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Abstract— From a security point of view, the Internet
is too open. The central idea of a traditional “firewall” is
to constrain service requests from the Internet to a local
network. As an enterprise network becomes larger and
more flexible, an Internet worm can easily find a way
to enter it. Based on the “defense-in-depth” principle, we
present a “Firewall Network System” for worm defense in
an enterprise network that uses internal firewalls to divide
the network into many isolated subnetworks. Computers
in an enterprise network are classified as either clients or
servers: all service requests sent to internal IP addresses of
an enterprise network will be blocked by internal firewalls
if they target non-server computers or servers that do not
provide the corresponding service. In this way, the Firewall
Network System removes most worm infection paths in an
enterprise network, making worm detection much easier.
All internal firewalls are designed to have the same set of
firewall rules, which means the Firewall Network System
is scalable and easily managed. In addition, we propose
a five-level feedback worm defense strategy and present
models of several worm defenses based on either active
patching or quarantine.

I. INTRODUCTION

Computer “worms” are programs that self-propagate
across a network exploiting security or policy flaws in
widely-used services [3]. From a security point of view,
the Internet is too open: without the presence of security
devices such as firewalls, any computer in the Internet
can directly contact any other computer so long as the
target computer has a global routable IP address. Because
of this openness, computer worms have become one of
the major threats to the Internet. Since 2001, several
widely-spread worms, Code Red [8], Nimda [6], SQL
Slammer [4], and Blaster [7], have repeatedly spread
across the Internet and caused substantial damage.

Computer worms can spread throughout the Internet
within hours, even minutes. For example, the SQL
Slammer infected 90% of all vulnerable computers in
the Internet within 10 minutes [4]. Such fast spreading

worms motivate the need for an automatic worm defense
system. However, building such a system in the global
Internet is tremendously difficult due to the complexity
of the Internet, the security and privacy issues in data
sharing, and the cooperation required among all Internet
communities. Hence, before we can build up such a
global Internet worm defense system, there is a great
need by organizations, especially enterprises, to first
build up a worm defense system for their computer
networks. In the following, we refer to the computer
network of an organization as an “enterprise network”.

Suppose a worm exploits a vulnerability on port
x. When an infected host (source) attempts to infect
a vulnerable host (target), the source needs to send
corresponding TCP/UDP packets to the target on port
x. If port x is a TCP port, then the source needs to first
send a TCP SYN packet to the target on TCP port x to
set up TCP connection, which is the case for Code Red
and Blaster [8][7]; if port x is a UDP port, the source
can directly send the exploiting code to the target on
port x, as in the case of SQL Slammer [4]. We refer
to such a network connection from the source to the
target as a “service request” on TCP/UDP port x. A
successful worm infection from an infected host (source)
to a vulnerable host (target) requires that the source and
target computers satisfy two conditions:

• The target computer accepts service requests on the
vulnerable service port.

• The source computer can directly send attacking
service requests to the target computer.

A “personal firewall” is a software product installed
on a computer to preclude the first of these conditions:
it disables all service ports on a computer unless the
user explicitly permits traffic to certain service ports.
However, it can only protect one computer and causes
great trouble to ordinary computer users who know noth-
ing about computer security. Most enterprise networks
have installed “firewalls” between their local enterprise
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networks and the global Internet. A “firewall” explicitly
permits certain incoming service requests from the In-
ternet to a local network. It defends against a worm by
ensuring that the second condition is never satisfied.

However, traditional firewalls are not sufficient nowa-
days to protect an enterprise network from worm attacks.
As more enterprises implement wireless networking,
Virtual Private Networks (VPN) and allow employees to
work at home, it becomes harder to define the boundary
of an enterprise network. At the same time, Internet
worms become more complex and intelligent — they can
easily find a way to go around a traditional firewall to
infect computers in an enterprise network. For example,
the Nimda worm [6] could traverse an enterprise tradi-
tional firewall by sending infectious emails. Therefore,
boundary firewalls may not be able to block all worm
infection attempts from the global Internet.

Traditional firewalls place a tight security check at the
boundary of an enterprise network, while usually there
is no such check for internal traffic. Thus they cannot
defend an enterprise network once a worm finds a way
to infect an internal computer. What is required is a
“defense in depth”: in addition to traditional firewalls at
the boundary of an enterprise network, firewalls should
be distributed inside the enterprise network to restrict
access among internal computers as well.

Briefly speaking, our idea is to introduce firewalls to
prevent the second condition of a successful worm infec-
tion from being satisfied within an enterprise network.
We refer to such a worm defense system as a Firewall
Network System. We place firewalls on physical links of
an enterprise network, dividing the network into isolated
subnetworks. Henceforth, the traditional firewall found
at the boundary of an enterprise network is referred to
as the boundary firewall; firewalls within an enterprise
network as internal firewalls.

The most important theme of our defense system is
that we classify all computers in the enterprise network
using the traditional “client/server” networking mode
(computers in a peer-to-peer system are both clients and
servers). All internal firewalls in the Firewall Network
System deploy explicit access policies to allow prede-
fined service requests (defined by source IP, destination
IP, destination port) to pass through. Under this defense,
all service requests sent to internal IP addresses of an
enterprise network are blocked by internal firewalls if
they target non-server computers or servers that do not
provide the corresponding service to the sources. In this
way, the Firewall Network System removes most worm
infection paths in an enterprise network and also makes
worm detection much easier.

Another important theme of our defense system is that

we solve the system management issue by requiring all
internal firewalls to have the same set of firewall rules.
This makes the Firewall Network System scalable to
large enterprise networks and easily managed by a cen-
tral firewall management console. In addition, we pro-
pose a five-level feedback worm defense strategy based
on the “feedback quarantine” principle from epidemic
disease control [28] and the five-level US “Homeland
Security Advisory System” [2]. In this way, the Firewall
Network System can take appropriate (cost-effective)
defense actions under different situations.

It should be noted that the Firewall Network System
is designed for defense against “worms”, not “email
viruses” such as recent “SoBig” [19] and “MyDoom”
[20]. An email virus needs a user to execute virus at-
tachment of an email and then the virus compromises the
user’s computer without requiring the computer to have
any vulnerability. On the other hand, a worm does not
need human interference to propagate and compromises
computers only if they have the corresponding vulnera-
bility. Email viruses are different from worms in their
propagation and infection mechanisms. However, the
Firewall Network System can help our defense against
email viruses (explained in Section IV).

