

DENIAL OF CONVENIENCE ATTACK TO SMARTPHONES USING A FAKE
WI-FI ACCESS POINT

by

ERICH DONDYK

A thesis submitted in partial fulfillment of the requirements
for the Honors in the Major Program in Mechanical Engineering

in the College of Engineering and Computer Science
and in The Burnett Honors College
at the University of Central Florida

Orlando, Florida

Spring Term 2012

Thesis Chair: Dr. Cliff Zou

ii

ABSTRACT

 In this paper, we consider a novel denial of service attack targeted at popular smartphone

operating systems. This type of attack, which we call a Denial of Convenience (DoC) attack,

prevents non-technical savvy victims from utilizing data services by exploiting the connectivity

management protocol of smartphones’ operating systems when encountered with a Wi-Fi access

point. By setting up a fake Wi-Fi access point without Internet access (using simple devices such

as a laptop), an adversary can prompt a smartphone with enabled Wi-Fi features to automatically

terminate a valid mobile broadband connection and connect to this fake Wi-Fi access point. This,

as a result, prevents the targeted smartphone from having any type of Internet connection unless

the victim is capable of diagnosing the problem and disabling the Wi-Fi features manually. For

the majority of smartphone users that have little networking knowledge, this can be a challenging

task. We demonstrate that most current smartphones, including iPhone and Android phones, are

vulnerable to this DoC attack. To address this attack, we propose implementing a novel Internet-

access validation protocol to validate a Wi-Fi access point by taking advantage of the cellular

network channel. It first uses the cellular network to send a secret to an Internet validation server,

and tries to retrieve this secret via the newly established Wi-Fi channel to validate the connection

of the Wi-Fi channel.

iii

ACKNOWLEDGEMENTS

I would like to acknowledge my advisor Dr. Cliff Zou for all his support. I would also

like to thank my committee members Dr. Mainak Chatterjee, Dr. Xun Gong, and Dr. Mark

Llewellyn.

I would also like to extend my sincere gratitude to Dmytro Dondyk for his great

dedication in the experiment implementations portion of this project as well as Raquel Cohen

and Roberto Claretti for their constant support.

iv

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION ... 1

CHAPTER TWO: BACKGROUND .. 4

CHAPTER THREE: RELATED WORK ... 5

CHAPTER FOUR: ATTACKS .. 7

4.1 Attack 1: Passive Access Point .. 7

4.2 Attack 2: Fake Validation Response .. 8

4.3 Attack 3: Selective Internet Traffic Throttling ... 9

CHAPTER FIVE: DEFENSES .. 11

5.1 Defense Against Attack 1: Static Identifier Validation Protocol 11

5.2 Defense Against Attack 2: Dynamic Identifier Validation Protocol 12

5.3 Defense Against Attack 3: Network Performance Monitoring 14

CHATER SIX: EVALUATION ... 15

6.1 Attack 1: Passive Access Point .. 15

6.2 Defense Against Attack 1: Static Identifier Validation Protocol 16

6.3 Attack 2: Fake Validation Response .. 18

CHAPTER SEVEN: CONCLUSIONS .. 20

REFERENCES ... 21

v

LIST OF FIGURES

Figure 1: Real vs. fake AP .. 7

Figure 2: Wi-Fi Authenticator validation test ... 12

Figure 3: Illustration of the dynamic ID validation protocol .. 14

Figure 4: Wi-Fi connection status displayed with attack 1 ... 16

Figure 5: Detection of invalid AP using Wi-Fi Authenticator .. 17

Figure 6: Authentication time for a fake Wi-Fi AP .. 18

1

CHAPTER ONE: INTRODUCTION

 Just like cellular phones before them, smartphones are quickly transitioning from being a

novelty to an essential everyday tool. Having a single device capable of serving as a web

browser, GPS navigator, portable media player, camera, and mobile phone can be very attractive

to consumers. With more than half of the smartphone market share, the Android operating

system is currently the most popular among the general public (Yarow). Unfortunately, as users

become more dependent upon these devices, so does the interest of people seeking to exploit

them. In the Android platform, a specific form of a denial of service (DoS) attack, which we call

a denial of convenience (DoC) attack, can be performed with little technical background on a

large number of users simultaneously.

