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Abstract—Message Queuing Telemetry Transport (MQTT) is
a popular communication protocol used to interconnect devices
with considerable network restraints, such as those found in
Internet of Things (IoT). MQTT directly impacts a large number
of devices, but the software security of its server (“broker”)
implementations is not well studied. In this paper, we design,
implement, and evaluate a novel fuzz testing model for MQTT.
The fuzzer combines aspects of mutation guided fuzzing and
generation guided fuzzing to rigorously exhaust the MQTT
protocol and identify vulnerabilities in servers. We introduce
Markov chains for mutation guided fuzzing and generation
guided fuzzing that model the fuzzing engine according to a
finite Bernoulli process. We implement “response feedback”, a
novel technique which monitors network and console activity
to learn which inputs trigger new responses from the broker.
In total, we found 7 major vulnerabilities across 9 different
MQTT implementations, including 6 zero-day vulnerabilities and
2 CVEs. We show that when fuzzing these popular MQTT targets,
our fuzzer compares favorably with other state-of-the-art fuzzing
frameworks, such as BooFuzz and AFLNet.

I. INTRODUCTION

Message Queuing Telemetry Transport (MQTT) [1] inter-
connects resource-constrained devices in applications such as
smart home, smart city, and industrial Internet of Things (IoT).
MQTT is used by hundreds of thousands of devices across the
world [2], and it is estimated that 62% of all IoT solutions
use MQTT [3]. It is often considered the “de-facto standard”
for Internet of Things (IoT) communication due to its low
overhead and immense popularity when compared to similar
protocols such as CoAP and AMQP [4]. Many implemen-
tations of MQTT have been developed since its inception,
including software libraries for clients and servers on a range
of hardware, Operating Systems, and cloud platforms [5]. Bro-
kers may serve thousands of unique clients at any given time.

MQTT security – in particular, the software security of
broker/server implementations – has received little attention in
the literature. Most works only focus on the lack of network
security mechanisms in MQTT, such as authentication, access
control, encryption, and integrity checking [5]–[8]. On the
other hand, software vulnerabilities of brokers are not nearly
as represented in the literature. To our best knowledge,
we observed only a single example which performs a
comprehensive assessment of MQTT software security from
the perspective of brokers [9]. Based on this research gap,
we believe there is an urgent need to investigate the software
security of MQTT brokers.

One of the most prominent methods for software vulner-
ability discovery is fuzz testing, or simply fuzzing [10]. A
fuzzing software (“fuzzer”) will generate psuedo-random or
invalid test cases which are then sent to the target application.
The fuzzer then observes the application behavior. Popular
fuzzing frameworks for network applications include BooFuzz
[11], Spike [12], and AFLNet [13]. In the context to IoT
security, IoTFuzzer is a blackbox fuzzing model that performs
dynamic analysis of mobile apps to learn how to communicate
with remote IoT devices [14]. The model can achieve protocol
guided fuzzing without intimate knowledge of the protocol
itself. However, IoTFuzzer only targets software vulnerabilities
in network clients.

In this paper, we develop a novel fuzzing model for MQTT
brokers, called FUME. This fuzzer implements mutation
guided and generation guided fuzzing techniques according
to Markov models, which describe the state of each fuzzing
iteration independently from past iterations. We show that each
Markov model can be described as a finite Bernoulli process,
since each direct transition can be considered a Bernoulli trial
with a probability of transitioning to the next state, indepen-
dent from other state transitions. We also implement “response
feedback,” a technique where the fuzzer can listen to network
activity and console output (i.e., stdout, stderr, or log files)
from the broker. Inputs which trigger unique responses from
the broker are saved and tested later on. FUME requires no
source code and does not need to run on the same system as the
target broker. In total, we discovered 7 major vulnerabilities
across 9 different broker implementations, including 6 0-day
vulnerabilities. Among these vulnerabilities are 2 CVEs in
Mosquitto [15], a very popular MQTT platform developed by
the Eclipse Foundation.

Our major contributions are summarized as follows:
• We discuss the principles of fuzz testing in terms of

Markov modeling. Namely, we design 2 Markov chains
and a Bernoulli process for modeling a mutation-and-
generation guided fuzzer.

• We present FUME, a novel fuzzer that targets MQTT bro-
kers. The fuzzer implements the aforementioned Markov
models and leverages response feedback to dynamically
select more intelligent inputs for mutation.

• We evaluate FUME against 9 different MQTT broker
implementations. We discovered 7 major bugs, including
6 zero-day vulnerabilities and 2 CVEs. We show that our
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fuzzer can detect these bugs favorably when compared to
other state-of-the-art fuzzing frameworks.

Responsible disclosure: We have followed the responsible
disclosure policy and reported all our findings to the entities of
interest, who have patched their systems based on our report.

II. BACKGROUND

In this section, we introduce the MQTT protocol and the
principles of fuzz testing to the reader.