The rest of this paper is organized as follows. Sec-
tion II surveys related work. Section III presents the
architecture of the Firewall Network System. The major
principles in designing the Firewall Network System are
introduced in Section IV. Section V discusses worm
detection and defense issues and proposes a five-level
feedback defense strategy. Section VI presents three
worm propagation models based on different defense
strategies and the corresponding experiments are pre-
sented in Section VII. In the end, Section VIII concludes
this paper.

II. RELATED WORK

The “defense in depth” is not a new concept; the
NSA presented the concept of “defense in depth” in
its security recommendation guides [13] in the con-
text of a three-layer defense: “people, technology, and
operations”. People have thought about using multiple
layers of firewalls to protect an enterprise network for
a long time. Currently many enterprises have set up
additional firewalls to protect important servers inside
their networks. J. Snyder studied the issues of “defense in
depth” by pushing firewalls inside an enterprise network
[9][10]. However, his studies did not present any new
technology and concentrated mainly on user authenti-
cation and protection of servers. In addition, he did
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Fig. 1. Architecture of the Firewall Network System for worm defense in an enterprise network

not answer the important issue of how to reduce the
complexity of firewall management.

A close work to ours is the “CounterMalice” presented
by Staniford [22] for worm defense in enterprise net-
works. The basic idea is to use CounterMalice boxes to
separate an enterprise network into many isolated subnet-
works. In a normal situation, these CounterMalice boxes,
unlike internal firewalls in our proposed system, impose
no constraint on network traffic. They will quarantine an
internal infected computer and prevent it from spreading
out to other subnetworks once they detect this infected
computer.

Nojiri et al. [23] presented a “cooperative response”
worm defense model in which compromised sites warn
“friends” of the presence of a worm, resulting in the
friends blocking the worm. Williamson [24] studied
worm containment by constraining the outgoing scan
rate from infected hosts, which has the effect of de-
creasing the worm’s propagation speed dramatically. To
be effective, however, both approaches require global
implementation and thus are not suitable for worm
defense in an enterprise network.

For early worm detection, Moore et al. [5] presented
the concept of “network telescope” by using a small
fraction of IP space to observe security incidents on the
global Internet. Based on a similar monitoring system,
Zou et al. [26] presented a non-threshold based worm
detection method for detecting the exponential growth
trend of a worm’s propagation. For automatic mitigation
of worm attacks, Zou et al. [28] presented a feedback
dynamic quarantine system that borrows two principles
used in epidemic disease control: preemptive quarantine
and feedback adjustment. David Nicol [25] studied how

various “good” worms could help in worm defense.

III. FIREWALL NETWORK SYSTEM ARCHITECTURE

Fig. 1 illustrates the generic architecture of the Fire-
wall Network System. The Firewall Network System
includes several components: (1). Boundary firewall;
(2). Internal firewalls; (3). Vulnerability assessment and
active patching system; (4). Central firewall management
console; and (5). Worm detection systems.

“Boundary firewall” is the traditional firewall cur-
rently used in most enterprise networks. It constrains
access from the outside Internet to the internal enterprise
network. The Firewall Network System does not make
any change to the configuration of the boundary firewall.
Inside an enterprise network, “internal firewalls” divide
the network into many isolated subnetworks. Fig. 1
shows the case where an enterprise network is partitioned
into four separated subnetworks referred to as “Subnet
A”, “Subnet B”, etc. These internal firewalls are denoted
as “F1”, “F2”, etc.

A vulnerability assessment system is an indispens-
able security defense to an enterprise [12]. It helps
administrators of an enterprise network identify and
eliminate vulnerable computers in the network as early as
possible. Besides warning users of the vulnerabilities in
their computers, administrators can forcedly compromise
and patch vulnerable hosts in an enterprise network,
especially when a worm is spreading rapidly in the
Internet. For these two reasons, the Firewall Network
System contains a “vulnerability assessment and active
patching system”.

For the management of all internal firewalls, the
Firewall Network System has a “central firewall man-
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agement console”. Through this console, administrators
of an enterprise can easily update firewall rules in all
internal firewalls, send command to internal firewalls
to quarantine individual host or subnetworks, or collect
monitored data from internal firewalls.

To defend against a worm, it must be detected as
quickly as possible. Two worm detection systems exist
in an enterprise network: the “Internet worm detection
system” detects the propagation of worms in the global
Internet; the “internal worm detection system” detects
infected hosts within an enterprise network. The “In-
ternet worm detection system” detects a worm based
on monitored incoming traffic from the outside Internet
to an enterprise network. It can use the monitoring
methods presented in [5][26] to detect a worm (by using,
for example, the early detection method presented in
[26]). The “internal worm detection system” is on the
“central firewall management console”. It detects internal
infected hosts based on monitored data from all internal
firewalls.

Fig. 2. Low-level Firewall Network System for the Subnet A shown
in Fig. 1 (“F1” in this figure is Firewall F1 shown in Fig. 1)

For a large enterprise consisting of tens of thousands
of computers around the world, we can implement a
“two-level hierarchical Firewall Network System”. The
high-level Firewall Network System partitions the enter-
prise network into many isolated but still large subnet-
works. For example, each subnetwork could correspond
to a branch of the enterprise in one country. Within
each large subnetwork, the local administrators of this
subnetwork implement a low-level Firewall Network
System to further partition this subnetwork into many
smaller subnetworks. For example, Fig. 1 shows the
high-level Firewall Network System of a large enterprise
network and Fig. 2 shows the low-level Firewall Network
System for Subnet A (“F1” in this figure is Firewall F1
shown in Fig. 1). The administrators of the enterprise do
not need to pay attention to the network traffic within
Subnet A — such traffic can be controlled by local

administrators. In this way, if a server in Subnetwork A1

shown in Fig. 2 only provides service to Subnetworks A1

and A2, it is treated as a server in the low-level Firewall
Network System, but as a client in the high-level Firewall
Network System.

IV. SYSTEM DESIGN FOR THE FIREWALL NETWORK

SYSTEM

A. Explicit client/server networking mode

We require that computers in an enterprise network
work in the traditional client/server networking mode:
every computer is either a client or a server. A “client”
means that this computer can send out service requests
such as surf the web or log onto a database server, but
cannot provide any service to other computers. On the
other hand, a “server” can provide specific services to
other computers (of course, a server can behave as a
client when it sends service requests to other servers).

