because it can be derived from the super-wallet. For 

proof-of-concept, we implement a prototype of our proposed deterministic sub-wallet in a 

hardware wallet and evaluate its performance. We did the research and development of this 

project and published our paper in the 2019 IEEE International Conference on Blockchain 

(Blockchain-2019) as “Deterministic Sub-Wallet for Cryptocurrencies” [5]. 

1.5 Defense-in-Depth Architecture 

In this project, we propose a multilayered architecture for cryptocurrency wallets based 

on a Defense-in-Depth strategy to protect private keys with a balance between convenience 

and security. Defense-in-Depth (DiD) is an approach in IT security that usually conveys 

multiple layers with various security mechanisms to protect a system from attacks in several 

steps. The user protects the private keys in three restricted layers with different protection 

mechanisms. So, a single breach cannot threaten the entire fund, and it saves time for the user 

to respond. We implement a proof-of-concept of our proposed architecture on both a smart 

card hardware wallet and an Android smartphone wallet with no performance penalty. 

Furthermore, we analyze the security of our proposed architecture with two adversary models. 

We published our paper in the IEEE 6th International Conference on Computer and 
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Communications (ICCC2020) as “Multilayered Defense-in-Depth Architecture for 

Cryptocurrency Wallet” [6]. 

1.6 Avoiding Inaccessible Wallet 

Blockchain user locks her private keys with a password and stores them on a piece of 

software or a hardware wallet to protect them. A challenge in cryptocurrencies is losing access 

to private keys by its user, resulting in inaccessible coins. These coins are assigned to addresses 

which access to their private keys is impossible. Today, about 20 percent of all possible bitcoins 

are inaccessible and lost forever. A promising solution is the off-chain recovery transaction 

that aggregates all available coins to send them to an address when the private key is not 

accessible. Unfortunately, this recovery transaction must be regenerated after all sends and 

receives, and it is time-consuming to generate on hardware wallets. In this project, we propose 

a new mechanism called lean recovery transaction to tackle this problem. We make a change 

in wallet key management to generate the recovery transaction as less frequently as possible. 

In our design, the wallet generates the lean recovery transaction only when needed and provides 

better performance especially for micropayment. We evaluate the regular recovery transaction 

on two real hardware wallets and implement our proposed mechanism on a hardware wallet. 

We achieve a %40 percentage of less processing time for generating payment transactions with 

few numbers of inputs. The performance difference becomes even bigger with larger number 

of inputs. We published our paper in the Third International Workshop on Blockchain Systems 

and Applications (BlockchainSys2020) in conjunction with IEEE TrustCom 2020 as “Efficient 

Off-Chain Transaction to Avoid Inaccessible Coins in Cryptocurrencies” [7]. 
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1.7 Document Structure 

In this document, we first overview the technical background of crypto wallets. We 

review the required cryptography primitives like hash function, digital signature, and elliptic-

curve cryptography. Then, we introduce the blockchain technology, including blockchain 

mechanics, consensus mechanisms, smart contract, and various types of blockchain. Next, we 

consider crypto wallets, which includes explaining different wallet types and hierarchical 

deterministic wallet. We also describe smart card technology as a secure option to implement 

the hardware crypto wallet. In the next chapter, we start by discussing smart card security issues 

and explain our implementation to evaluate them. We continue in the next chapter with argue 

about existing crypto wallet backup mechanisms and their drawbacks. Then, we propose a new 

cryptographic backup mechanism based on elliptic-curve Diffie-Helman. Following sections 

present the prototype implementation, performance evaluation, and security analysis of this 

new mechanism. Then, we explain the details of our proposed solution for super-wallet/sub-

wallet model. We describe our prototype implementation, performance evaluation, and security 

analysis of this model. Next, we propose our multi-layer architecture for cryptocurrency wallets 

that provide a defense-in-depth architecture. This model uses our previous proposed 

mechanism for wallet cloning and derivation. We present our proof-of-concept implementation 

and depict two adversary model for security analysis. Finally, we propose a key management 

schema to avoid inaccessible wallet using an efficient off-chain transaction. In this section, we 

examine the current solution on two hardware wallets to illustrate that it is not applicable to 

resource-constraint wallets and then evaluate our proposed efficient mechanism on a hardware 

wallet. In the end, we finish with the conclusion.  
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CHAPTER 2: TECHNICAL BACKGROUND 

2.1 Cryptography Primitives 

In this section, we provide an overview of the essential concepts of cryptography 

required for the subject of this dissertation.  

2.1.1 Hash Function 

The hash function is a one-way procedure to create a unique digest for a message or 

transaction. One-way means everybody can compute the digest from the message, while the 

reverse of this function; recovering the message from its hash, is not possible or is very hard to 

do. Hash functions generate a fixed-length hash value, and the message length can be larger 

than the hash length. Since the hash functions map a larger set to a smaller set, they have 

collisions. The stronger hash function has a lower collision probability. 

Blockchain technology employs the hash function in several situations. For example, 

the Bitcoin transaction ID is the hash of the whole transaction body, and the key derivation and 

address generation procedures use hash functions. The most popular hash algorithm in Bitcoin 

is SHA256, SHA512, and RIPEMD160. 

2.1.2 Hash-based Message Authentication Code 

Hash-based message authentication code (HMAC) is a specific type of message 

authentication code that includes a hash function and a secret key. Therefore, HMAC provides 

both integrity and authentication of data. The most used HMAC algorithms in crypto wallets 

are HMAC-SHA256 and HMAC-SHA512. 
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2.1.3 Symmetric Cryptography 

Symmetric encryption refers to a cryptography scheme where the encryption key and 

the decryption key are same. It means that everyone who has the secret key can both encrypt 

and decrypt all messages. The most popular symmetric algorithms are Triple-DES and AES. 

The main advantage of symmetric cryptography is the performance where encryption 

and decryption functions are fast and make it suitable for large data encryption. On the other 

hand, the significant disadvantage of symmetric cryptography is the key distribution which 

requires a pre-existing key or out-of-band channel. 

2.1.4 Asymmetric Cryptography 

In contrast to symmetric algorithms, asymmetric cryptography uses different keys for 

encryption and decryption. In the encryption scheme, the sender uses the receiver “public key” 

to encrypt a message, and the receiver uses her own “private key” aka “secret key” to decrypt 

the ciphertext. Therefore, the receiver publishes her public key to the desired senders. Everyone 

who has the receiver public key can encrypt a message for her. However, only the receiver can 

decrypt the cipher because only she has the corresponding private key. The most popular 

symmetric algorithms are RSA and ECC. 

In comparison to the symmetric cryptography, the main advantage of asymmetric 

cryptography is the easier key distribution. On the other hand, the encryption and decryption 

functions are usually slower. Thus, for encryption scheme, the hybrid solution is more realistic 

while a symmetric key encrypts the data and an asymmetric public key encrypts the symmetric 

key. So, only who has the asymmetric private key can decrypt the encrypted aka “wrapped” 

symmetric key and consequently decrypt the data.  
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2.1.5 Digital Signature 

The digital signature is a process in asymmetric cryptography when the signer uses her 

private key to sign the hash of a message and generates a signature value.  The verifier verifies 

the signature using the signer public key. The digital signature provides data integrity and 

authenticity in addition to non-repudiation. The last one means the signer cannot deny her 

action to sign a signed message. 

The digital signature is one of the fundamental elements of blockchain technology. In 

the blockchain, each user has a private key aka secret key and digitally signs a transaction to 

transfer funds to others or initiate an on-chain function. Figure 2-1 demonstrates a simplified 

transaction signing in Bitcoin blockchain when Alice wants to transfer one bitcoin to Bob. 

 

Figure 2-1: Simplified Example of Transaction Signing in Bitcoin 

2.1.6 Elliptic-Curve Cryptography 

Elliptic-curve cryptography (ECC) is a type of asymmetric cryptography based on the 

elliptic curve over finite field mathematics. The detail explanation of ECC is out of the scope 

of this document. However, we overview the basic concepts of ECC in this section.  
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2.1.6.1 Elliptic-Curve Domain Parameters for secp256k1 

The elliptic curve equation is shown in Equation (1). It is a cubic operation in a finite 

field which means every integer result of multiplication, addition, subtraction, and division will 

get modulo number p where p is a prime number. 

y2 = x3 + ax + b (mod p) (1) 

There are various ECC equations with different a and b parameters, but one of the 

popular ones used in many blockchains is secp256k1 defined in Standards for Efficient 

Cryptography (SEC) [6]. Figure 2-2 lists these parameters. 

p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 – 1 

  = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F 

a = 0 

b = 7 

G: xG = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 

   yG = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 

n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 

Figure 2-2: Elliptic-Curve Domain Parameters for secp256k1  

As Figure 2-3 demonstrates the simplified graph of secp256k1, this is symmetric over 

x-coordinate and goes to infinity for positive and negative y-coordinate. For simplicity, this 

graph is drawn for the real number, while, the secp256k1 is defined for an integer finite field 

which is different and like a set of randomly scattered dots on a page. 
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Figure 2-3: Elliptic-Curve Graph of y2 = x3 + 7 

2.1.6.2 Elliptic-Curve Adding 

Elliptic-Curve Cryptography defines an adding operation for EC-Points. To add two 

points P(xp, yp) and G(xg, yg) on the elliptic-curve graph in ECC, we should draw a line between 

the points. This line intersects with the elliptic-curve graph in the third point (-R). Then, we 

find the reflected point R(xr ,yr) of the third point over x-coordinate on the elliptic-curve graph. 

This point is the result of the addition as displayed in Figure 2-4. 

 

Figure 2-4: Addition of Two Points in ECC with Geometry Approach 
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Figure 2-5 lists the algebraic approach to add two points in ECC on finite field Zp where 

Zp is a set of integer numbers between 1 and p-1 that is achieved by modulo p. The term 

“modinv” means modular inverse defined by the Extended Euclidean algorithm [9]. 

s = (yg – yp) modinv (xg – xp) mod p 

xr = (s2 – xp – xg) mod p  

yr = (s * (xp – xr) – yp) mod p 

Figure 2-5: Addition of Two Points in ECC with Algebraic Approach 

2.1.6.3 Elliptic-Curve Doubling 

Elliptic-Curve Cryptography also defines another primitive operation for EC-Points 

called doubling means put P equal to G in the addition equation. To find the double operation 

in geometry approach, we must draw a tangent line to the elliptic-curve graph at point P. Then, 

this line intersects with the elliptic-curve graph in the second point (-R). When we find the 

reflected point R(xr ,yr) of the second point over x-coordinate on the elliptic-curve graph, it is 

the result of doubling. Figure 2-6 demonstrates the double operation on Elliptic-Curve 

Cryptography. 

 

Figure 2-6: Doubling of a Point in ECC with Geometry Approach 
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Similar to the addition operation, Figure 2-7 shows the algebraic approach to compute 

the double of an EC-Point. 

s = (3xp2) modinv 2yp mod p 

xr = s2 – 2xp mod p 

yr = (s * (xp – xr) – yp) mod p 

Figure 2-7: Doubling of a Point in ECC with Algebraic Approach 

2.1.6.4 Elliptic-Curve Multiplying 

Elliptic-Curve Cryptography defines the point multiplication based on the point 

addition and the point doubling. This operation multiplies a point to a scalar value and finds 

the resulting point when we double the input point P in scaler times. However, there is a more 

efficient way to multiply called double-and-add, which is similar to multiply-and-square in 

modular exponentiation [9]. In this method, we scan the scaler “s” binary value from left to 

right and double the point P for each bit and add the point P to the result if the bit is 1. In the 

end, we have the result point R. Figure 2-8 lists the pseudocode of this algorithm. 

ECMultiply (P, s) { 

if not 0 < s < n then error 

R := P 

for i=0 to len(s) { 

 R := ECDouble(R) 

 if s[i] == 1 

  R := ECAdd(R, P) 

} 

return R 

} 

Figure 2-8: Multiplying of Two Points in ECC 

In Figure 2-8 the “len(s)” is the length of scaler s in bits. The first line of the function 

checks that the scaler is in the correct range where can be from 1 to n defined in secp256k1 

unless there will be a cycle in the infinite field. 
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2.1.6.5 Elliptic-Curve Key Generation 

In the Elliptic-Curve Cryptography, the private key is a random scaler which is less 

than predefined fix value n. n is the upper-bound of possible private keys defined in secp256k1 

and listed in Figure 2-2. The public key is a point calculated with Equation (2 from predefined 

Generation point G listed in Figure 2-2. 

publicKey = privateKey * G (2) 

In the above equation, ‘*’ denotes ECC multiplication of point G and scaler privateKey. 

The result is an EC-Point with x and y value used as the public key. Because the discrete 

logarithm is a hard problem in computer science [9], calculating the private key from the public 

key is not practical while extracting the public key from the private key is trivial. 

2.1.6.6 Elliptic-Curve Digital Signature Generation 

Elliptic-Curve Cryptography has a special algorithm to generate the digital signature. 

Figure 2-9 displays the algorithm where the inputs are the hash of the message or transaction 

and the private key. The output is the generated signature. In this algorithm, G is Generation 

point, and n is the modulo according to secp251k1 defined in Figure 2-2. rand is a 256-bit 

random value, and messageHash is the calculated hash of the message or transaction. The 

resulting signature is the concatenation of r and s. 

P(xp, yp) = rand * G 

r = xp mod n 

s = ((messageHash + r * privateKey) * rand modinv n) mod n 

signature = (r, s) 

Figure 2-9: Digital Signature Generation in ECC 

Temporary point P is calculated by performing ECC-Multiplication of scaler rand and 

Generation point. Then, x coordinate of P is used to compute r and s value.  
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2.1.6.7 Elliptic-Curve Digital Signature Verification 

The verification algorithm demonstrated in Figure 2-10 is used to verify a digital 

signature in Elliptic-Curve Cryptography. The inputs are the hash of the message or 

transaction, the generated signature, and the public key, and the output is true or false. In this 

algorithm, G is Generation point, and n is the modulo according to secp251k1 defined in Figure 

2-2, and messageHash is the calculated hash of the message or transaction. Temporary point Q 

is calculated by adding two results: the resulting point of multiplication of scaler u1 and 

Generation point, and the resulting point of multiplication of scaler u2 and the public key point. 

The final result is the comparison between the calculated value t and the extracted value r from 

the signature. If these two values are equal, the signature is valid. 

w = s modinv n 

u1 = (messageHash * w) mod n 

u2 = (r * w) mod n 

Q(xq, yq) = (u1 * G) + (u2 * publicKey) 

t = xq mod n 

if (r == t) signature is valid 

Figure 2-10: Digital Signature Verification in ECC 
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2.2 Blockchain Technology 

2.2.1 History 

Blockchain idea is started from 1991 [10] by Stuart Haber and W. Scott Stornetta work 

to record timestamped digital documents and make it tamper-resistant by chaining them in a 

set of blocks. The authors of this project continued their work, and in 1992, they added Merkle 

Tree to group multiple documents’ digest in each block [11]. No practical project used these 

studies. In 2004, Hal Finney introduced a hashcash-based token which uses Proof-of-Work and 

generates RSA-signed token and controls the ownership of them in a central trusted server [12]. 