A. MQTT

Architecture. MQTT is a lightweight communication protocol
that is published under the open OASIS standard ISO/IEC
20922. It was designed to meet the networking requirements of
resource constrained devices, such as embedded systems and
IoT devices. MQTT typically runs over TCP but is not required
to. In MQTT, clients connect to a central broker and can
either publish messages or subscribe to topics. When a client
publishes a message, it specifies a topic filter, and the broker
must forward these messages to any clients which have sub-
scribed to the same topic filter. The broker facilitates all com-
munication between clients, addresses session requirements,
and authenticates clients. MQTT only supports password-
based authentication, and other security requirements must be
implemented by the application.
Control Packets. MQTT supports 15 different packet types
called control packets. These include: CONNECT; CON-
NACK; PUBLISH; PUBACK; PUBREC; PUBREL; PUB-
COMP; SUBSCRIBE; SUBACK; UNSUBSCRIBE; UNSUB-
ACK; PINGREQ; PINGRESP; DISCONNECT; and AUTH.
All MQTT packets contain the same structure, which is
illustrated in Figure 1. Namely, each packet begins with a
fixed header, which identifies the control packet type and
specifies the length of the packet; a variable header, which
lists some features of the packet; and the payload, which
contains the payload of the message. Depending on the control
packet type, the variable header and the payload may be
optional or required, while the fixed header is always required.
Version 5 of MQTT also supports a properties sub-header,
containing a list of optional properties. The properties sub-
header exists at the end of the variable header. The CONNECT
packet may also specify a will topic and a will payload.
This payload is published to all subscribers of the will topic
if the client ever disconnects unexpectedly – e.g., the client
did not send the DISCONNECT packet before closing the
connection. In MQTT version 5, the will information includes
a will properties field within the CONNECT payload. The
name, identifier, and purpose of each control packet is shown
in Table I.

B. Fuzz Testing

To discover vulnerabilities in software, a fuzzer will gen-
erate psuedo-random or invalid test cases which are then
sent to the target application; the fuzzer then observes the
application behavior. If the application exhibits odd behavior,
or crashes, then it is highly possible that a new vulnerability

Fig. 1: MQTT packet structure. Properties only exists in
MQTT version 5. Will Properties only exists in the CONNECT
packet in version 5.

Name ID Purpose
CONNECT 0001 Request to connect to the broker
CONNACK 0010 Acknowledge the connect request
PUBLISH 0011 Send a message to subscribed clients
PUBACK 0100 Acknowledge the PUBLISH (QoS 1)
PUBREC 0101 Acknowledge the PUBLISH (QoS 2)
PUBREL 0110 Acknowledge the PUBREC (QoS 2)

PUBCOMP 0111 Acknowledge the PUBREL (QoS 2)
SUBSCRIBE 1000 Request to subscribe to a topic filter

SUBACK 1001 Acknowledge the SUBSCRIBE
UNSUBSCRIBE 1010 Stop listening to a topic filter

UNSUBACK 1011 Acknowledge the UNSUBSCRIBE packet
PINGREQ 1100 Ping the broker
PINGRESP 1101 Acknowledge the client’s PINGREQ

DISCONNECT 1110 Send a request to disconnect
AUTH 1111 Exchange authentication data

TABLE I: A summary of MQTT control packets.

has been discovered; the researcher can then investigate this
vulnerability more deeply. Fuzzers can be classified according
to three factors: fuzzing method, knowledge of target, and
vulnerability detection.
Fuzzing method: There are two primary fuzzing methods:
generation guided and mutation guided. In generation guided
fuzzing, data is generated randomly or from a user-defined
model; for example, in protocol guided fuzzing, data is gener-
ated according to the protocol structure. This fuzzing method
is appropriate when the user has a complete understanding of
the syntax and semantics of the target protocol. In mutation
guided fuzzing, payloads are sampled from a corpus of valid
data inputs and fuzzed. This is appropriate when the target
protocol is not well understood, or if the implementation
differs from the specification. Another method, genetic fuzzing,
may use either fuzzing method and apply genetic algorithms
based on behavior exhibited from the target.
Knowledge of target: Depending on the knowledge of the
target, a fuzzer might be classified as a blackbox fuzzer, a
whitebox fuzzer, or a greybox fuzzer. A blackbox fuzzer has
no knowledge of the target specification and can only see what
is directly observable. A whitebox fuzzer is completely aware
of the target’s structure and may have access to its source
code and specification. A greybox fuzzer has some knowledge
of the specification and may use instrumentation or dynamic
taint analysis to track the target’s control flow.
Vulnerability Detection: To detect vulnerability in targets, a
fuzzer may employ several techniques. For instance, the target
may send an unexpected or malformed response, which can
indicate a logic bug [14] [16]. The target may also hang,
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i.e., the connection remains open but the target never sends
a response [17]. Finally, the target may crash and close the
connection; this behavior is almost universally observed by all
fuzzers [11], [14], [16]–[19]. A program crash may indicate a
severe vulnerability such as memory corruption.

III. FUZZ TESTING USING MARKOV MODELING

In this section, we introduce the principles of mutation
guided fuzzing and generation guided fuzzing in terms of
two Markov models. We show that the models implement
a finite Bernoulli process which describes the probabilistic
behavior of input generation and payload fuzzing. We refer to
the implementation of these models as the “mutation guided
fuzzing engine” and “generation guided fuzzing engine”.