 Launching a DoC attack on the Android operating system can be achieved with relative

ease. First, the attacker configures a computer as a Wi-Fi access point. Once this is done, the

attacker makes sure this fake access point is not allowing any data traffic. Finally, the attacker

deploys the fake access point in a heavily transited place where users are likely to use their

smartphones. If deployed in a location where Wi-Fi Internet access is expected, such as a café,

hotel, or airport, the attacker must position the fake access point closer to the victim than the

legitimate access point to provide a stronger signal. When inside the coverage area of the open

access point, Android will automatically disconnect from the mobile broadband in order to

connect to the hotspot. However, because this fake access point does not have any Internet

connectivity, the victim will be deprived of any form of Internet service.

 A smartphone being targeted by this attack would display an optimal network connection

status. Only by manually disabling the Wi-Fi capabilities of the device, would the victim be able

2

return to the mobile broadband and, therefore, regain Internet services. However, with more than

one third of all US adults currently owning a smart phone (Smith), we cannot expect the average

user to be able to diagnose this exploit and successfully navigate through its solution. Therefore,

developing an automated solution to this type of attack is highly desired.

To handle similar types of connectivity issues, traditional operating systems have

developed several network awareness mechanisms. Microsoft’s Windows, for instance, uses the

Network Connectivity Status Indicator (NCSI) feature to verify the validity of an Internet

connection. NCSI achieves this by sending a validation challenge to a predetermined website and

comparing its response against the expected result (Appendix). If the validation response

matches the expected result, the system assumes a valid Internet connection has been established.

In this paper, we develop an Android application that implements a similar network awareness

mechanism. We then test its effectiveness by exposing it to a DoC attack under real conditions.

Although this type of solution is widely implemented by traditional operating systems, its

effectiveness against more sophisticated DoC attacks is limited. Its weakness lies on the fact that

the validation key, the value returned in the validation response, must remain constant. An

attacker, therefore, can easily fool the mechanism by acquiring the static validation key and

providing it to the victim when her/his system performs a network awareness test. As a result,

developing a more robust network awareness feature capable of withstanding this type of attack

would be favorable.

In this paper, we propose a novel solution capable of overcoming this sophisticated DoC attack.

It achieves this by overcoming the main flaw of the mechanism previously considered: the

validation key is not a static value. This, as a result, makes it impossible for an attacker without

3

Internet connectivity to provide the information expected by the device. Thus, prompting the

smartphone to disconnect from the fake Wi-Fi access point and reconnect to the mobile

broadband.

 In short, our paper makes the following contributions: (i) Exposes a specific type of DoS

attack that Android’s Wi-Fi protocol is unable to prevent. In addition, demonstrate how it can be

easily mounted on a large number of victims simultaneously. (ii) Applies a network awareness

mechanism commonly used by traditional operating systems to prevent this type of exploit. We

implement this solution in the form of a lightweight application and test it thoroughly under real

conditions. (iii) Uncovers how this mechanism can be fooled by a more sophisticated version of

the attack. Furthermore, demonstrate this by implementing an attack that fools the network

awareness solution. (iv) Proposes a novel solution capable of overcoming the limitations of the

previously implemented network awareness mechanism. Our solution requires no user

intervention. Thus, making it especially attractive because of the large number of smartphone

users that cannot be expected to diagnose and solve this type of exploit.

4

CHAPTER TWO: BACKGROUND

 By design, Android smartphones connect to the Internet using only one channel at a time.

For users with a data plan, this channel is normally their provider’s mobile broadband. However,

this channel may transition automatically to Wi-Fi if the user enters the coverage area of an

access point and if the following two conditions are met: (i) the Wi-Fi capabilities of the device

are enabled and (ii) the access point is open or has been previously accessed. Throughout this

process, Android’s connectivity manager does not check if the Wi-Fi access point has a

functioning Internet connection. An attacker, therefore, can prompt a device to disconnect from

the functioning mobile broadband by establishing a Wi-Fi access point. Then, deprive the victim

of Internet services by blocking all data traffic through their access point.