The real blockchain emerged with the Bitcoin project since 2008 [13]. A person or a group 

known as Satoshi Nakamoto designed a distributed cryptocurrency that is not controlled by 

any central trusted server, government agency, or private company. Blockchain is an open 

distributed ledger that records all transactions increasingly in autonomous network nodes. In 

other words, the classic blockchain is a full-distributed database that its only operation is 

append and there is no update or delete operation. 

In 2013, Vitalik Buterin crafted Ethereum [14] that upgrades the classic blockchain and 

creates a distributed virtual machine that records state-transitions as append-only records in the 

blockchain. Finally, the most advanced consensus algorithm for the blockchain to solve its 

classical problems was introduced by Daniel Larimer in 2014 [15] and implemented in EOS 

blockchain. It is a digital democracy to operate and govern the whole blockchain system. 

2.2.2 Blockchain Mechanics 

Blockchain is a chain of blocks which means that each block has the hash of the 

previous block. It makes a chain of blocks, and if someone wants to change one of them, he 



 17 

must change all next blocks too. A block usually contains a random number to make the change 

operation more difficult. This random number, aka nonce causes to generate a particular hash 

value that is less than a predefined number. In other words, the hash value must have some 

zeros at the beginning. The blockchain network updates this predefined number periodically to 

adjust the difficulty of the system and balance the required computing power and the hacking 

risk [16].  

Each block contains the hashes of the transactions. A transaction is a message digitally 

signed by the sender and includes some information like transferring fund from someone to 

others or calling a function in a blockchain virtual machine. Figure 2-11 demonstrates a sample 

chain of blocks. A particular hash tree called Merkle Tree calculates the hashes of transactions 

to insert in a block. Using Merkle Tree, there is no need to record all hash value of transactions 

in a block which saves storage, bandwidth, and computation power. Figure 2-11 displays a 

Merkel Tree in the blockchain. 

 

Figure 2-11: Chain of blocks in the blockchain 

In Figure 2-11, Prev_Hash is the hash of the previous block, Tx_Root is the root of the 

Merkle Tree, and Tx indicates the transaction. Each block also has a timestamp, the time that 

the block is mined. The first block of a chain called genesis block where its previous hash value 

is set to 0. 
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There are a few types of entities which are a little bit different in various blockchains. 

The first entity is the user that has funds and make a transaction to transfer her fund to other 

users or entities. The second entity is the full node or verifier that checks the transaction and 

records that in the ledger. These nodes are connected in a peer-to-peer network. The third entity 

is miner that aggregate transactions, find the nonce, and generate blocks to append that to the 

blockchain. Miners compete to find the matched nonce and produce the next block and get 

rewarded for that with the blockchain cryptocurrency. It is the point that generates a new fund 

called coin in a blockchain. A miner also charges the sender of a transaction a small amount of 

money called transaction fee to put the transaction in its next block. If the sender pays more 

fee, her transaction will be inserted in the next block sooner because the miners would like to 

add the transactions that pay more transaction fee. 

Since the hash function is one-way, there is no way to find the nonce from the desired 

hash value. So, a miner has to generate many random nonces and compute the hash of the entire 

block to check the final result. Thus, each time a miner is lucky and finds the nonce, it 

propagates the result to the blockchain nodes and gets the reward. Besides, two miners may 

find a nonce to solve this puzzle at the same time and publish their result to the nodes. Two 

different sets of nodes could accept both messages because the blockchain network is peer-to-

peer, and there is not any central node to manage the system. Therefore, they could accept the 

new block and append it to their ledger. After some time, there will be two different chains of 

blocks called temporary fork. To tackle this problem, when a node receives two different forks, 

it accepts the longest fork and rejects the shorter one. Therefore, in the mean-time, there are 

two chains of the block, but after some time, there will be only one chain in the ledger. 
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2.2.3 UTXO-based versus Account-based Blockchain 

There are two transaction models in the blockchains. For example, Bitcoin uses the 

Unspent Transaction Output (UTXO) model, and Ethereum uses the Account model. In the 

UTXO model, each transaction has some inputs and outputs. Each input indicates one previous 

transaction output and the amount of that. The new transaction spends all amount of the 

previous transactions input and put them in its outputs. The next transaction does the same. If 

an output of a transaction is used as an input with another transaction, it is called "spent output". 

While, if an output of a transaction is never used by another transaction, it is called "unspent 

output". The blockchain nodes only accept a transaction that its inputs are not spent, if so, it is 

double-spending that is not permitted in the blockchain. Hence, this model is called the Unspent 

Transaction Output (UTXO) model. It is very similar to cash transferring in the real world 

where the coins move from one person to another. 

On the other hand, there is another model called Account-based. In this model used in 

Ethereum, each account has a balance, and each transaction indicates fund transfer from one 

account to another. It is similar to the bank account in the real world.  

2.2.4 Smart Contract 

The new generation of blockchain technology employs the idea of the chain of the 

blocks and extends that to building a distributed virtual machine. The most popular instance of 

this type of blockchain is Ethereum. In this scheme, each node has a Touring-complete virtual 

machine that gets a piece of code and executes that until obtaining the result or reaching to a 

limit. This piece of code is called Smart Contract. All nodes of the blockchain run the code by 

receiving a trigger message, and compute the same result, then record that in the blockchain. 

A user or another smart contract can call a function of a smart contract by sending a transaction. 
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The nodes receive a transaction fee (e.g., gas in Ethereum) to add a smart contract result to the 

blockchain. So, each block includes the state of all smart contracts and appends that to the 

ledger. The smart contract is a special part of code should run on a trusted computer while does 

not have any user interface and called as a library in other programs. 

2.2.5 Consensus Mechanisms 

Blockchain includes an algorithm called consensus mechanism to achieve the shared 

data or state between all nodes. This mechanism is distributed along with autonomous nodes 

which run the consensus protocol independently. At the end of this process, all nodes must 

agree on the same data value or state with no central authority to control them. There are 

various types of consensus mechanisms, and we overview the most popular ones here. 

Consensus mechanism defends again hackers or malfunction nodes and miners would like to 

cheat, for example, by making a fake fork for double-spending. With this algorithm, nobody 

can attack the network until having 51 percent of the nodes. It is because if a hacker controls 

51 percent of the nodes, he can make a new fork of the blockchain and force the entire network 

to accept that by creating the longest chain. It is called 51 percent attack in the blockchain 

terminology. 

2.2.5.1 Proof-of-Work 

Proof-of-Work (PoW) is a widespread consensus mechanism used by Bitcoin, 

Ethereum, and many other blockchains. In PoW, a miner solves a puzzle that requires 

significant computational resource. For example, the miner should find a random number 

called nonce included in a block that creates a particular hash value of the block, which is less 

than a predefined number. To find the nonce, the miner has to generate many random numbers 
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and calculate the hash of the whole block. This process requires a lot of computation or “work”. 

So, if a miner presents a correct nonce, this is proof that it has performed significant 

computation work. The main disadvantage of the PoW is high energy consumption to find the 

nonce for the next block. All attended miners consume a lot of energy simultaneously, and only 

one of them wins and gets the reward while others wasted their power. Also, PoW is 

computation, and it is possible to make the Application-Specific Integrated Circuit (ASIC) 

board speed up the process. So, somebody with a big server farm and a lot of ASIC boards can 

aggregate a massive hash power to make 51 percent attack [16]. 

2.2.5.2 Proof-of-Stake 

The Proof-of-Stake (PoS) is proposed to solve the problems of proof-of-work. In PoS, 

there is no need to compute a magic nonce and consume a lot of energy for computation. In 

contrast, the validators replace the miners. Each validator has a deposit of cryptocurrency as a 

stake to participate in the block creation. Validators with bigger stakes have more chance to 

select for creation of the next block. The blockchain network uses a randomized protocol to 

choose the next validator. It prevents selecting the validator with a massive capital for all blocks 

creation and gets the control of the whole system. To perform the 51 percent attack in PoS 

blockchain, the attacker has to own 51 percent of the entire cryptocurrency. 

The main issue of the PoS is nothing-at-stake problem that occurs when two forks are 

created. Because the validator has no cost to create a block, it validates both forks to choose 

one of them in the future, which has more rewards. Since the validator does not lose anything 

in both cases, it could bet on them. A validator has enough motivation to make this attack 

because when it chooses one fork and spends time to validate its blocks if a longer fork emerges 

and invalidates this fork, the validator losses its time and rewards.  
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2.2.5.3 Delegated Proof-of-Stake 

One of the recent new consensus mechanisms is the Delegated Proof-of-Stake (DPoS). 

In DPoS, the owners of the stakes are all users who have coins of the cryptocurrency, and they 

vote to elect a limited number of delegates from a set of candidates to validate next blocks. The 

election repeats in a period, and the users vote again to change the delegates. If a delegate 

cheats, in the first step, other delegates could vote against him, and in the second step, the users 

remove him from delegates by do not vote for him. Usually, each delegate deposits a number 

of coins to escrow in case of malicious behavior. DPoS is a form of digital democracy that all 

users participate in network decisions. New blockchains like EOS and TRON employ DPoS 

consensus mechanism. 

DPoS is very faster than PoW because there are no computational or other types of 

puzzle to solve. It does not waste much energy too. This algorithm is considered as the most 

distrusted consensus mechanism. The disadvantages of DPoS is the classic challenges of the 

real-life election. For example, if the number of delegates is small, the possibility of attack 

increases. Also, the users with fewer coins may do not participate in the election because they 

think their vote in comparison to who has a high volume of coins has no impact. 

2.2.6 Blockchain Networks 

Another taxonomy of blockchain network is according to their accessibility a is 

explained in this section. 

2.2.6.1 Public Blockchain 

In public blockchain, everyone with an Internet connection can join the network to own 

coins or tokens, send transaction and become a node, miner, validator, etc. In other words, there 
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is no restriction to use a public blockchain. The two most prominent public blockchains as 

market cap are Bitcoin and Ethereum. The public blockchain is reliable and trustable because 

its community is extensive and includes entities with various interest, and no one can control 

the entire system strategy or technology and can be fully distributed. 

2.2.6.2 Private Blockchain 

A private blockchain is restricted from the public community. To join a private 

blockchain as a user, miner, node, etc. a privilege from the administer is required. A common 

use-case of the private blockchain is a group of companies that would like to create a 

blockchain to use in their products and services, but they do not want to open it to public users 

to engage. An example of the private blockchain is Hyperledger Fabric. The private blockchain 

has lower trustworthy because one or a group of company with common interests control the 

system, and it is not fully distributed.  
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2.3 Crypto Wallet 

Crypto wallet is a term that used for cryptographic applications that manage secret keys, 

addresses and seed for a user in blockchain and cryptocurrency. This program can be on an 

online server, laptop, smartphone, and even particular hardware. It would securely generate 

and store the keys and provide some mechanism to back up and restore them.   

2.3.1 Wallet Types 

2.3.1.1 Brain Wallet 

The brain wallet is the simplest one. The user chooses a passphrase, and all secret keys 

and addresses are derived from that. So, the user does not need to maintain a paper, software, 

or device as a wallet. Each time he needs to make a transaction, he enters the passphrase into a 

wallet program and constructs the secret keys. After signing a transaction, the wallet program 

removes the passphrase and all constructed keys from memory. The brain wallet has significant 

drawbacks. Firstly, if the user forgets the passphrase, he losses all funds. Secondly, malware 

in the wallet program can sniff the passphrase and steals his funds. 

2.3.1.2 Paper Wallet 

Another popular, still simple wallet is the paper wallet. A paper wallet usually is one-

page paper where the secret key and public key or address are printed in the QR-Code format. 

There are some online and offline web-pages [17] that generate secret keys and prepare paper 

wallet to print. Figure 2-12 shows a sample paper wallet. The user is not required to remember 

a passphrase, although she can add a passphrase to encrypt the secret key for better security. 

Each time the user needs to make a transaction, she uses the QR-Code on the printed paper 
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wallet to recover the secret key and sign the transaction. A paper wallet is easy to backup just 

by coping a paper. 

 

Figure 2-12: Sample Bitcoin Brain Wallet 

The paper wallet has the same issue with the brain wallet. Because it needs a third-party 

wallet program to make a transaction, malware can steal the secret key, even if the user adds a 

passphrase to that. Also, if a hacker finds a paper wallet, he can recover the secret key unless 

the user uses a complex long passphrase, and it increases the chance to forget. 

2.3.1.3 Hot Wallet 

One of the most popular wallets is the hot wallet (e.g., Coinbase wallet [18]) where the 

user stores the keys on an online cloud server like exchanges protected with a password or two-

factor authentication. It is convenient and accessible everywhere on the desktop, laptop, and 

smartphone, but if hackers exploit a cloud server, all users’ keys will be compromised. It occurs 

many times in the real world [19][20] because these servers are a honeypot for hackers. 

2.3.1.4 Cold Wallet 

There is another secure alternative; cold wallet also called offline wallet which is a 

wallet program installed on an offline air-gapped device (laptop, smartphone, and even 
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Raspberry Pi) to avoid any online hack and virus. This device has no Internet connection and 

transfers keys and transactions with a USB stick. This type of wallet is still vulnerable to 

advanced attacks. For example, the author of [21] transfers the secret keys via ultrasound from 

an offline wallet to an adjacent online computer. 

2.3.1.5 Desktop Wallet 

Another option is the desktop wallet that stores the secret keys on a desktop or laptop 

computer. Desktop wallets usually require a passphrase from the user and encrypt the keys on 

the computer storage. The first implementation of bitcoin client also called Satoshi Client [58], 

and Bitcoin reference client is an instance on the desktop wallet.  

This type of wallet is popular too, but it is vulnerable to virus and hacks [22]. Because 

desktop and laptop are a general-purpose computer, a hacker can install malware like key-

logger and trojan-horse to capture the user passphrase or copy the secret key. 

2.3.1.6 Mobile Wallet 

The mobile wallet is a mobile application installed on a smartphone. There are many 

mobile wallets in Apple AppStore for iPhone and Google Play for Android. These wallets 

usually store the secret key on the smartphone and not on an online server. The wallet app is 

protected by smartphone lock mechanisms such as password, fingerprint, and facial-

recognition. Besides, there are new mobile wallets that use security features of smartphones 

such as ARM TrustZone [23][24].  TrustZone is a hardware-based Trusted Execution 

Environment (TEE) and is available in many smartphones. The advanced mobile wallets use 

TEE to store the secret key securely and execute critical operations such as transaction signing 

in a trusted environment. 
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The mobile wallet has its disadvantages. Even though it is suitable for daily and online 

purchases, it is not appropriate to store a large amount of money when it can be lost or stolen. 

Also, the existing mobile wallets do not have a secure backup solution, and most of them use 

online solutions or paper backup. 

2.3.1.7 Hardware Wallet 

The most secure existing wallet is the hardware wallet, which is a dedicated 

cryptography device to generate and store secret keys and sign transactions, and authors of [25] 

introduced the early functional version of that. This type of wallet usually is a USB stick, 

Bluetooth device, or smart card with special embedded software to do cryptography functions. 

Because a hardware wallet is not a general-purpose computer like desktop, laptop, and 

smartphone, a hacker cannot install a malware program easily. Also, most of the hardware 

wallets have a special chip called Secure Element module (SE) as a cryptographic co-processor 

to perform cryptography operations like key generation and transaction signing fast and secure.  