A. Mutation Guided Fuzzing

The mutation guided fuzzing engine depends on the ex-
istence of an input corpus of semantically valid test cases.
This engine can be broken down into two distinct phases: a
construction phase and a fuzzing phase. In the construction
phase, new packets are appended from the input corpus to the
payload. In the fuzzing phase, the fuzzing engine can manipu-
late the payload using the byte-granular methods of injection,
deletion, and mutation. The effects of these methods are as
follows: Injection inserts new bytes into the payload; Deletion
removes bytes from the payload; and Mutation changes the
value of some bytes in the payload. Figure 3 illustrates the
principle of each method using an MQTT SUBACK control
packet with value 9003b80f07.

The mutation guided fuzzing procedure can be modeled by a
Markov chain, which is illustrated in Figure 2 (left). The model
describes a single iteration of the fuzzing engine. The nodes
represent states in the fuzzing engine, and the arcs represent
probabilistic transitions; the transition probabilities are labeled
next to their corresponding transitions. State S0 represents
the initial state of the fuzzing engine. State S1 represents
the construction phase. State S2 represents the fuzzing phase.
Finally, state Sf is the final state and concludes the current
iteration of the fuzzing engine.

In the initial state S0, the fuzzing engine may either tran-
sition to the construction phase, or it may select a payload
from the response log. The response log is explained further
in Section IV-B1; broadly speaking, it describes the set of test
cases which have been added to the input corpus, i.e., those
test cases which were not part of the original input corpus.
The probability of selecting from the response log is b.

In the construction phase, the fuzzing engine randomly
selects control packets from the input corpus. The probability
of selecting CONNECT is c1, CONNACK is c2, etc. The sum
of these probabilities is 1, i.e.,

15∑
i=0

ci = 1 (1)

While the fuzzing engine is in state S1, it has a X1

probability of directly transitioning to state S2, i.e., the fuzzing
phase, and a 1−X1 probability of selecting a new packet to

append to the payload. In the model, appending a new packet
is represented by the states Add CONNECT, Add CONNACK,
and so forth. Based on the packet selection probabilities
ci | i ∈ (1, 2, ..., 14, 15) and the probability of appending a
new packet 1−X1, the overall probability of adding a specific
packet is ci − ciX1 | i ∈ (1, 2, ..., 14, 15).

In the fuzzing phase, the fuzzing engine can either transition
to the Inject state, Delete state, or Mutate state, or it
can transition to a Send state, which sends the fuzzed payload
to the broker. The Inject state can transition to a BOF state
or a Non-BOF state. In the former state, a large number of
bytes are injected into the payload in an attempt to trigger a
buffer overflow attack. In the latter state, the fuzzing engine
only injects a small number of bytes – in the implementation,
the number of injected bytes can never exceed the length of
the original payload. The fuzzing states Inject, Delete,
and Mutate have probabilities d1, d2, and d3, respectively,
such that d1+ d2+ d3 = 1. The state BOF has probability d4.

The probability of directly transitioning to the Send state is
X2. Based on the fuzzing state probabilities and the probability
of transitioning to the Send state, the overall probability of
choosing a specific fuzzing state is di − diX2 | i ∈ (1, 2, 3).

Finally, in the Send state, the fuzzing engine has a X3

probability of transitioning to Sf and ending the current
fuzzing iteration. Otherwise, there is a 1 − X3 probability
to return to S2 and restore the payload obtained from the
construction phase.

B. Generation Guided Fuzzing

Generation guided fuzzing depends on deep knowledge of
the protocol to generate semantically valid test cases. Figure
2 (right) illustrates the Markov model for generation guided
fuzzing. The fuzzer generates a CONNECT packet first before
generating other packets at random. Steps S0 and S1 comprise
the payload generator component. Step S2 performs the actual
fuzzing operation. For simplicity, we have condensed the
Inject, Delete, and Mutate states into a single I/D/M
state. The probabilities for state transitions S2 → Send,
S2 → I/D/M, Send → S2, and Send → Sf are consistent
between both models. In fact, both models are identical once
state S2 is reached, because the actual fuzzing of the payload
is independent from how to obtain that payload.

C. Markov Modeling as a Bernoulli Process

Since each state transition depends solely on its transition
probabilities, and each probability is assumed to be random,
then we may also demonstrate each Markov model as a finite
Bernoulli process. Namely, we can describe each Markov
chain as a sequence

⋃S
i,j(Xsi→sj ) | si, sj ∈ S, where S

is the set of states in the Markov model and si → sj
describes a direct transition from state si to state sj . Each
state transition si → sj is a Bernoulli trial with Bernoulli
variable Xij = Xsi→sj . The probability of the fuzzing engine
transitioning from state si to state sj is pXij

. This value
is simply the probability value given for that corresponding
transition in Figure 2.
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Fig. 2: Markov chains for mutation guided fuzzing and generation guided fuzzing.

Fig. 3: Different payload manipulation methods.

IV. FUME: A FUZZER FOR MQTT BROKERS

In this section, we present FUME, a generation-and-
mutation guided fuzzer for MQTT brokers. We first introduce
the architecture of our fuzzing model. We then discuss each
component of the architecture.