 In order to determine the status of an Internet connection, traditional operating systems

have developed a variety of network awareness features. Windows, for instance, uses the

Network Connectivity Status Indicator (NCSI) to achieve this. NCSI verifies that the targeted

access point has Internet connectivity by performing two simple tests. In the first test, it attempts

to load a webpage via HTTP through the newly established connection. This page, used solely by

this Windows feature, only contains the text line “Microsoft NCSI”. If this content is retrieved

successfully, it assumes the access point is connected to the Internet. In the second test, NCSI

verifies that the page dns.msftncsi.com resolves to the expected IP address 131.107.255.255. If

either one of these tests is successful, it is assumed the access point is connected to the Internet

(Appendix).

5

CHAPTER THREE: RELATED WORK

Previous works on smartphone security can be organized into two subjects. The first of

these subjects is smartphone malware. Many works on this area of study focus on Android

because its large share of the smartphone market has made it the most attractive mobile platform

for malware development. In Backes’ and Sastry’s works, the malware is introduced into the

system by escalating the permissions of a seemingly harmless application (Backes) (Sastry).

Vidas considers different exploits that can be mounted on Android phones if an application has

an unnecessary amount of permissions (Vidas). Schmidt demonstrates how the Android

permission system can be bypassed by introducing malware that uses the native Linux

applications of the device (Schmidt). Porter proposes a tool that assists developers or users in

determining whether an app is overprivileged (Porter). Nauman, on the other hand, proposes a

framework that enhances the default Android permission systems (Nauman). Obviously, these

works differ from ours in that they do not consider network exploits.

The second subject of smartphone security research considers the implementation of

traditional computer exploits and defenses on mobile devices. Because smartphones share many

characteristics with regular computers, they also share their susceptibility to some widely used

forms of attacks. Kumar, for example, demonstrates how several port scanning techniques can be

used on Android to gather information about the device (Kumar). Then, use this information to

mount different eavesdropping, man-in-the-middle, and denial of service attacks. Portokalidis, on

the other hand, considers how resource limitations make it problematic or impractical for

smartphones to use traditional security measures such as file scanners (Portokalidis). To

6

overcome this, it proposes a model that delegates all security checks to a virtual replica of the

phone hosted on a remote server.

Currently, there are many works available on rogue access point detection. Several

enterprise Wi-Fi security systems, for example, rely on lists of authorized access points to detect

when a rogue access point is introduced into an area (Fluke) (Aruba) (WiMetrics). ETSniffer, on

the other hand, provides the rogue access point detection capabilities to the end user. By utilizing

network metrics to detect latencies characteristics of this type of exploits, ETSniffer is able of

identifying evil-twin access points with a high level of accuracy (Song).

Our work is different from all previous works because it considers a form of attack

unique to smartphones. Also, it is able to successfully implement on Android a defense

mechanism currently employed by tradition operating systems. Finally it proposes a novel

network awareness feature that relies on the mobile broadband connection of the device to

provide an attack resistant authentication scheme.

7

CHAPTER FOUR: ATTACKS

4.1 Attack 1: Passive Access Point

 The first method considered in this paper for executing a DoC attack is through a Wi-Fi

access point without an Internet connection. When an Android smartphone enters the coverage

area of a wireless router, it is automatically assigned an identifier and loaded into the Wi-Fi stack

of the device. If the phone’s Wi-Fi connectivity options are enabled and the access point is open

or has been previously accessed, it will automatically connect to it. It will then terminate any

ongoing mobile broadband connection that might have been established prior to the Wi-Fi

connection. However, the device does not verify the access point has a functioning Internet

connection at any time during or after the connectivity process. Therefore, by setting up a Wi-Fi

access point that is not connected to the Internet, an Android device can be prompted to abandon

its mobile broadband data connection to establish another one that does not provide any data.

This, in turn, denies the user of any type of data service.

Figure 1: Real vs. fake AP

 The DoC attack previously described can be executed in a variety of ways. One simple

approach is through a wireless router that is not connected to the Internet. This method can be

implemented with little resources and technical knowledge. Another possible approach is to

configure a laptop as an access point, which can be achieved by using the free network software

(b) Fake AP (a) Real AP

8

suite aircrack-ng, and making sure it is not allowing any data traffic (d’Otreppe). This approach

allows the attacker to be unhindered when executing the attack.