There are various forms of hardware wallets from a USB dongle [26] to a full tablet 

[27]. A secure hardware wallet must have a screen and buttons to interact with the user directly. 

Otherwise, if a hardware wallet uses a terminal like a computer or a smartphone to 

communicate with the user, it is vulnerable to Man-In-The-Middle attack [2]. In this situation, 

the user enters the password on a general-purpose computer (terminal) and gets the wallet 

responses on the computer screen. Therefore, the malware program can steal the password or 

displays mislead information on the screen. 

In addition, a secure hardware wallet must have a Secure Element module to protect 

the secrets from electrical and physical attacks such as side-channel attacks and power-
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analysis. The authors of [28] demonstrate a series of successful attacks to the most popular 

hardware wallets that do not have Secure Element or are not well-designed. 

2.3.2 Hierarchical Deterministic Wallet 

Bitcoin, Ethereum, Litecoin, and almost all popular cryptocurrencies use elliptic-curve 

cryptography (ECC) to sign and verify transactions. Therefore, the user has a key pair and uses 

the private (secret) key to sign transactions and transfer fund to another user’s public key. The 

sender must know the receiver’s public key to perform a transaction, and all users publish their 

public key in a specific format called address. Therefore, a user keeps her private key secret 

and publishes her address to other users in the network that causes privacy concerns because 

everyone that has access to the Internet and the blockchain network can discover the user’s 

addresses and track her transactions.  

Thus, anonymity is a challenge in most cryptocurrencies because all transaction history 

is on the blockchain network. To tackle this problem, the user should use a new address in each 

transaction to receive fund from others or return the remaining value of spending transaction 

called ‘change address’. It means that she generates a new key pair for each transaction. Thus, 

nobody can track her just by watching her transaction history, and this is a best-practice in 

Bitcoin and many cryptocurrencies [16]. However, generating a random private key for each 

transaction requires maintaining a lot of private keys, which is hard to manage. Deterministic 

wallets are invented to solve this problem and use a predictable algorithm to generate new 

private keys, and because it can be hierarchical, they are called Hierarchical Deterministic 

(HD) wallets [29]. In HD wallet, the user has a tree of private keys which any node is derived 

from its parent using a deterministic algorithm. The root of this tree is a private key which is 

called ‘master private key’ and derived from a random value called ‘master seed’. In other 
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words, anyone who has the master seed can derive all subordinate private keys and addresses. 

Consequently, the user only needs to keep one seed value safe and generates a lot of pseudo-

random addresses which provide anonymity. 

2.3.2.1 BIP-32: Hierarchical Deterministic Wallets 

BIP-32 is a Bitcoin Improvement Proposal that defines Hierarchical Deterministic 

Wallet (HD Wallet) [29]. This document explains different algorithms to derive each node 

from its parent in the key tree. The core of this document is one master key generation, and 

two Child Key Derivation (CKD) functions. The master key generation function is as follows 

where S is 128 to a 512-bit random value called master seed, H is a 512-bit hash value, and HL 

is left 256 bit, and HR is right 256 bit of H. km as master private key and cm as master chain 

code are 256-bit outputs. 

MKG(S) => (km, cm): 

H := HMAC-SHA512(Key = "Bitcoin seed", Data = S) 

km := HL  

cm := HR  

Figure 2-13: BIP-32 master key generation function 

The first derivation function, CKDpriv converts the private parent key to private child 

key. These keys are extended, which means each key has an additional 256-bit random number 

called the chain code to prevent solely depending on parent key. This function gets kpar as 

private parent key, cpar as parent chain code and i as index and computes ki as private child key 

and ci as child chain code. k and c are 256-bit, and i is 32-bit value. H is a 512-bit. The CKDpriv 

conversion function is as follows. The HD wallet constructs all private keys from the master 

private key using CKDpriv function, 

CKDpriv((kpar, cpar), i) => (ki, ci): 

if i  232 then 

H := HMAC-SHA512(Key = cpar, Data = 0x00 || kpar || i) 
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else 

H := HMAC-SHA512(Key = cpar, Data = point(kpar) || i) 

ki := HL + kpar mod n 

ci := HR  

Figure 2-14: BIP-32 private parent key to private child key function 

Another derivation function is CKDpub that converts public parent key to public child 

key. This function gets Kpar as parent public key, cpar as parent chain code and i as an index and 

computes Ki as public child key and ci as child chain code.  The HD wallet using CKDpub 

constructs all public keys from the master extended public key.  

CKDpub((Kpar, cpar), i) => (Ki, ci): 

if i  232 then 

error 

else 

H := HMAC-SHA512(Key = cpar, Data = Kpar || i) 

Ki := point(HL) + Kpar 

ci := HR 

Figure 2-15: BIP-32 public parent key to public child key function 

Because if the index (i) be more than 232, it is impossible to compute the public child 

key from the public parent key, the private keys for index bigger than 232 called hardened keys 

and are more secure than normal keys for index lesser than 232. 

Consequently, the HD wallet computes the master key from the master seed and derive 

child keys from the master key. HD wallet uses a path to address each key in the key tree that 

is a sequence of a letter and a few numbers. The first element in the path is letter ‘m’ that 

denotes master seed, and subsequent numbers are the input indexes for CKDpriv algorithm in 

the corresponding round. Then hardened key index is indicated by  character. The format of 

this path is as follows: 

path = m/i/… 

For example, the path “m/1/3” means running CKDpriv((km, cm), 1) to compute (km/1, 

cm/1) and CKDpriv((km/1, cm/1), 3) to compute (km/1/3, cm/1/3). 
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2.3.2.2 BIP-39: Mnemonic code for generating deterministic keys 

The BIP-39 document describes a method to build a set of rememberable words to 

generate the master seed [30]. These words are readable and easy to remember for humans. 

The algorithm is as follows. At first, a random number is generated as entropy that is multiple 

of 32 bit and is from 128 to 256-bit where longer entropy means more security and more words.  

Then, the checksum of the entropy is calculated with first entropy length divided by 32 

bits of the SHA256 hash of entropy. This checksum is appended to the end of the entropy. 

Then, the result splits into 11-bit groups which each of them is a number between 0 and 2047 

(211-1). Each number is used as an index in a predefined fixed word list, and all numbers make 

a 12 to 24 set of words called a “mnemonic sentence”. The following table demonstrates 

different word list lengths. 

Table 2-1: Relation between Entropy and Mnemonic Sentence  

Entropy 

Length 

(bits) 

Checksum Length = 

Entropy Length / 32 

(bits) 

Entropy +  

Checksum Length 

(bits) 

Mnemonic Sentence Length = 

(Entropy + Checksum Length) / 11 

(words) 

128 4 132 12 

160 5 165 15 

192 6 198 18 

224 7 231 21 

256 8 264 24 

 

To convert a mnemonic sentence to the master seed, BIP-39 uses PBKDF2 function 

[52]. This function gets pseudorandom function, password, salt, number of iterations, and 

desired length of the derived key to generate a key from a password. BIP-39 feeds the PBKDF2 

function by HMAC-SHA256 function as pseudorandom function, the mnemonic sentence as 

the password, string “mnemonic” plus passphrase as salt, 2048 as the number of iterations and 

512 bits as output derived key length. Therefore, the output of this function always is 512-bit 

pseudorandom master seed. In this function, the passphrase is an additional password chosen 
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by the user to protect the master seed. If the user uses a passphrase, a hacker cannot recover 

her master seed only by knowing the mnemonic sentence. 

2.3.2.3 BIP-44: Multi-Account Hierarchy for Deterministic Wallets 

In addition to HD wallet base algorithms, the cryptocurrency community proposed a 

complementary standard BIP-44 [31] to define a universal path format for all coins (Bitcoin, 

Ethereum, Litecoin, and other coins), because BIP-32 only defines the derivation function and 

path. The BIP-44 path addresses all coins in an HD wallet with only one single master seed. It 

makes key management and backup process easy. A path in BIP-44 format has following levels 

in BIP-32: 

path = m/purpose/coin/account/change/address_index 

In the above path, m is the master seed, the purpose is the fixed number 44 for BIP-44, 

the coin is a predefined value for registered coins, for example, 0 for Bitcoin and 60 for Ether. 

The account is a group of funds and helps the user to manage her money, for example, to create 

a separate set for the spending account and the saving account. Change is 0 for external address 

and 1 for internal address. The external address is a regular address that published to others to 

receive funds while an internal address is “change address” that is for receiving remained funds 

from spending transaction and never published to others. Address_index is a sequential number 

from 0 to generate multiple unique addresses. 

BIP-44 document defines a process called Account Discovery to explore all used 

addresses in an HD wallet and finds the user funds in the blockchain. The HD wallet traverses 

all nodes of the key tree from the root that is the master seed and searches for a transaction 

with the derived address as input or output in the blockchain. The exploring process is infinite 
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because the BIP-32 key tree definition is unbound. To limit the exploring process, BIP-44 

define an algorithm for discovery as follows: 

1. Start from m/44/coin key and run this algorithm for all supported coins. 

2. Set account to 0. 

3. Set change to 0. 

4. Derive the external chain node. 

5. Search for external addresses. To do that, set address_index to 0 while increment it 

one-by-one, derive addresses and search that them in the blockchain. If a transaction 

found, set change to 1 and search for the internal chain node too. If there is no used 

external address for 20 continues indexes, stop the search. 

6. Increment the account value and repeat from step 3 until the account node does not 

have any used address. 

The HD wallet should not let the user create a new account when the previous one does 

not have any transaction in the blockchain; otherwise, the above algorithm does not work. 

Searching for external chain nodes is enough because an internal chain node receives fund if 

and only if the corresponding external node is used. Table 2-2 demonstrates a step-by-step 

sample running of the account discovery process in an HD wallet that supports Bitcoin and 

Litecoin. This sample wallet has only two used Bitcoin addresses in the first account and no 

used Litecoin address. 

Table 2-2: Account Discovery Process in a Sample HD Wallet 

coin account chain address_index Path 

Bitcoin first external first m/44/0/0/0/0 

Bitcoin first internal first m/44/0/0/1/0 

Bitcoin first external second m/44/0/0/0/1 

Bitcoin first internal second m/44/0/0/1/1 

Bitcoin first external no transaction for 20 addresses m/44/0/0/0/2-21 

Bitcoin second external no transaction for 20 addresses m/44/0/1/0/0-19 

Litecoin first external no transaction for 20 addresses m/44/2/0/0/0-19 
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2.4 Smart Card 

As discussed before, in a blockchain application, each user has a unique asymmetric 

key pair (public and private keys) to digitally sign a transaction. Usually, the user must have a 

security device such as a personal smart card which stores her private key, and she can access 

it by entering her PIN. In a simple scenario, when the user approves the information of a 

transaction, her terminal (such as a desktop computer, laptop or smartphone) computes the hash 

of the transaction and sends it to her smart card. Then the user enters her PIN, and the smart 

card generates a secure digital signature using her private key. The smart card is a tamper-

resistant cryptography device that stores private keys and performs cryptographic operations 

like signing. Usually, the smart card is used as a term for a plastic card where has an IC chip 

to execute a cryptography program in a secure execution environment [32]. 

2.4.1 IC Card Components 

The smart card is an IC card that has computing capabilities and is different from the 

magnetic-stripe card and memory card. These two different cards are shown in Figure 2-16. 

 

Figure 2-16: Smart card vs. magnetic-stripe card 

The magnetic-stripe card like many credit cards stores a small amount of data, for 

example, cardholder name, credit card number, etc. in a magnetic stripe memory. They do not 
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have any computing capabilities, and they are easy to clone. In contrast, smart cards have 

computing features and usually are programmable. The card issuer like banks and government 

can store card holder’s private data on the secure memory of a smart card and perform 

cryptographic operations like encryption and digital signature in a secure way on smart card 

chip. Because of that, new credit cards are based on smart cards for better security, and several 

national ID cards are issued on smart cards. The components of a classic smart card are 

explained in the next paragraphs.  

A regular smart card has a programmable chip (IC), which is a tiny computer to execute 

limited programs in a secure execution environment. This chip has a small processor (CPU), a 

memory about 1 to 3 kilobytes (RAM), storage between 32 to 256 kilobytes (e.g., EEPROM) 

and a byte-stream input/output, but usually does not have internal clock and battery. Figure 

2-17 demonstrates a sample layout of a smart card chip [32]. 

 

Figure 2-17: Sample smart card chip layout 

Smart cards have two popular interfaces, including contact and contactless. A terminal 

must have, for example, a USB smart card reader to connect to the contact interface compatible 

with ISO/IEC 7816 part 1 to 3. Smart cards also support contactless interface according to ISO-
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IEC 14443 and recently Near Field Communication (NFC). Consequently, smartphones which 

have NFC antenna do not need any additional card reader and connect to the smart card with 

NFC interface. Some new smart cards also support Bluetooth Low Energy (BLE) interface but 

requires a battery. 

2.4.2 Java Card Technology 

There are few solutions to develop a program which is call Card Application or Card 

Applet for a smart card. The most popular one is the Java Card Technology [33]. Smart cards 

that support Java Card Technology have a limited version of Java Virtual Machine called Java 

Card Runtime Environment (JCRE). Figure 2-18 shows the architecture of JCRE in the smart 

card [34]. 

 

Figure 2-18: Java Card Runtime Environment (JCRE) Architecture 

JCRE in a smart card is similar to an Operating System in computers. It runs multiple 

programs (Applets), manages memory allocation, provides system functions as APIs, etc. 

However, there are fundamental differences between computer and smart card. For example, a 
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smart card cannot perform multi-tasking and runs only one program at a time. A card 

manufacturer could add extra packages and functions to his JCRE for additional features, for 

example as GSM library for the mobile network. Furthermore, JCRE has a pre-load specific 

applet to manage the loading and removing other applets called applet manager. 

Today, Oracle is the owner of Java Card Technology and publishes the Java Card 

Platform Specification to define Java Card API and features. The last version of Java Card 

Platform Specification is 3.0.5, and popular versions are 2.2.2, 3.0.1 and 3.0.4. In our projects, 

we use an open-source command tool called “ant-javacard”. This tool is an Ant task and uses 

Oracle Java Development Kit (JDK) to compile a Java code to bytecode (class file) and convert 

that to card application file (CAP file).  

2.4.3 Global Platform 

Global Platform (GP) is a consortium of several smart card companies which defines a 

series of standards to manage the application on smart cards [35]. For instance, they define 

administration commands, key management, and applet life cycle for all smart cards, including 

Java Cards. The most popular version of Global Platform specification is 2.1.1. In our work, 

we use GlobalPlatformPro [36], an open-source command-line program to load and delete 

applet to/from a smart card. 

2.4.4 Smart Card Programming 

To program a smart card, a developer writes his program in a limited version of Java 

language and compiles that to Java bytecode with Java Card compiler. Then, he uses Java card 

tools to convert the compiled code to a Card Application Package (CAP) and load it to a real 

smart card chip. Finally, he can send his defined commands in the form of byte-arrays to the 
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card and receive their responses in byte-arrays too. Figure 2-19 demonstrates the whole process 

of compiling and loading of card application [34]. 