The advantage of the “client/server” networking mode
is that only servers provide services and thus no com-
puter is expected to send a service request to any client
computer. After clients and servers are clearly defined,
we can implement the access policy in all internal
firewalls to simply block all client-to-client and server-
to-client service requests without affecting the normal
usage of the network. Any infected computer in one
subnetwork will not be able to infect any other client
computer in other subnetworks. Furthermore, the Fire-
wall Network System can very easily detect an infected
computer: a service request sent out by a computer is
judged abnormal and blocked immediately if it is sent
to an IP address (within the enterprise network) other
than those predefined servers.

The constraint imposed by the client/server network-
ing mode is that employees of an enterprise cannot
arbitrarily set up servers without notifying administrators
(if a server is used only within its subnetwork, then
employees can set up such a server whenever they want).
For an open environment organization such as a univer-
sity or an ISP, this constraint may not be acceptable. For
such organizations, the Firewall Network System is not a
suitable solution. Many other enterprises, however, have
such a company policy that employees cannot set up
servers arbitrarily. For these enterprises, this constraint
will not impose much of a burden.

Currently, many enterprises introduce additional fire-
walls to protect their important servers. With the
“client/server” networking mode, the Firewall Network
System places more emphasis on protecting client com-
puters — servers are inherently more vulnerable than
clients to worm attacks because servers have to accept
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service requests. For this reason, the current firewalls
for protecting servers are still useful when an enterprise
implements the Firewall Network System.

Peer-to-peer networking violates the client/server net-
working mode and hence needs special consideration.
We will discuss peer-to-peer system in detail later in
Section IV.

B. Explicit firewall access rules with default dropping
policy

Internal firewalls restrict network traffic to internal
computers and IP addresses. We refer to service requests
targeting internal IP addresses of an enterprise network
as “internal service requests”.

The default policy of internal firewalls is to drop
any undefined internal service request. We explicitly
define firewall rules to allow computers in the predefined
subnetworks to access the predefined internal servers.
For example, in the network shown in Fig. 1, suppose a
new SQL database server is set up in Subnet A to provide
database service to all client computers in Subnets A and
B. Administrators of the enterprise network then place
one firewall rule in Firewall F1 (or all internal firewalls)
to allow clients in Subnets A and B to send and only
send database service requests to the server. With explicit
firewall rules and a default dropping policy, no computer
in Subnets C and D is allowed to send service requests
to this database server.

With such a firewall access policy, if a client or
a server is somehow infected by a worm that needs
to compromise a vulnerable host through port x, then
the infected host can only possibly infect all vulner-
able computers within the same subnetwork and all
vulnerable connectable servers (servers that provide the
infected host the corresponding service on port x) in the
enterprise network.

C. Demilitarized Zone (DMZ) for servers

A flaw in the above design arises if we do not
separate servers from clients within subnetworks. For
example, if each subnetwork contains a vulnerable server
and all vulnerable servers in the enterprise network
are infected, then each infected server can still infect
computers within its own subnetwork. Through this way,
the worm can still infect all vulnerable computers within
an enterprise network.

For this reason, we separate servers from clients in
each subnetwork by internal firewalls. We place all
servers of each subnetwork into one or several Demili-
tarized Zone (DMZ) and connect each zone directly to a

nearby internal firewall. One subnetwork could have sev-
eral DMZs; since a subnetwork could be separated from
others by several internal firewalls, each DMZ could
connect to its nearest internal firewall for deployment
convenience. Because many enterprise networks have a
small number of servers compared to the overall number
of computers, such an approach is feasible and does not
add too much cost.

With such an approach, an infected server will not be
able to infect any client computer, even within its own
subnetwork. The infected server can only possibly infect
vulnerable servers that accept the service requests on the
vulnerable port from this server.

D. Same configuration for all internal firewalls

The Firewall Network System for a large enterprise
network may include hundreds of internal firewalls. If
different internal firewalls have different firewall rules,
the firewall configuration will have to consider the po-
sitions of internal firewalls, the distribution of servers,
and network topology. These considerations will greatly
complicate system management and make it not scalable.

This problem is solved by requiring all internal fire-
walls to have the same configuration — every internal
firewall has the same set of firewall rules. With this de-
sign, the task of the central firewall management console
is very simple: to receive the input of firewall rules from
administrators and then duplicate these firewall rules in
every internal firewall. Increasing the number of internal
firewalls does not add any more complexity to the central
firewall management console. This makes the Firewall
Network System scalable to large enterprise networks.

Based on the complexity of firewall configuration, we
design three types of Firewall Network Systems. From
the simplest configuration to the most complicated one,
these three types of Firewall Network Systems are:

“Type-1 Firewall Network System”: For internal ser-
vice requests, only one firewall rule is used in every
internal firewall. We collect the IP addresses (or domain
names) of all servers in an enterprise network and place
them on one server list. This firewall rule is: allow
any computer in the enterprise network to send any
internal service request to any computer on the server
list. This configuration simply classifies the network into
one client group and one server group.

“Type-2 Firewall Network System”: For internal ser-
vice requests, one firewall rule is used for one class
of servers. Thus if servers in an enterprise network
provide n types of services, n firewall rules are used
in every internal firewall. For the i-th type of service
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(i = 1, 2, · · · , n), the corresponding firewall rule is:
allow any computer in the enterprise network to send and
only send the i-th type of service request to any server
providing this type of service. For example, Windows
SQL database servers provide database service by ac-
cepting service requests to them on TCP/UDP port 1433
and 1434. For this type of service, one firewall rule is
used in every internal firewall to allow any computer
in the enterprise network to send the database service
requests (with destination port as TCP/UDP port 1433
or 1434) to any internal Windows SQL database server
defined in the server list.

“Type-3 Firewall Network System”: For internal ser-
vice requests, one firewall rule is used for each server.
Thus if an enterprise network has n servers, n firewall
rules are deployed at every internal firewall. The firewall
rule for each server is: allow any computer in the prede-
fined subnetworks that are allowed to use this server to
send and only send the corresponding service requests
to this server. For example, for the enterprise network
shown in Fig. 1, suppose a Web server is set up in Subnet
A providing web service to Subnets A and D. Then we
place a firewall rule on all internal firewalls (F1 to F4)
to allow HTTP service requests on TCP port 80 and 443
passing to this Web server from any IP addresses within
Subnets A and D — any computer in Subnets B or C
cannot send HTTP service requests to the Web server. In
this way, if one computer in Subnets B or C is infected
by Code Red, the worm cannot infect this Web server.