A. Overview: Architecture

First we introduce a high-level overview of FUME, which
can be seen in Figure 4. There are five major components to
the modeled architecture: the central component (simply called
“FUME”), the user-defined parameters, the payload generator,
the user filesystem, and the broker. The role of each component
can be briefly summarized as follows:
• Central component (“FUME”): This contains the two

fuzzing engines. It also handles communication and re-
sponse monitoring from the target broker.

• User-defined parameters: Allows the user to configure
aspects of the fuzzer, such as the probabilistic values X1,
X2, and X3.

• Payload generator: Generates a sequence of structurally
valid control packets from scratch.

• Filesystem: Stores the input corpus and logs more test
cases when new responses are observed from the broker.

• Broker: The target broker. May be local or remote.

B. The Central Component

The central component “FUME” handles three tasks, each
of which is handled by a sub-component. The first task is
to alternate (perhaps randomly) between running the mutation

Fig. 4: FUME fuzzer architecture.

guided fuzzing engine and the generation guided fuzzing en-
gine. These engines implement the Markov models described
in Section III. During mutation guided fuzzing, the engine will
access the filesystem component for appending new control
packets to the payload or selecting inputs from the response
log. During generation guided fuzzing, the engine will access
the payload generator component to perform the actual gen-
eration of control packets. The second task is to establish a
connection with the target broker and send fuzzed inputs over
to the target. The Send state in the model defers responsibility
to this sub-component to handle the connection requirements.
The third task is to listen for network responses and console
responses, and log them to the filesystem if necessary. The
logging operation accesses the filesystem component.

1) Response Feedback: FUME monitors two major types of
activity from the target broker: network response and console
response. Network responses comprise the MQTT packets
sent from the broker to the client. Console responses refer
to the standard out and standard error file descriptors of the
broker. When a unique response is observed by the fuzzer,
the payload which triggered this response is logged to the
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filesystem. These payloads can be fuzzed by the mutation
guided fuzzing engine later on. This behavior is modeled by
the mutation guided Markov chain, in the transition from initial
state S0 to the state Select from response log. Note
that if the broker runs remotely, then console output will not
be accessible on the local filesystem. However, some cloud
platforms record console activity from running software – e.g.,
AWS CloudWatch [20] – which can be leveraged in this case.
The fuzzer can always observe network responses.

A pitfall to response feedback is that responses may be
redundant. For example, a CONNACK packet from the bro-
ker can contain an assigned client identifier, which may be
randomly generated; then each CONNACK packet contains
no real new information despite technically being unique. To
address this drawback, we implemented a packet parser that
can accurately derive each field in the payload from the broker.
FUME monitors the fields that contain only a concise number
of possible values (we call these fields “interesting”), and
it ignores those redundant fields described above. When the
broker sends a response that contains a new set of interesting
fields, the response is considered unique, and it is logged to
the filesystem.

However, the packet parser can only derive fields from
network responses, but not from console responses. To limit
redundancies in console response, we implemented a similarity
threshold that ignores responses which are too similar to past
responses. The threshold value is a percentage value defined by
the user. For instance, a threshold of 75% means that console
responses will not be logged if they are at least 75% similar
to any previously logged response. We evaluate the impact of
the similarity threshold on our fuzzer in Section V-D.

C. User-defined Parameters

The fuzzer accepts several values from the user-defined-
parameters component which will influence its behavior.
Fuzzing intensity, denoted as fi, is a percentage value that
indicates what percentage of bytes should be fuzzed in a
packet. For instance, a fuzzing intensity of 50% means that
up to 50% of a payload should be fuzzed. Fuzzing intensity
also determines how frequently a payload should be fuzzed in
one iteration of the fuzzing engine, i.e., how long the model
should remain in state S2. Construction intensity, denoted as
ci, is a non-negative integer indicating the desired number
of packets in a payload sequence. For example, an intensity
of 7 means that, on average, the payload shall be constructed
of 7 distinct MQTT packets (it is only an average due to the
stochastic property of the model). This sequence always begins
with a CONNECT packet.

1) Mapping User Parameters to Markov Variables: For a
user who wants to employ FUME without worrying about the
details of the Markov model, the concepts of fuzzing intensity
and construction intensity parameters may be more intuitive,
while the Markov model may not be. To solve this issue, we
offer a simple method to map fi and ci to X1, X2, and
X3. We assume the states of selecting/generating packets have
discrete uniform distribution, i.e., b = 1

2 and ci = 1
15 | i ∈

(1, 2, ..., 14, 15). We assume the same for the fuzzing states,
i.e., di = 1

3 | i ∈ (1, 2, 3), and d4 = 1
2 . Note that in our

implementation of FUME, all parameters and variables can
be configured by the user, including X1, X2, and X3. Our
mapping is defined as follows:
• Let X1 = 1

ci
• Let X2 = 1− fi
• Let X3 = 1− 2 ∗ log(1 + fi)

D. Payload Generator

To meet the requirements of generation guided fuzzing,
the payload generator component can generate valid pay-
loads for each of the 15 MQTT control packets. Algorithm
1 demonstrates how the payload generator will construct a
CONNECT packet, i.e., state Generate CONNECT in the
Markov model. The algorithm constructs the fixed header,
variable header, and payload as shown in Figure 1. The
variable header contains a flags field that indicates the presence
of a username/password pair, protocol name and version,
will information, and session information. Depending on the
protocol version, the variable header may contain a properties
field. The payload contains a client identifier and possibly a
username, a password, and will properties.