Regardless of the implementation used, this type of attack can be very effective because:

(i) The attacker has the ability to deny data services to a large number of victims simultaneously.

(ii) From the victim’s perspective, it is difficult to detect this type of attack because the device

would display an optimal connection status. That is, Android would show that a Wi-Fi

connection has been successfully established and that it is working properly. (iii) This type of

attack can be executed without the use of sophisticated equipment or extensive technical

expertise.

4.2 Attack 2: Fake Validation Response

 A defense against attack 1 can be successfully mounted by implementing network

awareness features similar to those used by traditional operating systems. These features test the

Internet connectivity of an access point by sending a challenge to a validation server and

comparing a key obtained in the response against the expected result (Appendix). For this to

work (i) the key must be known by the device before performing the validation and (ii) the key

stored in the validation server must remain constant. However, these conditions allow the

attacker to obtain the key from the smartphone or the server. And, once the key is known, it can

be used to the fool the feature by selectively responding to the probing packages at the time of

validation.

 In practice, there are a variety of ways in which such attack can be implemented. In this

paper, we implement attack 2 by configuring a computer as an access point and redirecting all

probing packets to a fake validation server. Because Android does not currently support ad-hoc

9

IBSS networks (MIC_888), it is necessary to configure the computer as a full Wi-Fi access point.

This can be achieved by using aircrack-ng. Then, use the Linux application iptables to redirect

all probing packages to a local server that mimics the validation server (Russell).

Using this implementation, the network awareness protocol is able to successfully

retrieve the key. And, even though the key is retrieved from the attacker’s computer, the access

point is classified as valid. The connection to the fake Wi-Fi point is maintained, the device does

not return to the functioning mobile broadband connection, and the victim is deprived of all data

services. This approach also has the advantage of requiring few resources. Any laptop computer

with a wireless card and a UNIX/Linux operating system is sufficient to successfully execute this

attack 2.

4.3 Attack 3: Selective Internet Traffic Throttling

A successful defense against attack 2 could be formulated by implementing a challenge-

response mechanism that relies on a dynamic key. That is, the key is different for every

validation test performed. Even if such defense is possible, an attacker with Internet access could

defeat it. Just like in the network awareness protocol previously discussed, the smartphone would

still need to access a server to retrieve a validation key. Therefore, if the attacker has Internet

access, it could fool the protocol by permitting the probing packets to reach the validation server

while blocking all other traffic. This would allow the device to successfully retrieve the dynamic

key. As a result, the device would remain connected to a fake Wi-Fi access point that does not

allow other forms of traffic, thus successfully executing a DoC attack.

 There are several ways of implementing this particular type of attack. One possible

approach is almost identical to our attack 2 implementation. Essentially, it requires configuring a

10

computer as a Wi-Fi access point, redirecting all probing packages to the validation server, and

blocking all other traffic. This can be achieved by using aircrack-ng and iptables. However, this

approach requires additional hardware. Two separate network interface cards are needed to

establish the Wi-Fi access point and to maintain Internet connectivity. However, this additional

hardware requirement can be easily satisfied by using the computers 10/100/1000 Gigabit

Ethernet port or an inexpensive USB wireless adapter along with its internal wireless card.

11

CHAPTER FIVE: DEFENSES

5.1 Defense Against Attack 1: Static Identifier Validation Protocol

 In order to counteract attack 1, we implement a network awareness protocol on Android

in the form of a lightweight app. This app, which we call Wi-Fi Authenticator, automatically

verifies that Wi-Fi access points have a functioning Internet connection without the need for any

user intervention. To achieve this, Wi-Fi Authenticator relies on the following two-step process:

(i) Every time a connection is established with an access point, Wi-Fi Authenticator sends a

challenge to a validation server. If a response is not obtained within some time period, the access

point is considered invalid. On the other hand, if a response is received, Wi-Fi Authenticator

proceeds to step 2 of the validation process. (ii) Wi-Fi Authenticator retrieves a key from the

validation response and compares it with a key stored in the device. If the keys match, the access

point is considered valid. Otherwise, it is considered invalid. Step 2 prevents an attacker from

easily fooling the authentication protocol by sending an arbitrary response to the challenge.