E. Other special-purpose firewall access rules

The firewall access policies described above are con-
cerned with internal service requests to internal servers.
In this section, we introduce three additional firewall
rules that should be placed on every internal firewall.

First, we do not add restrictions to any service request
initiated from internal computers to the outside Internet
— such a restriction would greatly add complexity to
firewall rules and does not help in protecting computers
inside an enterprise network (although it might help in
protecting the global Internet community). Therefore, in
every internal firewall we add the firewall rule: allow any
internal computer of an enterprise to send any service
request to the outside Internet.

Second, the central firewall management console
should be able to connect to all internal firewalls. There-
fore, in every internal firewall we add the firewall rule:
allow the central firewall management console to send
firewall management service requests to any internal
firewall in the Firewall Network System.

Third, computers in the vulnerability assessment and
active patching system should be able to send any ser-

vice request to any computer in the enterprise network.
Therefore, in every internal firewall we add the firewall
rule: allow computers in the vulnerability assessment and
active patching system to send any service request to any
IP address in an enterprise network.

Considering the above firewall rule, we notice that a
UDP-based worm, such as the SQL Slammer, can easily
spoof its source IP address. When a UDP-based worm
infects an internal computer in an enterprise network, if
this computer happens to use an IP address belonging to
one of the computers within the vulnerability assessment
system as its source IP, then its scans would be able
to pass through internal firewalls. Such an event has
a very small chance of occurrence because the several
IP addresses of the vulnerability assessment system will
be kept secret and it is difficult to spoof them blindly.
However, this security hole in the Firewall Network
System can be avoided by placing one UDP scanning
computer in each subnetwork for the purpose of scanning
its subnetwork for possible UDP vulnerabilities — these
UDP scanning computers communicate with the vulner-
ability assessment system through TCP communication.
In this way, the correct firewall rule for the vulnerability
assessment and active patching system is: allow comput-
ers in the vulnerability assessment and active patching
system to send any TCP service request to any IP address
in an enterprise network.

For the same reason, the firewall rules in internal
firewalls should not rely on source IP addresses for
UDP service requests. Thus “type-3 Firewall Network
System” discussed previously is only suitable for TCP
but not UDP service requests. Fortunately, “type-1” and
“type-2” Firewall Network System are suitable for both
TCP and UDP service requests because they do not use
source IP address in their firewall rules.

Finally, the Firewall Network System can help in
defense against many mass-mailing email viruses. The
email protocol, Simple Mail Transfer Protocol (SMTP),
is used for email exchange between email servers. Users
read their emails on their personal computers through
email agent software, such as Netscape or Outlook,
which uses POP or IMAP protocol to retrieve emails
from email servers. Therefore, only email servers are
supposed to send out SMTP service requests. However,
most mass-mailing email viruses, such as recent SoBig
[19] and MyDoom [20], directly send out virus emails
from compromised computers based on their own SMTP
engines. Based on this observation, the Firewall Network
System can place the following firewall rule in every
internal firewall: only allow predefined email servers
to send out SMTP service requests. In this way, for
those email viruses that use their own SMTP engines,
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an infected computer in an enterprise network cannot
send any virus email to any email server outside its
subnetwork. The enterprise can not only prevent virus
emails from sending out to the global Internet from its
network, but also prevent virus emails circulating within
the enterprise network — internal virus emails are more
dangerous than outside ones because users are more
likely to trust emails from their colleagues.

F. Peer-to-peer networking

Peer-to-peer (P2P) networking has become a popular
research topic in recent years. In a P2P system, every
computer acts as both a server and a client. If an
enterprise network deploys P2P systems that contain a
large number of computers, the server list in every in-
ternal firewall will become large and need to be updated
frequently as computers join and leave P2P systems. For
this reason, we recommend against using peer-to-peer
networking in an enterprise network. (A P2P system can
still be used in an enterprise network deployed with the
Firewall Network System.)

Since the Firewall Network System does not control
traffic within each subnetwork, users can freely set up
a P2P system for local usage within a subnetwork. In
this way, from the perspective of the Firewall Network
System, all computers in the P2P system are treated
as clients and need not to be considered in the system
design. For example, file sharing in Windows computers
is a simple peer-to-peer application. We should restrict
the computers that share files with each other to be in
one subnetwork — if users want to share files across the
boundary of a subnetwork, they should use a Network
File Server.

Most P2P systems can be transformed into
client/server systems by using one or several relay
servers (at the cost of speed and storage). For example,
if users in different subnetworks want to set up a
video conference, the enterprise could provide a video
conference relay server — users’ client computers
directly connect to the relay server without setting up a
peer relationship.

If an enterprise heavily relies on P2P systems and
cannot transform them to client/server systems, then
the Firewall Network System is not suitable for such
enterprises.

V. WORM DEFENSE BY THE FIREWALL NETWORK

SYSTEM

A. Worm detection

The “Internet worm detection system” detects the
presence of a worm in the global Internet by monitoring

incoming worm scan traffic to an enterprise network. It
can use the monitoring methods presented in [5][26] to
detect a worm (by using, for example, the early detection
method presented in [26]).

Once the Firewall Network System is set up, the
“internal worm detection system” can easily detect an in-
fected host within an enterprise network. Since we have
explicitly defined what service requests are allowed in an
enterprise network, any worm scan sent from an infected
host targeting an IP address in other subnetworks will
trigger an alarm so long as the scan does not happen to
target a server that allows such a service request from this
infected host. In addition, traditional detection methods
can still be used to detect the presence of a worm by
checking worm scan traffic to the outside Internet.

Staniford [22] introduced a similar system, called
“CounterMalice”. Compared with the Firewall Network
System presented here, CounterMalice has greater dif-
ficulty detecting an internal infected host: prior to the
detection of an internal infected host, worm scans sent
from this infected host to other IP addresses within
the enterprise network cannot easily be identified as
abnormal since such traffic is allowed by CounterMalice.
More importantly, before an infected host in an enterprise
network is detected and then blocked by the CounterMal-
ice device, worm scans from this host could possibly
have reached vulnerable hosts in other subnetworks and
caused infections.