 

Figure 2-19: Java card application compiling and loading process 

The input and output of card applications are in byte-stream form. These byte-streams 

are in a particular format defined in ISO/IEC 7816-4 called Application Protocol Data Unit 

(APDU). There are two types of APDUs; command APDU or C-APDU and response APDU 

or R-APDU. Command and response APDUs have the following structures [34]. 

 

Figure 2-20: Command and response APDU structure 
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The detail description of each APDU fields are explained in ISO/IEC 7816-4 [37], and 

we discuss only the related parts here. The CLA field is one byte to indicate class field which 

is 0x00 usually. The INS field is a one-byte instruction code determined by the card application. 

P1 and P2 are two bytes parameters for the instruction. Lc is one to three bytes to indicate the 

length of the data field. Data filed conveys byte-stream data with flexible length, and Le is the 

length of expected response byte-stream. 

In response APDU, Data field is response data returned by the card application. SW1 

and SW2 are two bytes status words which indicate the error, warning, or successful result 

return by the card application. 

2.4.5 Smart Card Simulation 

A big challenge in smart card programming is the simulation. To develop a program, a 

programmer needs a set of tools to write the code and test that with tracing and debugging line-

by-line. Unfortunately, the smart card does not have these features and cannot run a card 

application in debug mode. The programmer needs a simulator to run the code on a computer 

before loading that to a real smart card. There are few tools to simulate a Java card, including 

Java Card Reference Implementation by Oracle [33]; however, this tool has significant 

limitations. So, in our work, we chose an open-source tool called jCardSim [38]. It is a regular 

Java package that includes command definitions and API of Java card application. The 

programmer writes his Java card code in Java and debugs it in regular Java Virtual Machine 

using jCardSim packages. If everything works, he compiles and loads his code to a real smart 

card.  
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CHAPTER 3: FINDINGS 

3.1 Smart Card Security 

The smart card is a mature technology to build a hardware crypto wallet. It has a tamper-

resistant chip and usually has passed hardware security evaluations in a cryptographic module 

lab [40][41]. This chip is a secure element that has limited resources in terms of memory 

amount and processing power and unfortunately is hard to program. Even though all wallets 

can use our proposed schemes, we implement them on the smart card as a proof-of-concept to 

prove that a hardware wallet with limited resources could use our designs. So, at first, we 

consider the security of the smart card as a platform for the hardware wallet. 

3.1.1 Threat Model 

The authors of [39] proposed a reference threat model for smart card. They identify 

various parties in a smart card system including cardholder, data owner, terminal, card 

manufacturer and software manufacturer. In hardware crypto wallet, we can map these parties 

as follows. Cardholder is the owner of the private keys that signs the transaction and owns the 

coins. Data owner is same as cardholder because there is no additional data like personal 

information and photo on a crypto wallet. Terminal is usually a desktop computer, laptop, 

smartphone and etc. Card manufacturer is the company that produce the physical card including 

the programmable chip, NFC antenna and etc. Finally, software manufacturer is the company 

that provides the card application for crypto wallet.  

In our work [2], we focus on the user or cardholder point of view and consider the 

security threats from this angle. So, we assume that the cardholder is the trusted party. We also 

assume the card manufacturer is trusted because the smart card has passed the hard security 
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checks in an evaluation lab [40][41]. In addition, we assume that the software company that 

provides the hardware wallet is trusted, while it can be a subject for considering in another 

research. So, we focus on terminal party that can be compromised by a hacker, because the 

least secure part of the system is the terminal. In the rest of this document, we assume that the 

terminal is not secure at all.  

3.1.2 Fundamental Vulnerabilities 

Authors of [39] claim that the existing smart cards have fundamental vulnerabilities 

because they do not have direct interface with the user and use the terminal input/output devices 

like display and keyboard to show the messages and get the commands. With respect to this 

threat model, there are two distinguished attacks that we inspected in our work [2] and are 

discussed next. These attacks are Man-In-The-Middle attack and change the terminal software 

parts to misguide the digital signature process.  

3.1.2.1 Capturing the Smart Card PIN 

A smart card receives its password aka Personal Identification Number (PIN) to gain 

access to the keys on the card. The main security challenge is that a smart card doesn’t have a 

direct input device and must use the terminal’s keyboard, mouse etc. to get the PIN from the 

user. In this situation, an attacker can compromise the terminal and install a key logger or 

another malware to capture the PIN. Then, the attacker can use this PIN to authenticate himself 

to the card without the user’s authorization. So, for example, he can sign a transaction and 

transfer fund from the crypto wallet without the user interaction. 
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3.1.2.2 Altering the Digital Signature 

The major usage of the smart card is digital signature, for example, for signing a 

transaction in the blockchain. The regular digital signature mechanism is as follows: a user sees 

the information of a transaction like the amount, the receiver address and etc. in an online 

website, computer or smartphone application and if she approves it, she signs it using her 

hardware crypto wallet, in this case, her smart card. In this process, a cryptographic library, as 

part of the application, computes the hash of the transaction and sends this hash value to the 

smart card for signing. The challenge is that a malware can change the hash value just before 

transmitting it to the smart card, resulting in the user signing an unwanted transaction with her 

private key. For instance, a hacker can change the receiver address and transfer the coins to his 

address. 

3.1.3  Implementation of Smart Card Attacks 

To measure the possibility of these attacks in practice, we designed an attack scenario 

and implement these attacks on a pervasive smart card. We implemented the mentioned attacks 

on Windows, but they are applicable on other operating systems, too. The attack code is called 

MinidriverSpy. We used Personal Identity Verification (PIV) card [42] in our attacks. PIV is a 

smart card standard which is supported with built-in drivers from Windows 7 SP1, from 

OpenSC 0.11.1 (in Linux), and from Mac OS Sierra 10.12. So, it is a mature technology that 

all operating system use that as Two-Factor Authentication. In addition, the PIV cards are used 

in many government organizations. 

Microsoft Windows uses a software stack to communicate with smart card and conduct 

cryptography operations, and its important module is minidriver [43]. Windows has a built-in 

minidriver for PIV smart card which is MSCLMD.DLL. We implemented a spyware 
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“MinidriverSpy” as a hooking DLL and replaced MSCLMD.DLL. Right side diagram in 

Figure 3-1 shows our change on attack. The only permission we need to do this action is file 

copy permission.  

 

Figure 3-1: Windows smart card software stack vs. hacked software stack 

Original minidriver (MSCLMD.DLL) has only one entry point “CardAcquireContext”. 

This function returns a set of function pointers of smart card minidriver. We added 

“CardAcquireContext” in our MinidriverSpy and pass these pointers from original minidriver 

to the caller, with some changes to implement our attacks. To sniff the smart card PIN, 

MinidriverSpy alters pointer of “CardAuthenticateEx” function and copy this PIN value before 

sending it to the original minidriver. To alter digital signature, MinidriverSpy modifies pointer 

of “CardSignData” function to change hash value just before sending it to the smart card, and 

with this attacking tool, a user will be tricked to sign a fake data using her private key on the 

smart card.  
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To test our attack, we used two types of smart card including embedded smart card in 

USB token and traditional ID-1 sized smart card (credit card size) with USB card reader. We 

tested our MinidriverSpy successfully on YubiKey 4, PIVKey T600 USB Tokens and PIVKey 

C910 PKI Smart Card on Windows 7 Service Pack 1 64-bit and Windows 10 64-bit. We 

published the essential parts of MinidriverSpy as open-source program at GitHub [44]. 

Therefore, we proof that the threat model is true, and the hacks are applicable to one of 

the most common smart cards that are used for traditional security challenges like login to a 

computer or a website. So, the classic smart card is not secure to use as the crypto hardware 

wallet, unless it has direct input and output for the user such as a screen and some buttons. 

3.1.4 New Smart Card Capabilities 

To summarize, the most secure crypto wallet is the hardware wallet equipped with a 

screen and at least one physical button. However, as we argued, the traditional smart card is 

not secure for the digital signature because it uses a terminal (e.g., computer and smartphone) 

for interaction with the user, and a hacker may install malware on the terminal and make a 

Man-In-The-Middle attack. Fortunately, now there are new smart cards in the market that use 

e-paper technology as an on-card screen. This technology enables the smart card to display 

information to the user with no intermediate terminal. Also, buttons are available in these new 

smart cards. Thus, we use a smart card with a screen and a button to implement our mechanism 

and Figure 3-2 shows the photo of such a smart card. 
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Figure 3-2: Smart card with an e-paper display, physical buttons, and an IC chip 
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3.2 Crypto Wallet Backup 

Hardware wallet as protected storage and trusted source of random numbers is 

responsible for generating and storing the master seed and other keys. Maybe the master seed 

is secure in a hardware wallet, but a wallet can be lost or broken and needs backup. A 

convenient and secure backup and restore process is a challenge in all crypto wallets including 

hardware crypto wallets. 

3.2.1 Existing Solutions 

3.2.1.1 Paper Backup 

Existing hardware wallets (and many other wallets) use a mnemonic word list to 

convert the master seed from digital form to physical form as a backup [30]. As we discussed 

in previous sections, this list is a limited number (from 12 to 24) of words while more words 

provide higher security. This algorithm converts a seed value to several groups of bits (from 4 

to 8 bits), and each group maps to an index of a word in a pre-defined 2048-word list. It makes 

a “sentence” that is a unique order of words. The user may either save this “sentence” (words) 

in a computer file that is not secure at all or writes them down on a piece of paper.  

It is critical for the user to keep this paper in a safe place because whoever gets access 

to that can build the entire key tree. For better protection, the user may use a passphrase in the 

converting process and remember that for the recovery process. However, it brings two 

problems: 

1. If a hacker finds the word list, he can make a brute force attack to the passphrase 

without any limitation. So, the user should choose a complex long passphrase.  
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2. If the user chooses a complex long passphrase and later forgets the passphrase, she 

cannot recover the keys and loses all funds. 

3.2.1.2 Secret Sharing 

One traditional alternative solution is secret sharing [47]. Secret sharing mechanism 

splits the master seed to multiple parts (shares) that must be stored and protected separately. 

To recover the master seed, a threshold (e.g., two of three) of shares must be present. It has the 

following disadvantages:  

1. Secret sharing would downgrade usability in crypto wallets because a user has to 

keep the multiple secrets safe to protect her fund. 

2. Secret sharing requires a trusted terminal to create shares and recover them. 

3.2.1.3 Multi-Signature Wallet 

Another solution is multi-signature [48] where a user uses multiple private keys with a 

threshold (e.g., two of three) to sign a transaction; if she loses one (or more) of her keys, she 

still can protect her funds. Some literature like [16] and [49] advise the users to use multi-

signature; however, it has these drawbacks: 

1. Multi-signature has a similar challenge to secret sharing where the user must protect 

multiple secrets separately. 

2. Multi-signature requires multiple wallets to sign a transaction, which would cause 

downgrade of usability in crypto wallets. 
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3.2.1.4 Backup on the Cloud 

One recent crafted solution is backing up the master seed on the cloud. In this solution, 

the user chooses a passphrase to generate an encryption key. Then, this key encrypts the master 

seed and the wallet store it on a user provided cloud storage like iCloud, Google Drive or Drop 

Box account. So, the user does not worry about keeping a paper in a safe place and the backup 

never be lost. However, the disadvantage of this solution is that, the cloud server is a honeypot 

for hackers, and it is similar to the problem of storing the keys on exchange servers and hot 

wallets. Similar to paper backup, choosing a complex long passphrase is risky when the user 

may forget that and choosing a simple passphrase is vulnerable to hack, because if a hacker 

finds the backup on the cloud, he can make brute force attack with no limitation. 

3.2.2 Proposed Crypto Wallet Cloning Mechanism 

In this research, we propose a cryptographic scheme to tackle crypto wallet backup 

problem [5]. In contrast to the paper-based backup, our scheme uses ECC to back up and restore 

the keys on another wallet. So, the user does not need to either write a list of words or remember 

a complex long passphrase. Furthermore, our scheme does not require the user to protect 

multiple secrets similar to secret sharing and multi-signature which downgrades the usability 

of wallets. In addition, it does not enforce using a trusted terminal for backup and recovery and 

does not need multiple wallets to sign a transaction. Finally, because our proposed mechanism 

backs up the wallet on another wallet, there is no any soft file of encrypted the master seed out 

of the wallet to store on the cloud which has potential hack opportunity. 
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3.2.2.1 Elliptic-Curve Diffie-Hellman Key Agreement 

Our new scheme uses elliptic-curve cryptography to back up the keys. It employs a 

crafted version of Elliptic-Curve Diffie-Hellman (ECDH) key agreement protocol [3] for 

backup and recovery. In ECDH, each party has its key pair, and both parties compute a shared 

secret with its private key and the other party’s public key. Figure 3-3 illustrates a general view 

of ECDH. As we discussed, in ECC the private key value is a random scaler, and the public 

key is calculated with multiplying (‘*’) private key with the Generation point (G) defined in 

secp256k1 domain parameters, and ‘*’ is ECC multiplication [6]. 

 

Figure 3-3: Elliptic-Curve Diffie-Hellman (ECDH) key agreement 

In Figure 3-3 A and B have their private keys, and they exchange their public keys with 

each other. Then, A multiplies its private key with B’s public key; the result is denoted as SA, 

and B does the same calculation with its private key to calculate SB. By replacing public keys 

with its corresponding calculation, the S calculation is as shown in Equation (3  in both parties 

and SA is equal to SB. 

SA = SB = ecPriA * ecPriB * G (3) 

In this way, both parties create a shared secret with only exchanging their public keys. 

Also, an additional SHA-256 computation of ECDH result value is recommended [3].   

The problem of ECDH is the Man-In-The-Middle attack where a hacker replaces the 

public key of B by a fake public key, and A cannot distinguish the original public key from the 
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fake one. To solve this problem, we employ side-channel user visual confirmation (verification 

code aka vcode), which will be explained in the next section. Existing hardware wallets use a 

similar method to confirm transaction information like receiver address, amount and fee before 

signing [26][27]. 

3.2.2.2 Proposed Algorithm 

In summary, our contributions in this work are: 

• Proposing the first crypto mechanism for secure backup and recovery in cryptocurrency 

hardware wallets relying on the side-channel human visual verification 

• Implementing a prototype using a smart card as the hardware wallet and smartphone to 

realize the secure and convenient backup operation 

Figure 3-4 illustrates our proposed backup scheme and Table 3-1 describes the 

meanings of used acronyms. In the backup process, there are two wallets: the main wallet and 

the backup wallet. Before start, the main wallet has generated and stored the master seed, and 

the goal of our proposed backup process is to transfer a secure copy of the master seed from 

the main wallet to the backup wallet.  

Table 3-1: Acronyms of proposed secure backup mechanism 

Acronym Meaning 

mseed Master Seed 

ecPrix Elliptic-Curve Private key of wallet X 

ecPubx Elliptic-Curve Public key of wallet X 

b58 Base-58 encoding algorithm 

vcodeX 
Verification code of wallet X  

(displayed on the hardware wallet screen) 

ECDH Elliptic-Curve Diffie-Hellman algorithm 

tk Transport Key 

encMSeed Encrypted Master Seed 
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We assume both wallets have a screen and (at least) one physical button. Also, we 

assume the backup channel is an untrusted terminal like a smartphone that may be 

compromised by a hacker. The gray boxes in Figure 3-4 illustrate the vcode that displayed on 

hardware wallets’ screen for user verification. The values shown on the two wallets should be 

identical. 