Algorithm 1: Payload generator pseudocode for a
CONNECT packet.
input: protocol version
fixed header.ID = 0x10;
variable header.name = ”MQTT”;
variable header.version = protocol version;
variable header.flags.username = random(0..1);
variable header.flags.password = random(0..1);
variable header.flags.will retain = random(0..1);
variable header.flags.will qos = random(0..2);
variable header.flags.will flag = random(0..1);
variable header.flags.clean start = random(0..1);
variable header.keepalive = random(0, 0xffff);
if protocol version == 5 then

variable header.properties = random properties();
payload.clientid = random string();
if variable header.flags.will flag == 1 then

if protocol version == 5 then
payload.will properties = random properties();

payload.will topic = random string();
payload.will payload = random string();

if variable header.flags.username == 1 then
payload.username = random string();

if variable header.flags.password == 1 then
payload.password = random string();

packet length = len(variable header) + len(payload);
fixed header.remaining length = packet length;
packet = concat(fixed header, variable header,

payload);
return packet;
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E. The Filesystem

The user’s filesystem stores the input corpus and the crash
log. Payloads which trigger unique network or console re-
sponses from the broker – according to the similarity threshold
– are also logged into the filesystem. In future iterations, these
inputs are accessed by the mutation guided fuzzing engine so
that they may be fuzzed.

V. EVALUATION

In this section, we present our vulnerability findings and
discuss the details of each vulnerability. We compare the vul-
nerability discovery speed of our fuzzer to three other popular
fuzzing frameworks. We also discuss how mutation guided
fuzzing compares to generation guided fuzzing. Finally, we
explore the efficiency of response feedback across 3 different
brokers for different similarity threshold values.

A. Experimental Setup

Software/Hardware: Our fuzzer is written in Python 3.
All experiments are conducted in a Kali Linux 2021.1 virtual
machine, which was allocated with 8 GB of RAM and 4
processor cores. The host machine is a Dell XPS 15 9570
laptop with Intel Core i7-8750H CPU. We have provided
public access to our code at https://github.com/PBearson/
FUME-Fuzzing-MQTT-Brokers.

User-defined Parameters: For all experiments, the fuzzing
intensity and construction intensity was fixed at 0.1 and 3,
respectively. This means X1 was set to 0.33, X2 was set to
0.9, and X3 was set to 0.917.

Input Corpus: The predefined input corpus was col-
lected systematically by connecting a client to the Mosquitto,
HiveMQ, and VerneMQ brokers and collecting MQTT traffic
using Wireshark. The inputs are stored in the filesystem. In
total, we collected 50 distinct MQTT packets to seed the initial
corpus.

Targets: In total, we tested 9 different MQTT broker imple-
mentations, including Mosquitto [15], HiveMQ [21], VerneMQ
[22], aedes [23], EMQX [24], KMQTT [25], mqttools [26],
hrotti [27], and moquette [28]. We fuzzed each broker for
approximately 12 hours using a combination of the mutation
guided and generation guided techniques. Table II shows the
version number of each broker as well as the programming
language that the broker was developed in. Note that hrotti
does not have an official version number, so we just report
the commit ID from Github.

Broker Version Language
Mosquitto 2.0.7 C
HiveMQ 2021.1 Java
VerneMQ 1.11.8 Erlang

aedes 0.45 JavaScipt
EMQX 4.3.3 Erlang

KMQTT 0.2.5 Kotlin
mqttools 0.47.0 Python

hrotti Commit 087b33bb Go
moquette 0.16 Java

TABLE II: Brokers tested

B. Vulnerability Findings

In total, our fuzzer discovered 7 vulnerabilities, including 6
zero-day vulnerabilities and 1 n-day vulnerability. All vulner-
abilities result in immediate termination of the broker, causing
denial-of-service. Aside from hrotti, which has abandoned de-
velopment since 2017, all vulnerabilities have been reported to
the developers and patched due to our responsible disclosure.
Table III lists the complete set of crashes and a brief error
summary. More details follow.

Index Broker Zero-day Error Summary
0 Mosquitto Yes Malformed CONNACK in MQTT v5
1 Mosquitto Yes PUBLISH topic length = 0
2 KMQTT Yes Broken pipe error
3 aedes Yes Malformed DISCONNECT
4 hrotti Yes Malformed PUBLISH
5 hrotti Yes UNSUBSCRIBE topic length = 0
6 hrotti No Malformed CONNECT

TABLE III: A summary of crashes found.

Mosquitto: We discovered two vulnerabilities in Mosquitto
version 2.0.7. The first vulnerability occurs in MQTT v5 when
an authenticated client sends a malformed CONNACK control
packet, causing a null pointer dereference and crashing the
server. This vulnerability was reported to Eclipse and assigned
to CVE-2021-28166 [29]. It has been patched in version
2.0.10. The second vulnerability occurs when a client sends a
PUBLISH control packet with a topic length set to 0, causing
the server to crash. This bug had previously been patched in
version 2.0.8 at the time of our discovery; however, the patch
was intended to address a bug in the Mosquitto client library,
and the bug in the server was not originally recognized as a
vulnerability. It has been assigned to CVE-2021-34432 [30].