If the Firewall Network System encounters a single
abnormal internal service request from a computer, it
does not mean that this computer is infected by a worm.
This may occur accidentally say if a user installs a server
or peer-to-peer software on the computer, or if a user
tries to connect to a server that does not provide services
to the computer. Therefore, the system should collect a
number of abnormal service requests from a host prior
to classifying it as infected. The major advantage of
the Firewall Network System is that it stops all worm
infection attempts sent out from an infected computer
to the enterprise network prior to the detection of this
infected computer (except infection attempts to internal
servers that accept the corresponding service request
from the source).

B. Vulnerability assessment and active patching system

As mentioned previously, an enterprise requires a
vulnerability assessment system [12] to help adminis-
trators identifying vulnerable computers in the network.
However, users may still not install patches even after
administrators warn them. To prevent serious damage
caused by a worm, administrators may want to take
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aggressive actions, such as actively patching vulnerable
computers within their enterprise network. Active patch-
ing may have some negative effects such as interrupting
operations on vulnerable computers. However, it is a
necessary countermeasure so long as its cost is less than
the damage caused by a worm.

The active patching system consists of several com-
puters to scan the enterprise network and several servers
to provide patches. The scanning computers scan and
compromise vulnerable hosts in an enterprise network
with exploiting code programmed by security staffs.
After compromising a vulnerable host, the exploiting
code issues a command to download and install the
patch from the patch servers in the patching system. The
scanning computers in the active patching system can
coordinate to scan the entire IP space of an enterprise
network without wasting scanning resources.

One might expect the scanning process to take a long
time. This is not the case. For example, if an enterprise
has two Class B network space (217 IP addresses)
[22], five scanning computers in its active patching
system and each scanning computer has a scan rate 100
scans/second, then the active patching system only takes
t = 217/(5 × 100) = 4.37 minutes to complete the
scanning task.

The scanning time can be further reduced by ignoring
unallocated portions of the address space assigned to an
enterprise network. In addition, the vulnerability assess-
ment system knows the IP addresses of most vulnerable
hosts in an enterprise network from its vulnerability
scans. Therefore, the active patching system can first
scan and install patches on these known vulnerable
computers before scan the remaining IP space of the
enterprise network. In this way, the active patching
system can patch most vulnerable hosts very quickly.

The recent Nachi worm [17] is a “good” patching
worm that attempts to remove Blaster from infected
hosts and install patches on them. Within an enterprise
network, when many vulnerable hosts are patched and
“infected” by a patching worm, the patching worm will
consume considerable resources on these patched hosts
and generate a large amount of worm traffic. Therefore,
we believe that “patching worm” is a bad defense idea,
even for an enterprise that has the right to deploy such
a worm in its own network.

C. Feedback defense based on security alert level

To defend against worm attacks, Zou et al. [28]
presented a feedback dynamic quarantine framework that
borrows two principles from epidemic disease control:
“preemptive quarantine” and “feedback adjustment”.

However, it did not discuss how to quantitatively design
the optimal feedback control theme. If the feedback con-
trol system uses continuous state, to design the feedback
system we have to know the accurate dynamic model
of the worm propagation system and the quarantine cost
function — both the model and the cost function are
very hard to derive quantitatively and accurately.

It is more feasible to design a feedback defense system
with a finite number of states and a finite number of
quarantine control actions. In dealing with terrorism
after the 9/11 terrorists’ attack, the US Department of
Homeland Security introduced a “five-level homeland
security advisory system” [2]. This system describes
“green”, “blue”, “yellow”, “orange”, and “red” security
levels along with corresponding protective measures that
should be taken under these levels — such an advisory
system is an example of a finite-state, finite-control
feedback defense system.

In the Firewall Network System, we borrow the idea
of the five-level security advisory system of Homeland
Security [2] and the “feedback adjustment” principle [28]
to design a feedback defense system with five security
alert levels and five corresponding defense actions.

The choice of security alert level of an enterprise net-
work depends on several factors. These factors include
not only the worm detection results from both worm
detection systems, but also the answers to the following
questions: how serious is a vulnerability? How easy is it
to program the worm code? Do there exist any proof-of-
concept codes or real testing codes in the Internet? The
answers to these questions provide an understanding of
the potential security problem before the worm detection
systems actually detect a worm.

In the real world, most critical vulnerabilities are first
discovered by security researchers; patches are usually
made available weeks or months before a worm appears
exploiting the corresponding vulnerability. Therefore, in
most cases there are a clear time line and a series of
development symptoms before a worm propagates in
the Internet. Consider Blaster [7] as an example. [14]
and [15] summarize the evolution of Blaster: Microsoft
provided the patch and publicized the security vulnera-
bility on July 16th, 2003; several days later people began
to discuss it and provided proof-of-concept codes in
various mailing lists; On July 25 and 26, several groups
published ready-to-run version of exploiting codes; and
on July 31, attackers tested their worm codes in several
universities. Finally ten days later, Blaster appeared and
spread across the Internet on August 11.

From our studies of previous worms, we present one
possible design of the five-level feedback defense with
the Firewall Network System:
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• Green: This is the situation when neither worm
detection system has detected a worm, and no
critical vulnerability has been disclosed recently. In
this case, if an internal computer sends out forbid-
den internal service requests, the Firewall Network
System sends out a warning message, such as an
email, to the user of this computer. No quarantine
is implemented at this security level.

• Blue: This is the situation when neither worm
detection system has detected a worm, but a critical
vulnerability has been disclosed recently (one that
affects many computers). In this case, if an inter-
nal computer sends out forbidden internal service
requests on the vulnerable port, a warning message
will be sent to the computer’s user stating that this
computer will be quarantined after, for example, one
week, if it continues to send out such illegal service
requests.

• Yellow: This is the situation when neither worm
detection system has detected a worm, but proof-of-
concept code is available for compromising a crit-
ical vulnerability and people have observed some
testing codes in the Internet. In this case, if an in-
ternal computer sends out forbidden internal service
requests on the vulnerable port, a warning message
will be sent to both this computer’s user and its local
administrator. The computer will be quarantined
after a short time if it continues to send out such
illegal service requests. According to the feedback
principle explained in [28], the time to quarantine
decreases accordingly as the threat from a potential
worm becomes imminent.