 

Figure 3-4: Proposed secure backup mechanism to transfer master seed 

Our proposed mechanism has three steps:  

1. The backup wallet generates a key pair and computes the verification code (vcode) 

of its public key to display on the backup wallet screen. Then it exports the backup 

wallet’s public key (ecPubB). 

2. On the other side, the main wallet receives the backup wallet public key (ecPubB) 

and calculates the same vcode to display on its screen. Then, the user visually 

compares these two vcodes in wallets’ screens and confirms their match by pressing 

a button on the main wallet. Next, the main wallet generates its key pair and 

computes Transport Key (tk) using ECDH algorithm. Then, it encrypts the master 
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seed (mseed) under transport key (tk) with AES 256-bit. Finally, it exports its public 

key (ecPubM) and encrypted master seed (encMSeed). 

3. The backup wallet imports ecPubM and encMSeed, computes Transport Key using 

ECDH algorithm and decrypts encMSeed to retrieve the master seed. Consequently, 

the backup wallet has the master seed to build the entire key tree. 

3.2.3 Prototype Implementation on Smart Card 

To build a prototype as a proof-of-concept for our proposed backup mechanism, we 

implement our code on a secure but resource-constraint hardware that is the smart card. As 

displayed in Figure 3-2, this smart card has a programmable IC chip, NFC interface, e-paper 

display and physical buttons. So, it has direct trusted input and output with the user without 

requiring relying on an untrusted terminal. 

As we explained earlier, to develop a card application for the smart card, we employ 

Java Card technology [33] which is a limited version of Java Runtime Environment with fewer 

features. We write and compile our program in Java, convert it to a Card Application (CAP) 

and load it to the programmable IC chip on the smart card. We implement our code with Java 

Card (JC) 3.0.1 API, and it can run on all JC compatible smart cards, but the screen API is 

card-specific.  

Java card (at least JC 3.0.1 API) supports ECC 256-bit key generation and 

signing/verification, SHA-256 digest algorithm, AES 256-bit encryption/decryption, and 

Elliptic-Curve Diffie-Hellman (ECDH) key agreement, however, does not include secp256k1 

domain parameters that we need in cryptocurrency. Furthermore, for vcode calculation, we use 

the SHA-256 hash algorithm to digest the public key, RIPEMD-160 hash algorithm to shorten 

the digest length and base-58 encoding to make it more readable for users. These algorithms 
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are supported and available on existing hardware wallets for address generation, but smart 

cards usually do not provide them. To resolve these issues, we utilize some codes of the Ledger 

Java Card wallet GitHub repository [50] with a few minor changes to add these algorithms. 

Another challenge was the public key derivation. Existing Hierarchical Deterministic 

(HD) wallets back up the master seed and compute entire private key tree using the master 

seed; but what about the public keys? In ECC, as we explained in previous sections, the public 

key is derived from the private key. Therefore, the crypto wallet requires only the private key 

and calculates the corresponding public key with multiplying private key with the Generator 

point (G). In our prototype, the ECC multiplication is not easy due to the limited resources of 

the smart card. Therefore, we use ECDH function in a tricky way. In this solution, we use the 

ECDH key agreement function with the private key as the input key and the Generator point 

(G) as the input data. Thus, the result of ECDH will be the public key instead of a shared secret, 

because as we discussed earlier, ECDH actually multiplies the private key to the input 

Generator point. 

Additionally, in actual implementation, we split the second step of our mechanism 

(shown on Figure 3-4) to two sub-steps to get confirmation from the user. Step 2.a includes 

importing the backup card public key, computing its vcode and getting confirmation from the 

user. Step 2.b includes encrypting the master seed and exporting the encrypted seed with the 

main card public key. 

Figure 3-5 demonstrates the 3-step process from the user perspective. At first, the user 

taps the backup card to the smartphone to generate a backup card key pair and export its public 

key. The backup card screen displays the calculated vcode, and the user sees the vcode on the 

smartphone to compare. Then, at the second step, she removes the backup card and taps the 

main card to the smartphone to import the backup card public key and export encrypted master 

seed with main card public key. During this step, the user must compare the vcodes displayed 
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on the main card screen and smartphone and confirm their equality by pressing a physical 

button (OK button) on the main card. At the third step, she taps the backup card again to import 

and extract the master seed finally. The backup card screen displays a message to acknowledge 

the backup procedure completion.  

 

Figure 3-5: The proposed secure backup procedure from the user perspective 

In summary, our mechanism requires neither trusted terminal nor mutual authentication 

and session encryption between wallets. As a result, it can be deployed using only one regular 

smartphone with no additional device and no paper and is very convenient for average users. 
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3.2.4 Performance Evaluation 

To implement Diffie-Hellman key agreement in our backup algorithm, we choose ECC 

rather than RSA because of two reasons. First, existing hardware wallets support it, and second, 

it is faster than RSA. We express our RSA and ECC performance evaluation in Figure 3-6. 

ECC execution time is not only faster but also more predictable and stable because RSA private 

key is a large random prime number (e.g., 2048-bit) that requires more time to compute on the 

IC chip. On the other hand, EC private key is a short random number (e.g., 256-bit) that is 

smaller than a fixed upper bound value n [6]. 

 

Figure 3-6: Performance of ECC 256-bit and RSA 2048-bit on a smart card 

To measure the execution time of ECC and RSA, we implemented a benchmark card 

application and run that on the smart card. In our test, we run the key generation of ECC 256-

bit, RSA 2048-bit and RSA 2048-bit CRT while the last one is the faster version of RSA 

algorithm. We executed the evaluation for 10 times and the result is displayed on Figure 3-6. 

In the integration test, we evaluate the performance of the whole secure backup 

mechanism in our prototype wallet using a Google Pixel smartphone with NFC feature. We 
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run our test case for 10 times and use our test app to measure the time between sending and 

receiving packets to/from the smart card. 

The complete evaluation results are illustrated in Figure 3-7 for each step. This figure 

shows that the consuming time for each step is stable and predictable. According to our 

evaluation, the average total execution time for Step 1 on the smart card is 299.4 ms, for Step 

2 is 457.5 ms and for Step 3 is 153.6 ms. Thus, the whole secure backup process takes no more 

than one second to complete based on our prototype evaluation. 

 

Figure 3-7: Performance results of the secure backup procedure on a smart card 
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3.2.5 Security Analysis 

3.2.5.1 Assumptions and Threat Model 

The goal for our backup mechanism is securely transferring the master seed from the 

main wallet to the backup wallet. We have the following assumptions on the hardware wallet, 

terminal, and user: 

• The terminal is a smartphone, which is untrusted and could be compromised by a 

hacker, e.g., by installing malware. 

• The hardware wallet has a screen and at least one physical button as illustrated in Figure 

3-2 similar to existing hardware wallets [26][27].  

• The master seed is generated securely on the main wallet, and nobody has a copy of the 

seed. 

• The user follows the instructions and checks vcode on both wallets’ screen during the 

backup procedure. 

3.2.5.2 Theft of Backup Attack 

In the existing backup solution on a piece of paper [30], if a hacker finds the backup 

paper with no passphrase, he can recover the master seed quickly and steal all funds. This attack 

happens regularly in the real-world robbery. On the other hand, in our proposed scheme, there 

is no plain text of the master seed to steal, and the backup is stored on another hardware wallet. 

If the hacker finds the backup wallet or the main wallet, he needs to know the password of the 

wallet to unlock it. 



 58 

3.2.5.3 Vulnerability to Brute Force Attack 

To improve the backup security, the existing algorithm [30] supports an optional 

passphrase. Thus, the generated mnemonics require the passphrase to recover the master seed. 

Though, if a hacker finds the backup paper, he can make a brute force attack and try to guess 

the passphrase without any limitation. The hacker only needs one of the user’s public addresses 

to perform this attack. For each guessed passphrase, he generates a new master seed and creates 

a set of addresses to match with the user’s address. Therefore, the difficulty of this attack is 

similar to hacking a password. If the passphrase is simple, then the hacker can guess it quickly, 

and if it is complex, then the user may forget it and lose her funds.  

On the other hand, our new scheme keeps the backup in another hardware wallet with 

a protected password. For example, in a smart card, there is a fixed password retry counter 

usually between 3 and 15, and after that, the smart card chip is locked automatically. It is a best 

practice in smart card systems. Therefore, if a hacker finds the backup wallet, he can only try 

a limited number of guessed passwords and could not make a brute force attack. 

3.2.5.4 Capturing the Master Seed 

In our proposed mechanism, an attacker may sniff the transmitted messages between 

wallets and the smartphone to eavesdrop the master seed. He can either capture NFC wireless 

communication or install a sniffing malware on the smartphone since we have assumed that 

the terminal is untrusted. Our mechanism is secure against this attack because the terminal 

observes only public information includes the main wallet and the backup wallet public key 

(ecPubM and ecPubB), and encrypted master seed (encMSeed) under an AES 256-bit key. 

Therefore, the attacker cannot extract any private data (ecPriM, ecPriB and mseed). 
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3.2.5.5 MITM Attack: Replacing the Backup Public Key 

Another possible attack is Man-In-The-Middle (MITM) where the attacker relays the 

messages between the main wallet and the backup wallet, trying to replace the backup wallet 

public key (ecPubB) by his fake public key (ecPriH) in ECDH key agreement. Then, the attacker 

can recover the master seed as displayed in Figure 3-8.  

tk' := SHA256(ECDH(ecPriH, ecPubM)) 

mseed := AES256Dec(tk', encMSeed) 

Figure 3-8: Capture the master seed by injecting a key by a hacker 

To defend against this attack, we have used a side-channel verification code (vcode) in 

our mechanism. Both wallets compute their vcodes of the backup wallet public key (ecPubB) 

and display their vcodes on their screens. The user visually inspects and confirms the equality 

of these two vcodes by pressing a physical button on the main wallet. Existing hardware wallets 

use a similar method to confirm transaction information like receiver address, amount and fee 

before signing them. So, if a hacker injects his fake public key (ecPriH) to the main wallet, the 

user will be able to detect such an attack due to the mismatch of the two wallets’ vcodes shown 

on two wallets’ screen and reject this MITM attack. 
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3.3 Super-Wallet/Sub-Wallet 

Even though the hardware crypto wallet is a secure option, it is risky that a user puts all 

of her fund on a device and uses that for day-to-day purchase. A smart and simple solution is 

proposed in [1] called super-wallet/sub-wallet model. The super-wallet is like a saving account 

that stores a large amount of money and only refills the same owner’s sub-wallet infrequently 

when needed. The sub-wallet is like a spending account that stores a small amount of fund used 

by the user for daily expenses. Therefore, if the user’s sub-wallet is lost or hacked, she does 

not lose a significant amount of money.   

3.3.1 Classic Super-Wallet/Sub-Wallet Model 

The idea of super-wallet and sub-wallet is proposed in [1]. It is separating the main 

account that conveys a large amount of money from spending account that is used for the daily 

transactions. It mimics personal saving account and spending account in traditional banking. 

A user uses her spending account on a sub-wallet for day-to-day expenses such as a purchase 

from online stores, pay bills or buy a coffee. On the other hand, she uses her saving account on 

a super-wallet just for receiving like a deposit of salary and refill her spending account on the 

sub-wallet. Therefore, she uses her super-wallet rarely, e.g., one or two times per month, and 

her sub-wallet several times per day. 

The classic solution to build super-wallet and sub-wallet proposed in [1] is 

straightforward. The user should have two regular wallets. She designates one wallet as super-

wallet and stores all of her fund on that. Then, each time she wants to refill the sub-wallet 

(second wallet), she retrieves a receiving address from the sub-wallet and sends fund from the 

super-wallet to this address. In this mechanism, the user creates a transaction in the super-

wallet each time she wants to refill the sub-wallet. This process requires paying miner fee and 
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waiting a period for confirmations. Because usually, the terminal (e.g., laptop or smartphone) 

is vulnerable to malware attacks, it is possible that a hacker replaces the sub-wallet address by 

his own address to steal funds from the super-wallet. Furthermore, the user should back up 

both super-wallet and sub-wallet similar to all regular wallets.  

3.3.2 Proposed Deterministic Sub-Wallet 

To resolve the mentioned challenges in the super-wallet/sub-wallet model, we propose 

a new scheme that we call Deterministic Sub-wallet [5]. In this model, the sub-wallet seed is 

derived from the super-wallet seed, and this process being executed inside the super-wallet. 

The super-wallet derives the sub-wallet addresses and transfer fund to them in only one 

blockchain transaction. To refill the sub-wallet, the user transports a seed from the super-wallet 

to the sub-wallet instead of creating a blockchain transaction. Consequently, this model can 

refill multiple sub-wallet addresses with only one mining fee and one-time waiting for 

confirmation. It is secure because the super-wallet does not need to get the sub-wallet addresses 

from the outside of the wallet and it prevents a MITM attack. Also, there is no need to back up 

the sub-wallet, because it can be derived from the super-wallet. For proof-of-concept, we 

implement a prototype of our proposed deterministic sub-wallet in a hardware wallet and 

evaluate its performance. In summary, our contributions in this work are: 

• Designing a new super-wallet/sub-wallet model which reduces refilling cost and time, 

enhances the security, and removes the necessity for the sub-wallet backup 

• Implementing a proof-of-concept in a hardware wallet 
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3.3.3 Classic versus Proposed Super-Wallet/Sub-Wallet Model 

In contrast to classic super-wallet/sub-wallet model with unlinked key trees, in our new 

scheme, deterministic sub-wallet, we derive the sub-wallet seeds from the super-wallet master 

seed. Therefore, the super-wallet can build all sub-wallet key trees. So, the super-wallet refills 

several sub-wallet addresses with one blockchain transaction, and refills the sub-wallet with 

transporting one sub-seed. Compared to the classic super-wallet/sub-wallet model, the 

advantages of our proposed deterministic sub-wallet are: 

• Deterministic sub-wallet is cheaper in terms of the miner fee because it can refill 

multiple sub-wallet addresses with one blockchain transaction, while classic model 

requires a blockchain transaction in each refill. 

• Refilling sub-wallet is real-time in the deterministic sub-wallet because it is an offline 

sub-seed transporting from the super-wallet to the sub-wallet without any transaction 

with blockchain network. 

• The classic model is vulnerable to Man-In-The-Middle attack for key injection similar 

to other regular wallets, but deterministic sub-wallet is not because the sub-wallet 

addresses are generated inside the super-wallet. 

• The user must back up both the super-wallet and the sub-wallet seeds in the classic 

model, but in the deterministic sub-wallet, there is no need to back up the sub-wallet 

seed because it is derivable from the super-wallet seed. So, it is enough to back up the 

super-wallet seed. 

3.3.4 Proposed Deterministic Sub-Wallet Details 

The abstract process of deterministic sub-wallet refilling is as follows. The super-wallet 

generates a pool of sub-wallet addresses and constructs a large transaction which transfer funds 
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from one (or more) super-wallet addresses to the generated sub-wallet addresses. Then, the 

super-wallet signs and publishes the transaction. After that, each time the user wants to refill 

the sub-wallet, she exports a sub-wallet seed from the super-wallet and imports that to the sub-

wallet securely. In another work [4], we proposed a secure cryptographic mechanism to 

transport a seed between wallets using Elliptic-Curve Diffie-Hellman. We explain the details 

of the process in the following sections. 