KMQTT: We discovered a vulnerability in version 0.2.5.
On some Linux systems, the server would throw a SIGPIPE
signal if the broker tried to send a payload to a closed
TCP connection – for instance, if it tried to respond to a
SUBSCRIBE request with a SUBACK response. This bug was
reported to the project’s maintainer and patched in version
0.2.6.

aedes: In version 0.45.0, a vulnerability occurred if the
client closed a connection with a malformed DISCONNECT
packet. The bug only occurred if the following sequence of
packets were sent: [CONNECT, PUBREL, DISCONNECT].
The sequence causes a buffer overflow to occur and crashes the
server. We learned the vulnerability was due to a bug in mqtt-
packet version 6.9.0, which is a Node.js package that aedes
depends on. The bug in mqtt-packet was patched in version
6.9.1, and aedes version 0.45.1 now points to the patched
package version.

hrotti: We discovered three vulnerabilities in hrotti. It
should be noted that the project has apparently halted develop-
ment since 2017. Therefore, at the time of writing this, all bugs
are still present in the code. The first vulnerability is a parsing
error that occurs when the client sends a valid CONNECT
packet followed by a malformed PUBLISH packet. The second
vulnerability occurs when the client sends an UNSUBSCRIBE
packet with a topic length of 0. The final vulnerability occurs
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when the client sends a malformed CONNECT packet. This
vulnerability was first reported by Github user Alexander Sieg
in an issue in September 2017 [31].

C. Vulnerability Discovery Speed

We now evaluate the discovery speed of the seven dis-
covered vulnerabilities. We compare FUME against three
fuzzing engines: BooFuzz [11], mqtt fuzz [32], and AFLNet
[13]. BooFuzz is a fuzzing framework written in Python
that generates a fixed number of test cases according to a
given input corpus. mqtt fuzz is a mutation-based fuzzer for
MQTT. AFLNet is an extension of AFL with added support
for network applications. It should be noted that only FUME
implements a generation guided fuzzing approach while the
other fuzzers use a mutation guided approach. For the sake of
fairness, we only utilize the mutation guided fuzzing engine
of FUME in this evaluation. We also share the same original
input corpus among all four fuzzers.

The final results of our evaluation can be seen in Table
IV. In general, FUME discovered all vulnerabilities faster
than any other broker. The only exception is that BooFuzz
discovered the first Mosquitto vulnerability in 23 seconds,
while FUME took 2 minutes and 29 seconds to discover the
same vulnerability. Some brokers could not find a vulnerability
after 12 hours of fuzzing (the cells labelled “N/A” in the table).
In particular, mqtt fuzz could only find the aedes vulnerability.

While testing AFLNet against some of the target brokers,
We discovered that AFLNet will fail to identify and report the
bugs in KMQTT, aedes, and hrotti. However, we confirmed
that AFLNet eventually generates the payloads necessary to
crash those brokers, and the lack of bug reporting may be
the result of a bug in AFLNet. To address this, we started
each server in a separate window before running AFLNet in
non-instrumentation mode; this allowed us to visually observe
the state of each server during the fuzzing process, but it
removes AFLNet’s code coverage features. After doing this,
we were able to detect that all three brokers eventually crash
as expected. In the case of Mosquitto, instrumenting it with
afl-gcc provides the expected code coverage functionality
supported by AFLNet, and it can detect the bugs.

Mosquitto Findings: The first two rows in Table IV corre-
spond to the Mosquitto vulnerabilities (vulnerability index 0
and 1). For the first vulnerability, it can be seen that FUME
triggered the crash in approximately 2 and a half minutes,
while BooFuzz found the bug in 23 seconds and AFLNet took
45 minutes. For the second vulnerability, FUME found the
crash in more than 4 minutes, and BooFuzz found it in 12 and
a half minutes. AFLNet did not find the second vulnerability.
mqtt fuzz did not find either vulnerability. We also observed
that AFLNet fuzzed targets much more slowly compared to the
other fuzzers, sending on average between 1 and 2 payloads
per second to the target, while the other fuzzers can send
between 10 and 100 requests per second on average.

KMQTT Findings: From Table IV, it can be seen that
Mosquitto discovered the KMQTT vulnerability in about 0.2
seconds, BooFuzz discovers the vulnerability in 50 seconds,

and AFLNet discovers it in almost 3 minutes. Triggering this
vulnerability requires the client to send a valid PUBLISH,
SUBSCRIBE or UNSUBSCRIBE packet followed by imme-
diately closing the connection. FUME is more likely to send
valid control packets due to our fine-grained fuzzing strategy.
In addition, the required valid packets are already present in
the input corpus, which explains why our fuzzer detects the
vulnerability so quickly. After 12 hours, mqtt fuzz could not
find the vulnerability, similar to before.