• Orange: This is the situation when the “Internet
worm detection system” detects a worm spreading
in the global Internet, but no such worm traffic has
been detected inside the enterprise network. In this
case, if an internal computer sends out forbidden
internal service requests on the vulnerable port,
this computer will be quarantined immediately. In
addition, the active patching system can be activated
to patch vulnerable hosts in the subnetwork that
contains the quarantined computer (not on the scale
of the entire enterprise network) to prevent further
infection by the infected host in its own subnetwork.

• Red: This is the situation when the “internal worm
detection system” has detected a worm. It means
that the worm is present within the enterprise net-
work and some internal computers have already
been infected. In this case, the active patching sys-
tem is activated to patch all vulnerable hosts in the
entire enterprise network to prevent further infection
by the worm. If an internal computer sends out

forbidden internal service requests on the vulnerable
port, this computer and its entire subnetwork will
be quarantined immediately.

The feedback defense actions, especially the quaran-
tine and possible active patching in the “orange” and
“red” security alert levels, can be issued automatically by
the Firewall Network System. In this case, the Firewall
Network System becomes a feedback automatic defense
system, which has the capability to defend against fast
spreading worms.

VI. WORM PROPAGATION MODELING

Under the defense of the Firewall Network System,
if one internal computer in an enterprise network is
infected by a worm, the worm cannot spread out to
other subnetworks through scanning (except that it can
possibly infect vulnerable servers in other subnetworks
that accept service request on the vulnerable port from
the infected computer). In this section, we model worm
propagation in one subnetwork that initially contains one
or several initially infected computers.

Suppose an enterprise network has Ω IP addresses
and is divided into m subnetworks by internal firewalls.
Without loss of generality, assume that the subnetwork
under consideration is the first subnetwork, which has
Ω1 IP addresses and N1 vulnerable hosts before a worm
infects one or several hosts in it. Denote I(t) as the
number of infectious hosts in the subnetwork at time t,
I(0) = I0; S(t) as the number of susceptible hosts in
the subnetwork at time t, S(0) = N1−I0. An infectious
host sends out η scans per unit time targeting the entire
enterprise network, among which η1 scans target its own
subnetwork.

We model worm propagation under three different
active defenses by the Firewall Network System. The
first two defenses use the active patching system on
the subnetwork under consideration; the third defense
does not use the active patching system, but assumes
that individually infected hosts in the subnetwork can
be quarantined. For the active patching system defense,
denote Q(t) as the number of patched hosts that are
immune to the worm in the subnetwork, Q(0) = 0. The
scanning computers in the active patching system scan
κ IP addresses per unit time. For the quarantine defense,
denote R(t) as the number of quarantined hosts at time
t in the subnetwork, R(0) = 0.

Define infection density α as the fraction of vulnerable
hosts eventually infected by a worm in the subnetwork
under consideration. The primary objective of active
worm defenses implemented on the subnetwork is to
decrease a worm’s infection density, which is

α = [N1 − S(∞)]/N1 (1)
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TABLE I

NOTATIONS IN THIS PAPER

Symbol Definition
Ω Number of IP addresses in an enterprise network
η Worm scan rate within an enterprise network
m Number of subnetworks in an enterprise network
N1 Number of vulnerable hosts in the

subnetwork under consideration
Ω1 Number of IP addresses in the subnetwork
η1 Worm scan rate within the subnetwork
I(t) Number of infectious hosts in the subnetwork
S(t) Number of susceptible hosts in the subnetwork
Q(t) Number of patched hosts in the subnetwork
κ Patching system scan rate within the subnetwork
T Time to quarantine an infected host

after it is infected
T1 Time to finish scanning the subnetwork by

active patching-I system
T2 Time to finish scan by active patching-II system
C Number of scans observed before quarantine
R(t) Number of quarantined hosts in the subnetwork
α Fraction of vulnerable hosts in the subnetwork

that are eventually infected by the worm
v Density of vulnerable hosts in the subnetwork

under consideration, v = N1/Ω1

p Fraction of vulnerable hosts whose IP addresses
are known to active patching-II system

A. Active patching-I: not knowing IP addresses of vul-
nerable hosts

In the “orange” and “red” security alert levels, the
subnetwork that contains an infected host will be quar-
antined by internal firewalls and patched by the active
patching system (beginning at time t = 0). First, we
analyze the situation when the active patching system
does not know IP addresses of vulnerable hosts and scans
the whole IP space of the subnetwork. We refer to such
an active patching system as “active patching-I” system.

Because the patching system does not waste scans on
already scanned IP addresses, it completes its scan of
the subnetwork at time

T1 = Ω1/κ (2)

At any time t (t < T1), “active patching-I” system has
scanned κt IP addresses and the remaining Ω1 − κt IP
addresses have not yet been scanned. In the remaining IP
space, the density of vulnerable hosts is S(t)

Ω1−κt . Thus on
average, the number of vulnerable hosts to be patched
in a unit time at time t is κ S(t)

Ω1−κt — this is accurate
when the worm randomly infects vulnerable hosts in
the subnetwork, or when the patching system randomly
scans not-scanned IP space in the subnetwork.

Under the “active patching-I” defense, a worm’s prop-
agation in one subnetwork follows (based on the simple
epidemic model in [1][21] and the worm model in [27]):

dS(t)
dt

= − η1

Ω1
S(t)I(t) − dQ(t)

dt
dQ(t)

dt
= κ

S(t)
Ω1 − κt

(3)

N1 = Q(t) + S(t) + I(t)

0 ≤ t < Ω1/κ

At time T1 = Ω1/κ, all initially vulnerable hosts
are either infected or patched. Thus S(t) = 0, ∀t ∈
[Ω1/κ,∞).

B. Active patching-II: known IP addresses of vulnerable
hosts

Because the vulnerability assessment system of an
enterprise network frequently scans the network to find
vulnerable computers, we analyze the situation where
the active patching system knows the IP addresses of all
vulnerable hosts within the network. We refer to such
an active patching system as “active patching-II” system,
which only needs to scan IP addresses of all vulnerable
hosts in the subnetwork.

Hence the number of IP addresses to be scanned is N1

instead of Ω1. “Active patching-II” system can complete
its scan of the subnetwork at time

T2 = N1/κ (4)

On the other hand, the worm still has the original
scanning space Ω1 because it does not know the IP
addresses of vulnerable hosts.