3.3.4.1 Sub-Wallet Seed Derivation 

Both super-wallet and sub-wallet should be HD wallet to support the anonymity and 

privacy of the user. In our model, one sub-wallet can have only one seed at a time, but the 

super-wallet derives a new seed each time to generate a new sub-wallet address. So, to 

implement a deterministic sub-wallet, we propose a simple function to derive multiple sub-

wallet seeds (subSeed) from a super-wallet master seed (masterSeed).  Equation (4 displays 

this function. 

subSeed = HMAC-SHA512(key="Sub-wallet xxxx", data=masterSeed) (4) 

In this equation, we use a procedure similar to the master key generation function in 

[29] with some modifications. The core function is an HMAC-SHA512 with a master seed as 

input data and "Sub-wallet xxxx" string as input key. The “xxxx” is the index of sub-wallet 

starting from 0 which is a four-digit hexadecimal number. For example, the input key for sub-

wallet number 1 will be "Sub-wallet 0001". The output of this function is a 512-bit 

deterministic pseudo-random value which can be used as a regular seed to construct an HD 

wallet key tree on the sub-wallet. 
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3.3.4.2 Sub-Wallet Refilling 

Refilling many addresses of the sub-wallet in one transaction requires a multi-output 

transaction. This type of transaction can have more than one output to send coins to multiple 

addresses. Cryptocurrencies like Bitcoin and other altcoins that uses UTXO (Unspent 

Transaction Output) model support the multi-output transaction, while some account-based 

cryptocurrencies like Ethereum does not. This work focuses on first group of cryptocurrencies, 

but this design is applicable on Ethereum with an additional Smart Contract like [45].  

To refill the sub-wallet, the super-wallet creates and signs a multi-output transaction. 

The refilling function gets inputs n, i and v that described in Table 3-2. This algorithm runs on 

the super-wallet and generates n sub-seeds starting from index i using sub-wallet seed 

generation function. Next, it derives the sub-wallet private keys and their addresses with a 

predefined fixed path illustrated in Figure 3-9. This path is fixed for all sub-seeds and we use 

only the first address of each sub-seed. In this path, ‘change’ is 1 because the result address is 

used to transfer funds from the super-wallet to the sub-wallet as an internal use. 

The super-wallet generates n addresses from n sub-seeds and creates a transaction that 

transfers v/n coin to each address. It divides the input fund for all addresses equally. Figure 3-9 

shows the pseudo-code of the sub-wallet refilling algorithm and Table 3-2 describes the 

acronyms of the pseudo-code. 

refillSubWallet (n, i, v){ 

for j=i to i+n { 

 sj = deriveSubSeed(masterSeed, j) 

 kj = deriveKey(seed=sj, path="m/44’/coin’/0’/1/0") 

 aj = privateKeyToAddress(kj) 

} 

tx = signTX(v/n => aj : j=i to i+n) 

sendTransaction(tx) 

} 

Figure 3-9: Sub-wallet refilling pseudo-code 
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Table 3-2: Sub-wallet Refilling pseudo-code Acronyms 

Acronym Meaning 

n Number of sub-wallet addresses 

i Index of the first sub-wallet address 

v Sum of funds to refill 

sj Sub-seed of sub-wallet index j 

kj Private key of sub-wallet index j 

aj Address of sub-wallet index j 

tx Number of sub-wallet addresses 

 

To clarify this algorithm, we discuss a simplified example of the sub-wallet refilling 

procedure illustrated in Figure 3-10. Assume that the super-wallet address (Super-walletaddress1) 

has 30 Bitcoin at first. The sub-wallet refilling algorithm creates a transaction with 5 sub-wallet 

addresses (n=5) starting from sub-wallet index 1 (i=1), and the total fund is 2 Bitcoin (v=2). 

After confirmation by blockchain, the super-wallet address has 28 Bitcoin and each sub-wallet 

address (Sub-walletaddress1 to Sub-walletaddress5) has 0.4 Bitcoin. In Figure 3-10 the left side 

demonstrates the blockchain state before publishing the sub-wallet refilling transaction, and 

the right side shows the state after that. 

 

Figure 3-10: Simplified example of proposed sub-wallet refilling mechanism 
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In the real world and also our prototype implementation some details are different. For 

example, to provide anonymity, a change address is used that means the address of the super-

wallet to receive remaining fund in the left side is different from the input super-wallet address 

in the right side. Furthermore, the sum of the fund before and after publishing the refilling 

transaction are not equal because of the mining fee. Also, the input super-wallet address could 

be replaced by multiple super-wallet addresses to provide enough fund to refill the sub-wallet 

addresses. 

3.3.4.3 Sub-Wallet Seed Transporting 

We need an algorithm to transport a sub-wallet seed (sub-seed) from the super-wallet 

to the sub-wallet securely. To do that, we employ a modified version of the seed transport 

algorithm that we proposed in another work [4]. This algorithm is based on Elliptic-Curve 

Diffie-Hellman key (ECDH) agreement.  

In ECDH, each party has its key pair, but both parties compute a shared secret with its 

private key and the other party’s public key. Also, an additional SHA-256 computation of 

EDCH result value is recommended [3]. In our algorithm, we use the computed secret as an 

AES 256-bit encryption key to encrypt the sub-seed and transfer that from the super-wallet to 

the sub-wallet. The problem of ECDH is the Man-In-The-Middle attack where a hacker 

replaces the sub-wallet public key by hacker’s public key, and the super-wallet cannot 

distinguish the sub-wallet public key from the hacker’s one. To tackle this problem, we employ 

side-channel user visual confirmation called verification code aka vcode. Vcode is a 

cryptographic digest (hash value) computed from the sub-wallet public key. Each wallet 

computes the vcode independently and displays that on the its screen. The user visually 

compares the equity of two vcodes and ensures that no hacker replaces the sub-wallet public 
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during the transport process. Then, she confirms that by pressing a physical button on the super-

wallet (receiver). Visual confirmation is a regular method in existing hardware wallets to 

confirm transaction information like receiver address, amount and fee before signing [26][27]. 

3.3.5 Prototype Implementation on Smart Card 

As we discussed, one of the most secure crypto wallet is hardware wallet equipped with 

a screen and at least one physical button, else as [2] and [39] [2]argued a crypto hardware is 

not secure when it uses a terminal (e.g., computer and smartphone) for interaction with the 

user, because a hacker may install malware on the terminal and make a Man-In-The-Middle 

attack. Traditional smart cards are not secure enough to use as a crypto wallet because of no 

direct input/output with the user. As we illustrated earlier, fortunately, now there are new smart 

cards in the market that use e-paper technology as an on-card screen. Thus, we use a smart card 

with a screen and a button as a hardware crypto wallet to implement our mechanism. 

To develop a card application for the smart card, we employ Java Card technology [33] 

which as we introduced earlier, it is a limited version of Java Runtime Environment with fewer 

features. We write and compile our program in Java, convert it to a Card Application (CAP) 

and load it to the programmable IC chip on the smart card. We implement our code with Java 

Card (JC) 3.0.1 API, and it can run on all JC compatible smart cards, but the screen API is 

vendor-specific. 

The smart card has limited resources, and our test card has only 2.5-kilobyte memory. 

Thus, we have implemented our code efficiently to use minimum memory. A well-known 

technique that we used is sharing the memory. We define just two big arrays to allocate all 

available memory in one place and then pass them to all functions that require them. Also, we 

avoid very nested function callings and any recursive function because calling function requires 
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stack allocation which consumes memory. In this type of programming inside a secure element 

(IC card) you should be very stingy and use each byte carefully. Because the refilling 

transaction is large for a smart card, we have to limit the number of sub-wallet addresses that 

the wallet can refill in one transaction. In our implementation for Bitcoin, we limit it to 16 sub-

wallet addresses which are enough in significant cases. Figure 3-11 demonstrates the whole 

process from the user’s perspective. Step 0 is for refilling the sub-wallet addresses and Step 1 

to step 3 are for the secure sub-seed transport from the super-wallet to the sub-wallet. 

 

Figure 3-11: Sub-wallet refilling and sub-seed transporting from the user’s perspective 
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3.3.6 Performance Evaluation 

In our performance test, we use a smart card reader connected to a laptop with a USB 

cord. We run each test case 10 times and use our evaluation program [51] to measure the period 

of sending and receiving packets. 

We compare classic sub-wallet and deterministic sub-wallet in two scenarios. First, we 

assume that the user has several sub-wallets and wants to refill some of them simultaneously. 

In this scenario, the classic model creates one transaction per sub-wallet, but deterministic 

model creates one transaction for multiple sub-wallets. The performance result to execute this 

process on the test smart card (sample hardware wallet) is illustrated in Figure 3-12. For one, 

two and three sub-wallets the classic model is a little bit better because it is similar to regular 

wallets and get all input addresses from outside of the hardware wallet with no internal process. 

On the other hand, the super-wallet on deterministic model derives sub-wallet seeds and 

addresses internally that takes more time, but for four sub-wallets and more it has better 

performance because of fixed overhead time to sign a transaction in the classic model. 

 

Figure 3-12: Smart card execution time to refill multiple sub-wallets simultaneously 

In the second scenario, we assume that the user has only one sub-wallet and wants to 

refill it repeatedly. For example, she refills her sub-wallet one time per month in a year. In this 

scenario, she may refill her sub-wallet for 1, 2, 3 to 12 months. In the classic model, she should 
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create a blockchain transaction each time, but on the deterministic model, she can refill her 

sub-wallet for multiple months in one blockchain transaction. To compare the classic and the 

deterministic model in this scenario, we use the current metrics of the Bitcoin network [46]. 

For the time of writing this document, Table 3-3 shows the Bitcoin network metrics. In these 

calculations, we assume that the average transaction size is 250 bytes. Also, our mechanism to 

make deterministic sub-wallet adds 34 bytes per sub-wallet address except first one and it uses 

legacy addresses. 

Table 3-3: Bitcoin Network Metrics 

Inserted block 
Time for 

confirmation 
Fee per byte Fee per transaction 

Next block 10 min 23 satoshi/byte 5750 satoshi 

3 blocks 30 min 22 satoshi/byte 5500 satoshi 

6 blocks 60 min 10 satoshi/byte 2500 satoshi 

 

We compare the classic model with the deterministic model with these metrics for time 

and fee. To simplify the comparison, we only consider the worse cases. At first, to compare 

fee, we use the best fee that is 2500 satoshi per transaction with 60 min to confirm. In this 

situation, the classic model consumes less fee to refill the sub-wallet. Figure 3-13 demonstrates 

the consuming fee for both models. For the classic model, the cost is the number of sub-wallet 

times transaction fee, but on the deterministic model, the cost is not very different for 1 to 12 

refills and increase a small amount for additional 34 bytes per sub-wallet address. 
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Figure 3-13: Fee to refill one sub-wallet multiple times 

The results for the time are similar and Figure 3-14 shows the time results. In this 

comparison, we use the best network confirmation time (10 min) which cost more, but it is the 

best option for the classic model. Because the user should wait for network confirmation for 

each refill, it takes much time. On the other hand, because the deterministic wallet does all of 

that in one transaction, the time is not related to the number of refills. 

 

Figure 3-14: Time to refill one sub-wallet multiple times 
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3.3.7 Security Analysis 

3.3.7.1 Assumptions and Threat Model 

The goals for our scheme are secure refilling the sub-wallet addresses and secure 

transporting a sub-seed from the super-wallet to the sub-wallet. In our threat model, we have 

the following assumptions on hardware wallet, terminal, and user: 

• The terminal, such as a computer, laptop or smartphone is untrusted and could be 

compromised by a hacker, e.g., by installing malware. 

• The hardware wallets have a display and at least one physical button as illustrated in 

Figure 3-2 similar to existing hardware wallets [26][27]. 

• The user follows the instructions and checks vcode on both wallets’ displays during the 

sub-seed transfer procedure. 

3.3.7.2 Less Super-Wallet Signings 

Our proposed mechanism only needs one super-wallet transaction signing to refill 

multiple sub-wallet addresses. It decreases the permission required signing and provides better 

security than the classic model. In other words, the user’s big fund is less accessible to the 

potential hackers. 

3.3.7.3 Capturing Sub-Wallet Seed 

A hacker may sniff the communication to steal the sub-wallet seed in two situations. 

First, it could happen when the user creates the sub-wallet refilling transaction on the super-

wallet. To defend against this attack, we implement the entire procedures of sub-seed creation, 

private key derivation and address conversion on the super-wallet (e.g., via the onboard IC chip 
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on a smart card). Thus, the terminal passes the sub-wallet index to the super-wallet, and there 

is no secret information to sniff. Second, the hacker may try to sniff the terminal when the user 

transports a sub-wallet seed from the super-wallet to the sub-wallet. The sub-seed is encrypted 

with AES-256 bit to avoid this attack, and there is no plaintext secret to steal. 

3.3.7.4 MITM: Replacing Sub-Wallet Address 

The hacker may want to make a Man-In-The-Middle (MITM) attack to modify the 

receiver address in the transaction before sending the inputs to the wallet. In this way, he can 

replace the legitimate receiver address by his address to steal the user’s fund. The classic model 

is vulnerable to this attack because the sub-wallet key tree is unlinked, and the super-wallet 

needs to get the sub-wallet address from the input. In contrast, our proposed scheme avoids 

this attack by deriving the sub-wallet seeds from the super-wallet master seed and generating 

the sub-wallet addresses on the super-wallet. Therefore, there is no need to get the sub-wallet 

addresses from inputs and the hacker has no chance to replace them in the terminal. 

3.3.7.5 MITM: Replacing Sub-Wallet Transport Public Key 

Another possible MITM attack is that the attacker relays the messages between the 

supper-wallet and the sub-wallet and tries to replace the sub-wallet public key by the hacker’s 

public key to convince the super-wallet to encrypt the sub-seed using the hacker’s key. Then, 

the attacker computes the transport key using the super-wallet public key and his private key 

and decrypts the encrypted sub-seed. 

To defend against this attack, we have used a verification code (vcode) in the sub-wallet 

seed transport algorithm. Both wallets compute their vcode of the sub-wallet public key and 

display that in their screens. The user must confirm the equality of them by pressing a physical 



 74 

button on the super-wallet. If a hacker imports his public key to the super-wallet, the user will 

be able to detect such an attack by comparing the two displayed wallets’ vcode and hence reject 

this MITM attack. 
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3.4 Multilayered Defense-in-Depth Architecture 

The hardware wallets are good but not enough because they are hard to use in 

comparison to hot wallets (i.e., software wallets) and smartphone wallets. We need an 

appropriate setup when using hardware wallets to achieve a balance between convenience and 

security. Defense-in-Depth (DiD) is an approach in IT security that usually conveys multiple 

layers with various security mechanisms to protect a system from attacks in several steps. DiD 

applies to all IT systems and is a standard solution for network security. In this section, we 

propose a multi-layer architecture that provides a Defense-in-Depth design for cryptocurrency 

wallets. We propose a layered deployment of wallets that delivers a balance between 

convenience with security for cryptocurrencies. The user protects the private keys in three 

restricted layers with different protection mechanisms. So, a single breach cannot threaten the 

entire fund, and it saves time for the user to respond. 