If the Wi-Fi access point is considered invalid in either step, Wi-Fi Authenticator

terminates and disables the connection. This prompts the Android smartphone to transition back

to a mobile broadband data connection returning data services to the victims. Also, it maintains

the Wi-Fi capabilities of the device enabled allowing it to connect to other Wi-Fi access points

that might become available in the future.

12

Figure 2: Wi-Fi Authenticator validation test

Implementing Wi-Fi Authenticator as an Android app provides several advantages. It

allows the use of Android libraries in the development process. Thus, it improves its robustness

and compatibility across different versions of the operating system. Also, it allows for easy

distribution to existing smartphones through the use of Google Play. Finally, because it can be

installed like any other application, it facilitates user implementation.

5.2 Defense Against Attack 2: Dynamic Identifier Validation Protocol

 As demonstrated by attack 2, a more sophisticated attacker with greater technical

knowledge could overcome defense 1. This is primarily due to the fact that the validation key

used in this method of defense is always constant. In order address this weakness, we propose a

novel network awareness protocol in which the validation key is dynamic. That is, it changes

every time a validation test is performed. We achieve this by relying on the smartphone to

 status

 validation key

validation server

 validation server

content

13

generate a different key for every validation test it performs. An attacker, therefore, is unable to

fool the protocol by supplying the expected response because it is not known by them.

This approach relies on the following five step process to validate a Wi-Fi access point:

(i) After encountering an accessible Wi-Fi access point, the smartphone generates a random key

and sends it along with its MAC address to the validation server through the cellular network.

Depending on the user’s billing agreements, this data can be send as a SMS or TCP package. (ii)

The validation server stores the random key in a table using the MAC address of the smartphone

as the index. (iii) After transitioning from the mobile broadband to the Wi-Fi connection, the

smartphone sends a challenge to the validation server. (iv) The validation server responds with

the key corresponding to the smartphone’s MAC address. (v) The key obtained from the

validation response is compared against that generated earlier by the smartphone. If equal, the

Wi-Fi connection is considered valid. Otherwise, it is considered invalid.

 Similarly to defense 1, this validation test is performed automatically without the need for

any user intervention. Also, if a Wi-Fi access point is considered invalid, the connection is

terminated and disabled. This allows the device to regain Internet services by reconnecting to the

mobile broadband while maintaining its Wi-Fi capabilities enabled.

(a) ID validation with a legitimate AP

(b) ID validation with a fake AP

14

Figure 3: Illustration of the dynamic ID validation protocol

5.3 Defense Against Attack 3: Network Performance Monitoring

 Given the case in which the attacker has Internet access, defense 2 might not be able to

counteract attack 3. The effectiveness of defense 2 lies on the fact that the key is not known prior

to the validation test. As a result, even if the attacker has the ability to intercept the validation

challenge, it is not able to fool the protocol by returning the correct response. However, if the

attacker has an Internet connection, it could execute a successful DoC attack by allowing the

challenge to reach the validation server and blocking or throttling all other traffic. However, this

weakness can be eliminated by expanding defense 2 into considering network metrics. Thus, if

traffic blocking or throttling is occurring, the network awareness feature would measure the

network performance is below a predetermined threshold. Then, using this information, it would

regain data services by prompting the smartphone to transition back to the mobile broadband.

15

CHATER SIX: EVALUATION

6.1 Attack 1: Passive Access Point

In order to simulate a realistic scenario, we implement attack 1 by configuring a Linux

laptop computer as a Wi-Fi access point. Although attack 1 could be easily implemented by

using a wireless router without an Internet connection, we believe this particular setup is the

most effective at simulating a real attack in which mobility is highly desired. Aircrack-ng is used

to create the fake Wi-Fi access point through the native wireless adapter of the laptop computer.

In order to prompt the targeted device to connect to our fake access point, we automatically

assign an IP address to it after entering our coverage area. We achieve this by creating a DHCP

server using the free Linux package dhcp3-server (dhcp3). When running both of these

applications combined, we are able to successfully emulate a Wi-Fi access point.