aedes Findings: Vulnerability index 3 indicates the results
for the aedes vulnerability. FUME and mqtt fuzz found the
bug immediately, at 1.423 seconds and 1.773 seconds respec-
tively. Meanwhile, BooFuzz found the bug in 16 seconds,
while AFLNet found the bug in 19 secondg. During these
experiments, we discovered that our input corpus actually
contains a valid [CONNECT, PUBREL, DISCONNECT] se-
quence that triggers the crash without any fuzzing needed; this
is why the bug is discovered so quickly by all four fuzzers.
In the case of AFLNet, the crash occurs during the “dry run”
phase in the beginning of the run, during which AFLNet will
send each payload verbatim to the broker.

hrotti Findings: The last 3 rows in Table IV showcase
the experimental results for hrotti. FUME could find all
vulnerabilities in less than one second. BooFuzz discovered
the first vulnerability in 7.8 seconds and the third vulnerability
in 0.655 seconds. Since the third vulnerability depends on
sending a malformed CONNECT packet, we adjusted our
Python script to only send valid CONNECT packets in order
to avoid triggering the third vulnerability multiple times.
However, we could not trigger the second vulnerability despite
multiple attempts; this is due to how hrotti only supports 65535
concurrent sessions, leading BooFuzz to quickly exhaust all
of them and causing hrotti to hang. mqtt fuzz could not
find any of the vulnerabilities. AFLNet triggered the second
vulnerability in 2 minutes and 21 seconds. We removed the
input case that triggered this crash in hopes of triggering the
other crashes; however, AFLNet failed to detect those crashes.

Vuln. Index FUME BooFuzz mqtt fuzz AFLNet
0 149 23 N/A 2700
1 255 748 N/A N/A
2 0.196 50 N/A 177
3 1.423 16 1.773 19
4 0.170 7.8 N/A N/A
5 0.677 N/A N/A 141
6 0.192 0.655 N/A N/A

TABLE IV: Time to discover each vulnerability. Times are
reported in seconds.

We now empirically compare the mutation guided fuzzing
engine to the generation guided fuzzing engine. Table V
compares the vulnerability discovery speeds between both
approaches. In the case of Mosquitto, the mutation guided
approach detects the first vulnerability in 149 seconds, while
the generation guided approach takes over 38 minutes to
find the same vulnerability. This can be attributed to the
nature of the vulnerability, which requires a specially-crafted
CONNACK packet that triggers a null pointer dereference in
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(a) (b) (c)

(d) (e) (f)

Fig. 5: State feedback evaluation – number of unique responses detected in mutation (M) versus generation (G) guided fuzzing.
Tested for similarity thresholds (th) = 0.2, 0.5, and 0.8. Interesting means that only the interesting MQTT fields were
monitored, while all means that we observed all MQTT fields.

Vuln. Index Mutation guided Generation guided
0 149 2286
1 255 83
2 0.196 0.806
3 1.423 1.561
4 0.170 0.131
5 0.677 0.069
6 0.192 0.143

TABLE V: Time to discover each vulnerability. Mutation
guided approach versus generation guided approach. Times
are reported in seconds.

the program. This occurs much faster in the mutation-based
approach, because the input corpus contains a CONNACK
packet that closely matches the contents of the malformed
packet; however, the generation guided approach can generate
hundreds of valid CONNACK packets, and most of them will
be too dissimilar such that the fuzzing step cannot generate the
malicious packet. On the other hand, the second vulnerability
is found more quickly by the generation guided fuzzer – that
is, only 83 seconds compared to the 255 seconds in the case
of mutation guided fuzzing. This result is expected. This par-
ticular Mosquitto vulnerability occurs when a valid PUBLISH
packet contains a topic length of 0. The generation guided
approach can generate this packet reasonably quickly, while
the mutation guided approach must successfully mutate the
“topic length” field in a PUBLISH packet without corrupting
the rest of the packet. All other vulnerabilities were found in
less than 2 seconds using both fuzzing approaches.

D. Response Feedback Benchmarks

Using response feedback, FUME can monitor unique re-
sponses observed in a broker. The uniqueness of a network
response depends on the field values of the control packet,
while the uniqueness of console response is dictated according
to a similarity threshold. In both cases, we attempt to mini-
mize the number of redundant cases in the input queue. We
have collected unique responses among 3 brokers: Mosquitto,
HiveMQ, and EMQX. In the case of Mosquitto, we used the
patched version so that we did not risk triggering a crash
during our experiments. By default, HiveMQ and EMQX write
log contents to an output file on disk, but we changed this
by adjusting their configuration files so that log contents are
printed to stdout. For each broker, we measured the number
of unique responses across 10 thousand runs using generation
guided and mutation guided fuzzing. Figure 5 shows the full
results. Note that the vertical axes are logarithmic for the
purpose of readability. For console responses, we measured
the number of responses for similarity thresholds (i.e., th) 0.2,
0.5, and 0.8. For network responses, we measured how many
unique responses were captured when we only monitored
interesting MQTT fields (as described in Section IV-B1),
and when we monitored all fields. We denote the interesting
fields monitor mode as G-I and M-I for generation-guided
and mutation-guided fuzzing, respectively, and the all fields
monitor mode as G-A and M-A.