3.4.1 Proposed Multi-Layer Wallet 

To protect the private keys from attackers, we introduce a defense-in-depth architecture 

for cryptocurrency wallets. Our proposed architecture has three layers with different usage and 

protection mechanisms, which makes a balance between usability and security. Figure 3-15 

demonstrates this architecture. It has three layers, including offline layer, protected layer, and 

online layer. 

The protected layer consists of a superior wallet. This wallet conveys the master seed, 

which generates the entire key tree and all addresses. The offline layer has at least one backup 

wallet where it is a clone of the superior wallet. We use our previously proposed method in [4] 

for encrypted wallet-to-wallet cloning. The online layer can have multiple spending wallets for 

regular daily purchases. A spending wallet has a subordinate seed from the superior wallet with 
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a limited fund. We use our previously proposed mechanism in [5] for key derivation to 

generating subordinate seeds and seed transferring from superior wallet to a spending wallet. 

 

Figure 3-15: The proposed multi-layer defense-in-depth architecture for cryptocurrency wallets 

We have revised our previous algorithm [5] to support our new proposed architecture. 

Firstly, we modify the derivation function as follows where swSeed stands for spending wallet 

seed, mSeed stands for master seed, and xxxx indicates the spending wallet index starts from 

zero in 4-digit hex number format (0000). 

swSeed = HMAC-SHA512(key=" swSeed xxxx", data= mSeed) (5) 

The superior wallet uses the derivation function only when it creates a new seed for a 

spending wallet.  

Secondly, we also modify the refilling address selection policy. On the original work 

[5], the wallet only refills the first address index of each derived seed. However, in our new 

proposed architecture, the superior wallet uses multiple addresses of a spending wallet seed. 

For each refilling, it searches the blockchain to find the first unused address to send the fund. 



 77 

The offline layer is designed to be offline and does not need any connection to the 

blockchain network. It gets online if and only if an incident occurs for the superior wallet and 

needs an emergency response. If the superior wallet is compromised by an attack or is lost, the 

backup wallet generates a brand-new master seed. It creates a blockchain transaction to transfer 

all available funds of the last master seed to an address under the new master seed. It avoids 

any unintended transfer from the superior wallet as soon as possible. We recommend a secure 

hardware wallet with a secure element, a trusted display, and an embedded button for the 

backup wallet. 

The protected layer has only one superior wallet. This wallet only refills the spending 

wallets. It calculates the spending wallet addresses internally, so it does not send any fund to 

other addresses that are vulnerable to MITM attack for receiving address injection. Similar to 

the backup wallet, we recommend a secure hardware wallet for the superior wallet too. 

Finally, the online layer can have multiple spending wallets. These wallets can be 

software wallets like smartphone wallets or hot wallets (third-party hosted wallets). Spending 

wallets do not need a backup because the superior wallet can recreate their seeds [5]. 

These three layers provide a balance between security and usability. While the user 

stores her large fund on the superior wallet and creates a clone of it on the backup wallet, she 

enjoys the convenience of a smartphone wallet or hot wallet to purchase online and pay her 

expenses. 

Receiving funds does not need private keys, so there are two possible options. If the 

user context does not have privacy concerns, she can generate an address under master seed on 

the superior wallet to share with others. If the context is sensitive to privacy, the superior wallet 

creates an extended public key to generates hierarchical deterministic addresses outside of the 

superior wallet without exposing the master seed or any private keys [29]. 
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For better understanding, we explain an example setup. Alice has 10 Bitcoin (BTC) 

equals to $100k (we assume the bitcoin price is $10,000 for simplicity). She stores her fund 

into the superior wallet, which is a secure hardware wallet and keeps it safe at her home. She 

creates a backup wallet, which is a secure hardware wallet too, and put it in a safe deposit box 

in a bank that is physically secure. Then, she installs a wallet app on her smartphone and makes 

it a spending wallet under the superior wallet and refills 0.5 BTC ($5K) into it. To receive her 

salary, she gets a receiving address from the superior wallet and shares it with her employer. 

She gets paid bi-weekly with bitcoin without requiring using the superior wallet. Alice uses the 

smartphone to buy a coffee, pay the bills, and purchase from online stores. When the spending 

wallet has a low balance, she refills it using the superior wallet. 

For convenience, Alice uses a type of hardware wallet for superior wallets and backup 

wallets that support Bluetooth or NFC, and she can do backup and refilling operations using a 

smartphone. However, she may use an offline laptop or another offline smartphone for better 

protection to do the backup and refilling. 

Now, we consider two possible security incidents and how the defense-in-depth 

architecture mitigates them. First, assume an incident in the online layer, for example, Alice 

loses her smartphone or recognizes a malware program on her smartphone. In this scenario, 

only the spending wallet is at risk with a maximum of 0.5 BTC amount. To respond to this 

incident, she uses superior wallet to transfer the fund of the suspected spending wallet to an 

address under the master seed. Then, she can reset her smartphone or get a new one, and the 

superior wallet generates a brand-new spending wallet seed and transfers the seed to the 

smartphone. 

Secondly, an incident can occur in the protected layer. For example, Alice may lose the 

superior wallet because of the physical robbery in her home. Since she uses a secure hardware 

wallet for the superior wallet, it is password protected and, if an attacker tries password 
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guessing more than the retry counter (i.e., five times), the wallet will be blocked permanently. 

On the other hand, for responding to this incident, Alice uses the backup wallet to generate a 

brand-new master seed and create a blockchain transaction to transfer all funds from the 

previous master seed to an address under the new master seed. She should do that as soon as 

possible before any breach of the suspected superior wallet. She also must create a new backup 

and regenerate the subordinate spending wallets. 

3.4.2 Proof-Of-Concept 

To evaluate our proposed architecture on bitcoin, we use the implementation of the 

backup wallet and the superior wallet on a hardware wallet device from our previous works 

that supports fundamental functionalities of hierarchical deterministic wallets, according to 

BIP-32 [29] and BIP-44 [31]. We use a secure element for key operations such as key 

generation and digital signature. 

We choose a smart card that has essential parts of a secure hardware wallet. It has a 

secure element for cryptography operations and key storage, a screen to display sensitive 

information to the user, and a button to get confirmation from the user. Figure 3-2 demonstrates 

a picture of our test device. This device is in credit card size and has NFC and contact interfaces 

to communicate. Our test smart card has the following specification; Java Card 3.0.5, Global 

Platform 2.2.1, e-paper display 256x256 pixel, 2.5 KB memory, 170 KB storage, contact and 

NFC interfaces, support for SHA256, SHA512, HMAC, AES256, ECC256, and ECDH 

algorithm. 

Since the secure element is a resource-constraint device with limited memory and 

processing ability, our code must use the minimum amount of memory. We use the sharing 

memory technique and allocate the entire memory to only two arrays. We pass these arrays 
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with the maintained indexes to the functions that require arrays, and it minimizes the heap 

consumption. Furthermore, we do not use a very nested function and any recursive call, and it 

minimizes stack memory usage. We use the Java Card framework [33] to program the secure 

element. It is a limited version of Java Virtual Machine with fewer features to run on 

microcontrollers and secure elements. We compile the code with the Java Development Kit, 

convert it to a Card Application (CAP), and load it into the secure element. 

For the spending wallet, we develop a mobile app to test our prototype with a 

smartphone. We use a Google Pixel smartphone with an NFC antenna and the following 

specifications: Google Pixel G-2PW4100 smartphone, quad-core Qualcomm Snapdragon 821 

processor with two 2.15 GHz cores and two 1.6 GHz cores, 4 GB memory, 32 GB storage, and 

Android 8.1.0.  

According to our evaluation, the total execution time for creating a backup on the test 

smart card takes less than one second to complete based on our prototype [4]. The derivation 

mechanism and refilling a spending wallet also can complete around one second [5]. 

3.4.3 Security Analysis 

In this section, we analyze the security aspect of our proposed architecture and the 

implemented proof-of-concept on hardware wallets and smartphones. Firstly, we argue about 

the security advantages of our proposed architecture in comparison to the existing solutions. 

Next, we provide appropriate adversary models to investigate the possible major attacks and 

countermeasures. 
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3.4.3.1 Security Advantages 

No Paper Backup: Spending wallets do not need any backup, and the superior wallet 

has one or more identical backup on other hardware wallets. Therefore, all backups are in 

digital format, and there is no physical backup on a paper that is vulnerable to traditional 

attacks. 

Less Vulnerable to Lose Large Amount: In our architecture, we split the fund between 

two layers. The protected layer stores a large amount and is used rarely, while the online layer 

stores a small amount and is used frequently. Therefore, a spending wallet is more exposed to 

the network and accessible for attacks; however, it has a small fund at risk. On the other hand, 

the superior wallet is less accessible on the network, and hence, more secure to possible attacks. 

Control of spending wallets: The superior wallet can regenerate the spending wallet 

seed and all corresponding keys. Therefore, if a spending wallet is lost or stolen, the user can 

use the superior wallet to recover all spending wallet keys and transfer their funds to a brand-

new address and empties the spending wallet. 

3.4.3.2 Adversary Models 

Authors of [53] survey security analyses on several papers and propose a 

comprehensive adversary model to employ in future security researches. This model defines 

three aspects of an adversary, including Assumptions, Goals, and Capabilities. The 

assumptions describe the environment, resources, and equipment of the adversary. The goals 

identify the intentions of the adversary and explain why he targets the system. The capabilities 

are the abilities and actions that the adversary performs to achieve his goals. 
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The authors of [53] discuss various adversary models for diverse environments like 

personal computers, networks, and cryptography parties. We use the models of the smartphone 

environment to measure the security of our final prototype on an Android smartphone. 

1) Malicious App Adversary Model 

The adversary model has different properties in various fields of study, and the authors 

of [53] provide several adversary models for smartphone applications. Their proposed 

Malicious App Adversary Model is appropriate for our conditions. This model includes three 

sub-models based on the app permissions: Zero Permission Adversary only has access to the 

list of installed apps and files stored on external storage. Normal Permission Adversary adds 

Internet access, Bluetooth, and NFC interfaces. Finally, Dangerous Permission Adversary has 

access to all resources such as camera, microphone, contact, and SMS. In this section, we use 

the Dangerous Permission Adversary model to assume maximum power for the attacker that 

is defined in Table 3-4. 

Table 3-4: Adversary Model I: Malicious App with Dangerous Permission 

Assumptions Goals Capabilities 

• Android 8.1.0 

• Internet access 

• NFC access 

• Knowledge of the 

low-level wallet 

protocol (APDUs) 

• Capture the 

master seed or 

sub seed 

• Inject the 

adversary 

address to 

receive the fund 

• Record the screen or log the pressed buttons 

to capture the password 

• Sniff the low-level packets to capture the 

master seed or spending seed 

• Inject the adversary address into spending 

wallet refill transaction to receive the fund 

(MITM) 

• Replace the backup or spending wallet 

original transport public key with the 

adversary public key to extract the master 

seed or spending seed (MITM) 

 

According to Table 3-4, the adversary could capture the user's password by recording 

the screen or log the pressed buttons. Even though some solutions exist for this attack like 
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Trezor [54] that uses a blind visual matrix to avoid entering a plain password on the host, we 

use a physical button on the hardware wallet for confirmation.  

Also, the adversary may sniff the transmitted messages between hardware wallets and 

the smartphone app to eavesdrop the master seed or spending seed. Our mechanism is secure 

against this attack because the smartphone only transmits public information, including the 

superior wallet, the backup wallet and spending wallet public keys, and encrypted master seed 

or encrypted seed under an AES 256-bit key. Therefore, the attacker does not have access to 

any private data. 

Another capability of the adversary is making an MITM attack to replace the receiver 

address by his injected address in the transaction. The classic super-wallet/sub-wallet model 

[1] is vulnerable to this attack because the super-wallet needs to get the sub-wallet address from 

the host like a smartphone. However, in our architecture, we use the deterministic sub-wallet 

that prevents this attack since the spending wallet seeds are derived from the superior wallet 

master seed, and the superior wallet generates the receiving addresses internally. Therefore, 

there is no need to get the receiving addresses from the external source, and the hacker has no 

chance to replace them. 

Last but not least, the adversary may make an MITM attack to intercept the messages 

between the superior wallet and the backup wallet or the superior wallet and the spending 

wallet. Then, he replaces the backup wallet public key or the spending wallet public key by the 

adversary public key in ECDH key agreement, and he can recover the transferred seed. 

To defend against this attack, we have used a side-channel verification code (vcode) in 

our mechanism. Both wallets compute their vcodes of the public key and display the vcode on 

their screens (see the hardware wallet shown in Figure 3-2). The user visually inspects and 

confirms the equality of these two vcodes by pressing a physical button on the superior wallet. 

Existing hardware wallets use a similar method to confirm transaction information like receiver 
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address, amount, and fee before signing them. Therefore, during the wallet transfer operation, 

if a hacker injects his public key to the superior wallet, the user will be able to detect such an 

attack due to the mismatch of the two vcodes shown on two wallets' screen and reject this 

MITM attack. 

2) Physical Access Adversary Model 

Another possible adversary model for our proposed architecture is an adversary with 

physical access to the superior wallet (or backup wallet). In this case, the adversary can do 

anything directly with the hardware wallet without the need to install a malicious app on the 

remote user's smartphone. Table 3-5 demonstrates the Physical Access Adversary Model. 

Table 3-5: Adversary Model II: Physical Access 

Assumptions Goals Capabilities 

• Access to the 

hardware wallet 

device 

• Knowledge of the 

low-level wallet 

protocol (APDUs) 

• Sign a 

transaction and 

send the fund to 

the adversary 

address 

• Make a brute-force attack to guess the 

password and sign a transaction to transfer the 

fund 

 

In this adversary model, the adversary can make a brute-force attack to obtain the 

hardware wallet password (PIN code) and sign his desired transaction. Our proposed 

architecture recommends a hardware wallet with a secure password for the superior wallet that 

has a fixed password retry counter, usually between 3 and 15. After that, the secure element 

locks permanently. It is a standard mechanism for secure elements. Therefore, if a hacker finds 

the superior wallet, he can only try a limited number of guessed passwords and could not make 

a brute-force attack. For instance, if the PIN code length is four digits and the retry counter is 

10, the chance to find the PIN code is 0.001 (tries / possible PINs = 10/104 = 0.001). On the 
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other hand, the user has time to use her backup wallet to transfer all funds to a brand-new seed 

as soon as possible. 

We must mention that the attacks to the security element or other hardware parts and 

their countermeasures are out of the scope of this project and apply to entire hardware wallets 

not specific for our proposed schemes. 

  



 86 

3.5 Off-Chain Transaction to Avoid Inaccessible Wallet  

Today, a user can perform various electronic commerce transactions like paying a bill, 

booking a hotel or flight, purchasing online products, and paying taxes with cryptocurrency. 

While cryptocurrencies become more usable for average users, the inaccessible coins issue 

arises as a challenging problem in cryptocurrencies. Since, as a design paradigm, only the 

user’s private key can send the coins from its associated address, if the user cannot access her 

private key, she loses her coins. The user may forget her password, or in a worst-case, she may 

die, and her coins will be lost forever. It happens in the cryptocurrency many times, and as 

several reports like [55] shows, about 21 percent of all possible bitcoins are out of circulation 

and maybe are lost forever. 