 We setup our fake Wi-Fi access point in an average sized room outside the coverage area

of any other Wi-Fi access point. We then enter the room with an Android smartphone that has its

Wi-Fi capabilities enabled. Finally, we perform an arbitrary Google query using the default

Google Search app of the device. After erasing the fake access point entry from the Wi-Fi stack

of the device, we repeat this test 20 times. In all cases, the smartphone connects to the fake

access point, disconnects from the mobile broadband, and displays the Wi-Fi connection has a

strong signal. However, at the time of the query, no information is returned nor a notification

shown. Thus, a successful DoC attack is achieved.

16

Figure 4: Wi-Fi connection status displayed with attack 1

6.2 Defense Against Attack 1: Static Identifier Validation Protocol

 We implement our defense 1 network awareness feature as an Android app which we call

Wi-Fi Authenticator. Wi-Fi Authenticator tests the connectivity of an access point by accessing a

website, retrieving its content, and comparing it against a key phrase. This validation scheme is

performed automatically every time a Wi-Fi connection is established. If Wi-Fi Authenticator is

unable to access the website or if the content retrieved does not contains the key phrase, the

access point is considered invalid and disabled. For these tests, we use the default Google page

as the validation website (74.125.227.1) and the word “google” as the key phrase.

 To evaluate the performance of defense 1, we execute an experiment very similar to that

of attack 1. Just like before, we setup a fake access point in an average sized room outside the

coverage area of any other Wi-Fi access point. We then expose a regular Android smartphone

with Wi-Fi Authenticator installed to the fake access point. In all cases, Wi-Fi Authenticator is

17

able to determine the Wi-Fi access point is invalid, disconnect from it, and reconnect to the

mobile broadband.

Figure 5: Detection of invalid AP using Wi-Fi Authenticator

Wi-Fi Authenticator is able to determine if a Wi-Fi access point is valid almost

immediately. However, the time it takes for Wi-Fi Authenticator to detect a fake access point

varies depending on the environment. The following figure shows the validation times for fake

Wi-Fi access points. Three different devices were used to generate the fake access points in this

experiment.

status

validation key

validation server

 AP disabled

Wi-Fi enabled

 3G connection

18

Figure 6: Authentication time for a fake Wi-Fi AP

6.3 Attack 2: Fake Validation Response

 To implement attack 2, we first create a fake validation server. This is achieved by setting

up an Apache HTTP Server in the attacker’s Linux laptop computer (McCool). Because Wi-Fi

Authenticator uses “google” as the key phrase of the validation scheme, our Apache server is

configured to display the word “google”. Just like in our attack 1 implementation, we configure

the Linux laptop computer as a Wi-Fi access point using aircrack-ng. Then, we set up a DHCP

server using dhcp3-server. This automatically assigns IP addresses to smartphones entering the

coverage area and, thus, prompts them to connect to our fake Wi-Fi access point. Finally, we use

iptables to redirect all track sent to 74.125.227.1, Google’s homepage, to the IP address of the

fake Wi-Fi access point network interface.

 To measure the performance of attack 2, we deploy our attacker’s laptop computer in an

average sized room outside the coverage area of any other Wi-Fi access point. We then enter the

room with an Android smartphone that has Wi-Fi Authenticator installed. This test is repeated 20

times erasing the Wi-Fi stack of the smartphone between each test. In all cases, Wi-Fi

0
10
20
30
40
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Au
th

en
tic

at
io

n
Ti

m
e

(s
ec

)

Instance

Authentication Time for
Fake Wi-Fi AP

19

Authenticator is unable to determine the fake Wi-Fi access point is invalid. Thus, the connection

is preserved and the smartphone is denied Internet connectivity.

20

CHAPTER SEVEN: CONCLUSIONS

 In this paper, we have considered a denial of service attack targeted at popular

smartphone platforms. We present three possible approaches for executing this attack along with

three defenses capable of counteracting them. We demonstrate, through implementation an

evaluation, that such attacks are successful at achieving their purpose. Also, we demonstrate how

each proposed defense is capable of counteracting the different implementations of the attacks.

Our network awareness implementation is able to validate a Wi-Fi access points in less a minute.

21

REFERENCES

Yarow, Jay. “GARTNER: Android Market Share Doubles, iOS Drops In Q3.” Business Insider

15 Nov. 2011. 2 Dec. 2011 <http://articles.businessinsider.com/2011-11-

15/tech/30400455_1_ios-iphone-smartphone-market>.