Under the “active patching-II” defense, a worm’s
propagation in one subnetwork follows:

dS(t)
dt

= − η1

Ω1
S(t)I(t) − dQ(t)

dt
dQ(t)

dt
= κ

S(t)
N1 − κt

(5)

N1 = Q(t) + S(t) + I(t)

0 ≤ t < N1/κ

At time T2 = N1/κ, all initially vulnerable hosts
are either infected or patched. Thus S(t) = 0, ∀t ∈
[N1/κ,∞).

During the time interval from the vulnerability scan
issued by the vulnerability assessment system to the
activation of active patching-II system, some vulnerable
hosts may change their IP addresses and some new vul-
nerable hosts may appear. Therefore, it is more realistic
to assume that active patching-II system knows the IP
addresses of only a fraction of vulnerable hosts in the
subnetwork. Denote p as the fraction of vulnerable hosts
that active patching-II system knows (0 ≤ p ≤ 1). Active
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patching-II system first scans and patches those known
pN1 vulnerable hosts, then the system continues to scan
the remaining Ω1 − pN1 IP space in the subnetwork
attempting to patch the other (1−p)N1 vulnerable hosts.

Under such an “active patching-II” defense, a worm’s
propagation in one subnetwork follows:

dS(t)
dt

= − η1

Ω1
S(t)I(t) − dQ(t)

dt

dQ(t)
dt

=

{
κ S(t)

N1−κt , 0 ≤ t < pN1

κ

κ S(t)
Ω1−κt , pN1

κ ≤ t
(6)

N1 = Q(t) + S(t) + I(t)

0 ≤ t < Ω1/κ

Note that (6) reduces to (3) when p = 0 and (5) when
p = 1.

C. Worm propagation model based on individual quar-
antine

The active patching system can patch vulnerable hosts
before they are infected by a worm. However, in most
cases remotely patching a computer without notifying
the computer’s user can interfere with operations on this
computer, which will introduce a cost to an enterprise.
Not all enterprises can afford the cost of such an ag-
gressive active patching system for worm defense. In
addition, in order to remotely patch vulnerable hosts,
security staffs in an enterprise need to first program the
exploiting code by themselves and test the code carefully
before using it in the active patching system, which
requires an enterprise to have experienced security staffs.

In the future, an enterprise may have the hardware
and software support to enable the quarantine of each
infected host. For example, ethernet hubs can be replaced
by ethernet switches that can receive command to shut
down individual network interface; wireless access de-
vices can be upgraded to be able to receive command to
cut off individual connected client.

Now we analyze a defense where the Firewall Net-
work System can quarantine individual infected hosts.
Suppose the Firewall Network System will quarantine
a suspicious host when internal firewalls have received
C illegitimate internal service requests from it. Hence
an infected host is quarantined after it sends C scans to
other subnetworks in the enterprise network. Denote T
as the time for an infected host to be quarantined after
it is infected. From the definition of η and η1, we have:

T =
C

η − η1
(7)

Under such a quarantine defense, the worm propaga-
tion in one subnetwork follows:

dI(t)
dt

=
η1

Ω1
S(t)I(t) − dR(t)

dt
dR(t)

dt
=

η1

Ω1
S(t − T )I(t − T ) (8)

N1 = R(t) + S(t) + I(t)

where dR(t)/dt = 0, t ∈ [0, T ). Since all those initially
infected hosts I(0) = I0 will be quarantined at time T ,
R(T ) = I0 and I(T+) = I(T−) − I0.

VII. WORM DEFENSE SIMULATION STUDIES

In this section, we study the performance of the three
worm defenses discussed above. Given the parameters in
the model (3), (5), (6), and (8), we use Matlab Simulink
[18] to derive the numerical solutions of these models.

A. Active patching defense system

Suppose an enterprise has been allocated Ω = 217 IP
addresses as used in [22]. A worm’s scan rate η1 within
a subnetwork is expected to be small. For example, the
uniform-scan worm, Slammer, has 4000/second scan rate
[4]. If the subnetwork we consider has 212 IP addresses,
then the scan rate of a Slammer infected host targeting
within its own subnetwork is only η1 = 4000/232−12 =
0.0038/second. Of course, if the worm conducts a local
preference scan like the Code Red II and Nimda [22],
its scan rate η1 within its own subnetwork will be much
larger.
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Fig. 3. Worm propagation comparison under the defense of the active
patching system (Ω1 = 212, N1 = 600, η1 = 1/sec, κ = 10/sec,
I0 = 1)

In our first experiment, we assume that the enterprise
network is equally divided into m = 32 subnetworks,
i.e., Ω1 = Ω/m = 4096; the other parameters are
η1 = 1/second, κ = 10/second, and N1 = 600. The
scan rate κ is larger than η1 because those scanning
computers in the active patching system use all their
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scanning power on this subnetwork that has infected
hosts; on the other hand, an infected host only uses a
small part of its scanning power in this subnetwork —
a worm does not know what IP addresses are contained
in one subnetwork because the subnetworks are defined
logically by internal firewalls, not by IP prefixes.

Fig. 3 shows the worm propagation under the de-
fense of the “active patching-I” system and the “active
patching-II” system (5), respectively. In this experiment
and the following ones, active patching-II system always
means the system described by the model (5) if not
mentioned explicitly. We also show in Fig. 3 the original
worm propagation without any defense.

In this experiment, because the IP space of the subnet-
work is large and active patching-I system requires time
T1 = Ω1/κ = 410 seconds to finish scanning the whole
subnetwork, it does not perform well. On the other hand,
active patching-II system finishes the patching job by the
time T2 = N1/κ = 60 seconds, and hence patches most
vulnerable hosts before the worm infects them.

Denote v = N1/Ω1 as the density of vulnerable hosts
in the subnetwork we consider. In the experiment shown
in Fig. 3, the density is v = 0.15. The active patching-II
system will be more effective when the vulnerable hosts
density v decreases because the time for the system to
finish patching is T2 = vΩ1/κ. In order to study the
effect of the vulnerable hosts density v, we vary the
value of v from 0.04 to 0.5 in steps of 0.02 in our next
experiment where the other parameters are the same as
used in Fig. 3.