Furthermore, there are several cases where the owner of the key dies or pretends to die 

to steal the coins from others. These persons have control of other users’ coins like investors 

in the position of an online cryptocurrency exchange president or something like that [56]. 

Since there is no clear technical solution to recover the lost coins, the investors lost their money. 

There are limited choices for users to avoid inaccessible coins, such as creating a 

backup for another person or using a multi-signature wallet. These solutions not only are 

inconvenient but also put the user at risk. Recently, authors of [57] suggested generating an 

off-chain recovery transaction and publishing such a transaction when the coins are 

inaccessible. The wallet must frequently regenerate this transaction because any change in 

inputs by a sending transaction invalidates the previously generated recovery transaction. Also, 

any receiving transaction conveys new coins that should be added to the recovery transaction. 

In this section, we investigate this off-chain recovery transaction and evaluate its 

performance in real conditions with actual hardware wallets as a secure option for 

cryptocurrency users. We demonstrate that generating such a recovery transaction consumes a 
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significant amount of time on hardware wallets or other resource-constraint wallets. Hence, it 

is not a practical solution in real life. To resolve this performance challenge, we propose a new 

key management schema to separate frequent micropayments from other transactions and keep 

the recovery transaction updated with regenerating as less frequent as possible. Our proposed 

schema prevents inaccessible coins in most cases and provides better performance compared 

to the previous method. 

3.5.1 Recovery Transaction 

Authors of [57] explain a mechanism to recover inaccessible wallets using an off-chain 

transaction. Each time that the wallet sends or receives a coin, the wallet creates a recovery 

transaction to gather all available coins in Unspent Transaction Outputs (UTXO) and saves it 

on a file. When the user forgets her wallet password or the password became inaccessible 

because of any reason like death, the wallet retirement mechanism activates with a policy like 

no login for more than six months. The wallet publishes the last recovery transaction and 

transfers all coins to a reserved address. Since the recovery transaction is signed in-advance, 

there is no need for private keys.  

On the other hand, all received coins in the last six months aka retirement period, are 

lost because these new coins are not included in the recovery transaction. The user can set the 

retirement period. It is not a timer on the wallet; it is a value embedded into the recovery 

transaction itself. So, if the wallet or other entity publishes the recovery transaction on the 

blockchain, it will not be effective until the pre-defined time. This mechanism works for 

UTXO-based cryptocurrencies like bitcoin, and the lock time in bitcoin transactions support 

this feature. 
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The recovery transaction that authors of [57] explain is designed for old-fashion 

software wallets like Satoshi Client [58] that runs on a powerful enough personal computer. 

However, regenerating a recovery transaction has a significant performance problem in modern 

wallets like mobile wallets that use Trusted Execution Environment [23][24] and hardware 

wallets that run on a microcontroller and secure element with limited resources. In this section, 

we propose a practical off-chain recovery transaction that avoids inaccessible coins in hardware 

wallets with a minimum performance penalty. We call it lean recovery transaction. 

3.5.2 Hardware Wallet Architecture 

As we discussed earlier, a hardware wallet is a dedicated cryptographic device to 

generate and store the secret keys and sign the transactions. Since a hardware wallet is not a 

general-purpose computer, a hacker cannot install a malware program easily. Furthermore, 

some secure hardware wallets have a secure element. It is a tamper-resistant module to protect 

the secrets from electrical and physical attacks such as side-channel attacks and power-

analysis. 

Hardware wallets usually have a screen and a few buttons to interact with the user 

directly; otherwise, they are vulnerable to Man-In-The-Middle attack [2]. Figure 3-16 depicts 

the general components of hardware wallets. They usually have a main control unit (MCU) 

that connects all components and communicates with the host application via USB, Bluetooth, 

or NFC. 
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Figure 3-16: General hardware wallet components 

Since a hardware wallet does not have internet access, it uses an app on the host like a 

personal computer or a smartphone to connect to the blockchain network. However, critical 

tasks like storing the keys and signing a transaction will be done on the hardware wallet. The 

overall procedure of signing a transaction on a hardware wallet is as follows. 

 

Transaction Signing Process on a Hardware Wallet: 

1. Host App: Gather information from blockchain nodes and prepare inputs and 

outputs. 

2. Hardware Wallet: Receive data and display the receiving addresses, amount, and fee 

of the transaction on the embedded screen and get the user confirmation by pressing 

an embedded button. 

3. Hardware Wallet: Derive required keys and sign the transaction for each input, and 

return the result to the host app. 

4. Host App: Publish the signed transaction to the blockchain nodes. 

While the network connection is good, and the host has enough resource, the time-

consuming steps are step 2 and step 3 that run on the hardware wallet. A transaction with more 

input UTXOs takes more time on the hardware wallet for key derivation and digital signature. 
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3.5.3 Evaluating Recovery Transaction for Hardware Wallets 

In this section, we conduct some experiments to evaluate the recovery transaction 

suggested in [57] with real hardware wallets. We illustrate that the recovery transaction is a 

heavy-loaded transaction to generate. We show that creating a brand-new recovery transaction 

for all sendings and receivings has a significant performance penalty, which makes it 

impractical in resource-constraint cryptocurrency wallets like hardware wallets. 

First of all, in contrast to payment transactions, recovery transaction has several inputs 

and only one output. It aggregates entire available UTXOs to transfer all coins to the reserved 

address. Multiple inputs make the recovery transaction larger than a typical payment 

transaction. A recovery transaction needs several key derivations to calculate required private 

keys for all UTXOs and several ECC signings to generate outputs. Even though a recovery 

transaction is not very different from a payment transaction for traditional software wallets like 

Satoshi Client [58] that run on a computer, it has a significant performance penalty on a 

resource-constraint device like Hardware Wallets.  

Since bitcoin is the gold standard in UTXO-based cryptocurrencies and many other 

coins copy the entire or parts of its codebase, we choose bitcoin to do our measurement. We 

also choose Segregated Witness protocol aka SegWit to perform our tests. It is a new version 

of the bitcoin protocol [59] with better performance for multiple inputs. To employ SegWit 

protocol, we use the following path for key derivation: 

path = m/49/1/0/change/address_index (6) 

The number 49 refers to BIP-49 [60] that defines the derivation scheme for SegWit 

addresses. Next number 1 is the defined constant for bitcoin testnet. To compare recovery 

transactions with typical payment transactions, we use the typical payment transaction format 

with one input and two outputs. The recovery transaction has one to ten inputs for available 
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UTXOs and one output for the reserved address. It may have more than ten inputs in real life, 

but we assume this number just for demonstration. We use WireShark to monitor USB packets 

and measure the timing [61]. Our tests executed on a MacBook Pro with Intel Core i7 2.2 GHz 

processor and 16 GB memory, and we use the same USB port for all tests. 

 

Figure 3-17: Performance of generating recovery transaction on a Trezor One hardware wallet 

To evaluate generating a recovery transaction on hardware wallets, we only measure 

step 2 and step 3 of the Transaction Signing Process on the Hardware Wallet, because step 1 

and step 4 execute on the host application and network. Figure 3-17 and Figure 3-18 

demonstrate the results for both hardware wallets. Increasing the number of input UTXOs takes 

more time on the wallet to generate a recovery transaction. In comparison, Ledger Nano S has 

lower performance because it uses a secure element [62]. In the worst-case scenario, generating 

a recovery transaction on a secure hardware wallet like Ledger Nano S takes around 40 

seconds, with only ten input UTXOs. 

Authors of [57] discussed that the wallet must create a recovery transaction after all 

sending transactions because one or more input UTXOs is spent. Spending invalidates the 

previous recovery transaction because at least one of its input UTXOs is not available. In other 

words, the wallet has to generate a brand-new recovery transaction after even a micropayment 

transaction like buying a coffee, purchasing a ticket, or paying a bill. 
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Figure 3-18: Performance of generating recovery transaction on a Ledger Nano S hardware 

wallet 

3.5.4 Proposed Lean Recovery Transaction 

As we explained, inaccessible coins are a big challenge in cryptocurrencies. The 

recovery transaction proposed in [57] to generate two transactions for each payment and save 

one of them off-chain for disaster recovery has a significant performance penalty in reality.  

In this section, we propose a more efficient solution called lean recovery transaction. 

In this solution, the wallet generates the recovery transaction less frequently, and only when 

needed. To do that, we make a change in wallet key management and divide the key tree into 

two sections. One section is assigned to a spending account, and the other section includes 

other accounts. The path is as follows when the account is 0 for spending account and non-zero 

for non-spending accounts. 

path=m/purpose/coin/account(0|n)/change/addr_index (7) 

Figure 3-19 illustrates a sample key tree. The wallet uses only the spending section for 

all spendings (micropayments). It creates the off-chain recovery transaction only for non-

spending section, which means all addresses except addresses under the spending account. We 

call it lean recovery transaction because it does not include the heavy part of a recovery 

transaction, which includes many but small amount UTXOs. 
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Figure 3-19: Sample key tree to illustrate the coverages of Recovery Transaction and our 

proposed Lean Recovery Transaction 

Only sending and receiving for addresses out of the spending account requires 

regenerating a recovery transaction, like buying new bitcoins or getting paid for salary with 

cryptocurrency. So, micropayments do not change the inputs of the existing lean recovery 

transaction, and only large payments need a new one. 

In another scenario, for receiving transactions, a new received UTXO must be added to 

the recovery transaction to avoid potential inaccessibility of it. To prevent from regenerating a 

recovery transaction for all receives even small transactions, we define a threshold that can be 

changed by the user. If the sum of receiving coins reaches the threshold, the wallet generates a 

new recovery transaction to add the new UTXOs. 

The spending account does not receive any coins from outside. So, we define a new 

transfer function, where the user transfers coins from other accounts to the spending account 

or, in other words, from the non-spending section to the spending section. After creating a 



 94 

transfer transaction, the wallet generates a new recovery transaction because its inputs have 

been changed. 

Our proposed schema has the following advantages in comparison to the recovery 

transaction proposed in [57]:  

• Generating a lean recovery transaction takes considerably less time on the wallet because 

it has fewer input UTXOs, which is crucial on hardware wallets.  

• The wallet generates the lean recovery transaction less frequently because spending from 

the spending account does not change the input UTXOs of the existing lean recovery 

transaction and does not invalidate it.   

• Common payment transactions for micropayments are faster in our proposed mechanism 

because they do not need to generate a recovery transaction anymore. 

• The wallet adds new receiving UTXOs into a lean recovery transaction only when their 

total funds reaches a defined threshold, and it makes generating recovery transactions less 

frequent. 

To help a reader understanding our proposed lean recovery transaction mechanism, we 

use an example to illustrate and compare the recovery transaction in [57] and our proposed 

method. Assume that a user has a bitcoin wallet with $7000 value that conveys three UTXOs 

with $500, $2500, and $4000 equivalent bitcoin. 
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Figure 3-20: Example for comparing lean recovery transaction with recovery transaction 

Suppose the user makes three usual payments today to buy a $5 soda, pay an electricity 

bill for $70, and purchase a $35 T-Shirt from an online store. She uses her wallet to make these 

payments by bitcoin. Figure 3-20 illustrates sample bitcoin transactions that the wallet 

generates. We ignore purchase taxes and fees, bitcoin exchange fee, and bitcoin network fee to 

simplify the example. We assume the bitcoin price is $10,000 and we use milli-bitcoin (mBTC 

or m₿) in our example. 

We assume that before beginning, the wallet has generated a valid recovery transaction. 

In the first scenario, the wallet uses recovery transaction described in [57] which includes all 

three UTXOs with 50, 250 and 400 mBTC. In the second scenario, the wallet uses our proposed 

lean recovery transaction including only two UTXOs with 250 and 400 mBTC and assigns one 

UTXO with 50 mBTC to the spending account. 

This example demonstrates that each payment in the first scenario includes generating 

a payment transaction and a recovery transaction, while in the second scenario it includes 

generating only a payment transaction without any recovery transaction. 

In our test setup that we described earlier, Trezor One [63] hardware wallet takes 2.2 

seconds for a payment transaction and 3.2 seconds for a recovery transaction with three 
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UTXOs. Ledger Nano S takes 9.7 seconds and 15.8 seconds respectively. So, the payment 

process takes 5.4 seconds for Trezor One and 25.5 seconds for Ledger Nano S in scenario one, 

while it uses 2.2 seconds for Trezor One and 9.7 seconds for Ledger Nano S in scenario two 

when using the lean recovery transaction. Therefore, the lean recovery transaction has 

significant advantage, at least %40 percentage of less processing time for generating payment 

transactions with three input UTXOs. The performance difference becomes even bigger with 

larger number of UTXOs in the wallet. 

3.5.5 Evaluation 

To evaluate lean recovery transaction model, we modify our previous implementation 

on a hardware wallet that supports fundamental functionalities of hierarchical deterministic 

wallets, according to BIP-32 [29] and BIP-44 [64]. We use a secure element for key operations 

such as key generation and digital signature. 

As discussed, our proposed lean recovery transaction has several advantages compared 

to the recovery transaction explained in [57] because it generates lighter recovery transactions 

with less input UTXOs. It reduces the number of generating recovery transactions by assigning 

a section in the key tree to spending and defining a threshold for adding receiving funds to the 

recovery transaction. In this section, we measure the performance of our proposed lean 

recovery transaction on our implemented proof-of-concept wallet with a secure element. 

We test our implementation with two payment scenarios. In the first scenario, the wallet 

uses the recovery transaction proposed in [57] and generates a recovery transaction just after 

the payment transaction. In the second scenario, the wallet uses the lean recovery transaction 

mechanism, and it does not generate a recovery transaction for payment transactions. Figure 
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3-21 illustrates the result of our tests in both scenarios for various recovery transaction sizes 

with one to ten input UTXOs. 

Since the lean recovery transaction schema does not require regenerating a recovery 

transaction after each micropayment, the payment transaction performance does not have any 

change in Figure 3-21. On the other hand, the regular recovery transaction makes double the 

payment transaction time on the wallet, and more input UTXOs increases its generating time. 

 

Figure 3-21: Comparison of micropayment transactions in recovery transaction proposed in 

[57] and our proposed lean recovery transaction schemas 

Our tests have executed on a MacBook Pro with Intel Core i7 2.2 GHz processor and 

16 GB memory, and we use the same USB port for all tests which is similar to our tests for 

evaluating the previous recovery transaction on two hardware wallets. 
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CHAPTER 4: CONCLUSION 

In this thesis, we considered the significant issues in crypto wallets for blockchain 

technology. Even though the most secure choice is hardware wallets, we argued that the are 

critical issues that should be addressed. After providing the required technical background 

about cryptography primitives, blockchain technology, crypto wallets, and smart card, we 

proposed a secure and convenient backup mechanism and super-wallet/sub-wallet model with 

deterministic sub-wallet. We used our crafted Elliptic-Curve Diffie-Helman for key transfer 

using out-of-band visual confirmation by the user. For our proposed mechanisms, we 

implemented a prototype as a proof-of-concept on a smart card, which is a secure but resource-

constraint option to build a hardware wallet. We also provided performance evaluation and 

security analysis for these mechanisms.   
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