Mosquitto: From Figure 5a, we can see that G-I and M-I,
i.e., only interesting response fields, perform very similarly.
This is not too surprising, since many of the packets from our
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input corpus were collected while running Mosquitto, allowing
the mutation fuzzer to trigger many “hits” in the network
responses early on. For G-A and M-A, i.e., all response fields,
the number of unique responses is much higher. We attribute
the rise in unique responses to the client ID field in the
CONNACK response packet, which contains a random byte
string generated by Mosquitto. FUME ignores this value when
it only monitors interesting fields. Figure 5b plots the number
of unique console responses observed in Mosquitto. For th =
0.5, the findings for mutation guided fuzzing and generation
guided fuzzing are nearly identical. Again, we attribute this
to the input corpus that we generated from Mosquitto. In the
case of th = 0.8, generation guided fuzzing actually detected
more unique responses; however, most of these were redundant
cases since Mosquitto prints the client ID to the console. In
the case of th = 0.2, generation guided fuzzing only logged
a single response.

HiveMQ: Figures 5c and 5d plot the number of unique
responses in HiveMQ. For network responses, we found
that mutation-guided fuzzing receives relatively few responses
“hits” regardless of which fuzzing field values are monitored.
G-I performed slightly better (19 responses), and G-A discov-
ered almost 700 responses. For console responses, the number
of observations in generation guided fuzzing and mutation
guided fuzzing are similar, especially when th = 0.5.

EMQX: Finally, Figures 5e and 5f plot the number of
unique responses in EMQX. For network responses, we ob-
served similar behavior to Figure 5c, with the exception
of M-A; between runs 3041 and 3257, the number of hits
increases rapidly. For console responses, we also observe
similar behavior to Figure 5d. For th = 0.2 and th = 0.5,
generation-guided fuzzing narrowly outperforms mutation-
guided fuzzing. As usual, when th = 0.8, we find the majority
of logged responses are redundancies of previous responses.

VI. RELATED WORK

Fuzzing is a widely popular approach for finding software
bugs. AFL-type fuzzers are arguably the most popular class of
fuzzing frameworks [13], [18], [33]–[35]. AFL is a coverage-
based greybox fuzzer (CGF); it instruments the target by
injecting instructions into the assembly code at compile-time,
and during fuzzing, the instrumented target informs AFL
whenever it reaches a new path in the code. AFLFast [33]
improves on AFL by tweaking the frequency at which a
selected seed is fuzzed (its energy); AFLFast gives higher
energy to seeds which execute low-frequency paths, thereby
increasing the odds of finding a new path. AFLGo [34]
enables directed fuzzing toward a target code location; the
instrumented binary reports back to the fuzzer both the code
coverage and the seed distance, i.e., the covered distance of a
seed input from the target code location. Then AFLGo selects
seeds which are more likely to minimize this seed distance.
Other fuzzing frameworks might combine the CGF approach
popularized by AFL with symbolic/concolic analysis [36]–
[38], dynamic taint analysis [14], [19], [39], and grammar
construction [40].

The major advantages of these fuzzing frameworks over
FUME is 1) they are agnostic to the target software or protocol,
and 2) they can monitor code coverage directly using either
instrumentation (compiler-level or binary-level), or dynamic
taint analysis, while FUME can only estimate coverage. On
the other hand, all of these approaches require a great deal
of “setup“ on the part of the user. For example, most of these
frameworks rely strictly on mutation-guided fuzzing since they
have no knowledge of the target. Thus, their efficiency depends
entirely on the seed corpus supplied by the user, which
may be incomplete. Skyfire [40] constructs a probabilistic
context-sensitive grammar (PCSG) to generate syntactically-
and semantically-valid input seeds. However, Skyfire requires
the user to supply an input corpus and context-free grammar.
VUzzer [19] requires the user to perform static analysis on
the target by constructing a control flow graph (CFG) and
running analysis scripts. AFLNet [13] runs a persistent target
program and requires a “cleanup script” to discard any changes
to the program’s state over a single run. In contrast to these
approaches, FUME requires almost no setup from the user,
since it also supports generation-guided fuzzing; moreover,
FUME does not need a cleanup script for the persistent target
program since it monitors the network and console channels
for response feedback, which only capture the most important
state changes. Finally, as opposed to other fuzzing frameworks,
FUME requires no instrumentation or dynamic taint analysis,
which are not always available for every application.

VII. CONCLUSION

In this paper, we designed a fuzzer based on Markov
modeling for servers in MQTT-connected systems. MQTT
affects hundreds of thousands of devices, particularly resource-
constrained devices such as those found in IoT. Our fuzzer
combines the techniques of mutation guided fuzzing and
generation guided fuzzing to rigorously stress test the MQTT
protocol. Response feedback from the target broker is mon-
itored for tracking unique activity, which provides new test
cases for the input corpus. We discussed three fuzzing methods
that emphasize fine-grained manipulation of the payload. We
have shown that state-of-the-art MQTT implementations such
as Mosquitto contain serious vulnerabilities that can lead
directly to denial-of-service attacks and threaten the reliability
of the entire network. In total, we discovered 7 vulnerabilities,
including 6 zero-day vulnerabilities. Finally, we compared
our fuzzer against three popular fuzzing frameworks and
demonstrated that our model can find MQTT vulnerabilities
more effectively and rapidly in nearly all cases.
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