The experiment results are shown in Fig. 4. This figure
shows that active patching-II system works best when the
density of vulnerable hosts v is low. Fortunately, because
an enterprise usually only uses a part of its allocated IP
space and because not all computers are vulnerable to a
particular worm, in practice the density v is usually very
small [22].
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Fig. 4. Infection density α under different density of vulnerable
hosts v (Ω1 = 212, η1 = 1/sec, κ = 10/sec, I0 = 1, N1 = vΩ1)

Until now we have studied the active patching systems
described by model (3) and (5). The more realistic patch-
ing system is described by model (6) where we know
the IP addresses of part of vulnerable hosts. Intuitively,
when we know more vulnerable hosts’ IP addresses (i.e.,
increasing p), we can patch faster and prevent more
vulnerable hosts from being infected. As we increase
p from 0 to 1, the worm’s infection density α should lie
between the two curves in Fig. 4. In Fig. 5, we show the
infection density α as a function of the value p under
three different densities of vulnerable hosts v. This figure
is consistent with Fig. 4: as the density of vulnerable
hosts v decreases, it is more effective to know vulnerable
hosts’ IP addresses. If the density v is as high as 0.4,
Fig. 5 shows that there will be no difference whether
we know only 20% or the complete 100% of vulnerable
hosts’ IP addresses.
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Fig. 5. Infection density α when we know different fraction of
vulnerable hosts’ IP addresses (Ω1 = 212, η1 = 1/sec, κ = 10/sec,
I0 = 1)

One should not interpret our results to mean that active
patching-I system is not effective. If scanning computers
in the active patching system have a large scan rate and
the subnetwork defined by internal firewalls is small,
then active patching-I system can finish patching quickly
before most vulnerable hosts are infected. Suppose the
subnetwork has Ω1 = 1024 and N1 = 500. We still
use η1 = 1/second, I0 = 1 but vary κ from 5/sec to
100/sec in steps of 5. The experiment results are shown
in Fig. 6. This figure shows that active patching-I system
is effective when the scan rate of the active patching
system is higher compared with the worm’s subnetwork
scan rate η1.

B. Quarantine defense system

Now we study the quarantine defense system de-
scribed by (8). In the subnetwork described in Fig. 4
(Ω = 212, N1 = 600, I0 = 1), suppose an infected host
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Fig. 6. Infection density α under different patching scan rate κ
(Ω1 = 210, N1 = 500, η1 = 1/sec, I0 = 1)

has a scan rate η = 2/sec to the entire enterprise network
and η1 = 1/sec to its own subnetwork; and the Firewall
Network System will quarantine an infected host after
observing C = 10 scans on internal firewalls. According
to (7), in this system an infected host will be quarantined
after T = 10 seconds.
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Fig. 7. Worm propagation under the quarantine defense system
described by Equation (8) (Ω1 = 212, N1 = 600, η1 = 1/sec, I0 =
1, T = 10/sec)

Fig. 7 shows the worm propagation under this quar-
antine defense system. After reaching a peak at time
t = 64 seconds, the number of infectious hosts, I(t),
drops down gradually to zero. In the end there are
S(∞) = 263 uncompromised susceptible hosts, thus the
infection density α = 0.56.

In reality, the quarantine defense system usually can
do much a better job than what shown in Fig. 7. First,
since internal firewalls have explicit access rules, we do
not need to wait to receive C = 10 scans to quarantine
an infected host. Second, the subnetworks are defined by
internal firewalls, not by IP prefixes. Thus a worm does
not know what IP addresses are within its own subnet-
work, which makes it difficult for an infected host to send
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Fig. 8. Worm infection density α under the quarantine defense with
different quarantine time T (Ω1 = 212, N1 = 600, η1 = 1/sec)

most of its scans within its own subnetwork. For these
two reasons, the time to quarantine T usually is very
short. For example, suppose the worm in the experiment
shown in Fig. 7 uniformly scans the enterprise network,
then its time to quarantine is T = 10/(32 − 1) = 0.32
seconds (m = 32 thus η = 32/sec). To study how T
affects the quarantine defense system, we conduct an
experiment with the same parameters used in Fig. 7
(Ω1 = 212, N1 = 600, η1 = 1/sec) but varying T ( we
also consider two situations where the number of initially
infected hosts is I0 = 1 and I0 = 20, respectively).
The worm’s infection density v under different T is
shown in Fig. 8. This figure shows that the quarantine
defense system works best when the time needed to
quarantine infectious hosts is short compared with the
worm’s subnetwork scan rate η1.

VIII. CONCLUSIONS

In this paper, we present a “Firewall Network System”
for worm defense in enterprise networks. The Firewall
Network System uses firewalls to divide an enterprise
network into many isolated subnetworks. All computers
in an enterprise network are classified as either clients or
servers: all service requests sent to internal IP addresses
of an enterprise network will be blocked by internal
firewalls if they target non-server computers, or servers
that do not provide the corresponding service. In this
way, the Firewall Network System removes most worm
infection paths in an enterprise network, making worm
detection much easier.

In our design, all internal firewalls in the Firewall
Network System are designed to have the same set
of firewall rules, which means the Firewall Network
System is scalable to large enterprise networks and easily
managed by a central firewall management console.
We also propose a five-level feedback worm defense
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strategy based on the “feedback quarantine” principle
from epidemic disease control [28] and the idea of the
five-level US “Homeland Security Advisory System”
[2]. Furthermore, we model and analyze three defense
strategies based on either active patching or quarantine.

Even without any active defense from the Firewall
Network System, no matter how fast a worm can propa-
gate (through scanning and direct compromising), it can
infect at most all vulnerable hosts in its subnetwork and
vulnerable servers in the enterprise network that accept
service requests on the vulnerable port from the infected
subnetwork.

The Firewall Network System is not an omnipotent
worm defense solution for all enterprises. The major con-
straint of the Firewall Network System is that employees
of an enterprise cannot set up servers arbitrarily without
notifying administrators. For an open environment orga-
nization such as a university or an ISP, this constraint
may not be acceptable. Because of the client/server
networking requirement, the Firewall Network System is
not suitable for enterprises that heavily rely on peer-to-
peer networking and cannot transform their P2P systems
to client/server systems.

However, many enterprises do not depend on peer-
to-peer networking and have the company policy that
employees cannot set up servers arbitrarily. For these
enterprises, the Firewall Network System is suitable and
worth to be deployed considering its security benefit. Of
course, many detailed technical issues need to be dis-
cussed before the Firewall Network System is deployed
in practice.
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