Smith, Aaron. “Smartphone Adoption and Usage.” Pew Internet 11 Jul. 2011. 2 Dec. 2011

<http://www.pewinternet.org/Reports/2011/Smartphones.aspx>.

“Appendix K: Network Connectivity Status Indicator and Resulting Internet Communication in

Windows Vista.” Microsoft TechNet 2 Dec. 2011 <http://technet.microsoft.com/en-

us/library/cc766017%28WS.10%29.aspx>.

Backes, Michael. Sebastian Gerling, Phillip von Styp-Rekowsky. “A Local Cross-Site Scripting

Attack against Android Phones”. Saarland Uniersity, Aug 2011.

<https://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf>.

Sastry, B. V. S. S. R. S. and K. Akshitha. “Authorizing Stockpile Attacks on Android.”

International Journal of Mathematical Archive 2.11 (2011): 2475-2479. Web.

Vidas, Timothy. Daniel Votipka, Nicolas Christin. “All Your Droid Are Belong To Us: A Survey

of Current Android Attacks.” Proceeding of the 5th USENIX Workshop on Offensive

Technology, 8 Aug. 2011, San Francisco, CA. Web. 12 Nov. 2011.

Schmidt, Aubrey-Derrick. Hans-Gunther Schmidt, Leonid Batyuk, Jan Hendrik Clausen, Seyit

Ahmet Camtepe, Sahin Albayrak. “Smartphone Malware Evolution Revisited: Android

Next Target?”. Proceeding of the 4th Annual Malicious and Unwanted Software

(MALWARE), 13 Oct. 2009, Montréal, Quebec, Canada. 2 Feb. 2010. 1-7. Web. 22 Aug.

2011.

http://articles.businessinsider.com/2011-11-15/tech/30400455_1_ios-iphone-smartphone-market
http://articles.businessinsider.com/2011-11-15/tech/30400455_1_ios-iphone-smartphone-market
http://www.pewinternet.org/Reports/2011/Smartphones.aspx
http://technet.microsoft.com/en-us/library/cc766017%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc766017%28WS.10%29.aspx
https://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf

22

Porter Felt, Adrienne. Erika Chin, Steve Hanna, Dawn Song, David Wagner. “Android

Permissions Demystified”. Proceedings of the 18th ACM conference on Computer and

Communications Security (CCS), 17 Oct. 2011, Chicago, IL. 627-638. Web. 17 Dec.

2011.

Nauman, Mohammad. Sohail Khan, Xinwen Zhang. “Apex: Extending Android Permission

Model and Enforcement with User-defined Runtime Constraints”. Proceedings of the 5th

ACM Symposium on Information, Computer and Communications Security (ASIACCS),

13 Apr. 2010, Beijing, China. 328-332. Web. 14 Sep. 2011.

Kumar, Naresh and Muhammad Ehtsham Ul Haq. “Penetration Testing of Android-based

Smartphones.” Thesis. Chalmers University of Technology, June 2011. Web.

Portokalidis, Georgios. Philip Homburg, Kostas Anagnostakis, Herbert Bos. “Paranoid Android:

Versatile Protection For Smartphones.” Proceedings of the 26th Annual Computer

Security Applications Conference (ACSAC), 6 Dec. 2010, Austin, TX. Dec. 2010. 347-

356. Web. 29 Aug. 2011.

“AirMagnet WiFi Analyzer.” Fluke Networks 2012. Jan 14. 2012.

<http://www.flukenetworks.com/enterprise-network/wireless-network/AirMagnet-WiFi-

Analyzer>.

“AirWave™ Solution Guide.” Aruba Networks 2011. 14 Jan. 2012.

<http://www.arubanetworks.com/pdf/products/SG_AW.pdf>.

“WiSentry – Wireless Access Point Detetion System.” WiMetrics 2006. Jan 14. 2012.

<http://wimetrics.com/Products/WAPD.htm>.

http://www.flukenetworks.com/enterprise-network/wireless-network/AirMagnet-WiFi-Analyzer
http://www.flukenetworks.com/enterprise-network/wireless-network/AirMagnet-WiFi-Analyzer
http://www.arubanetworks.com/pdf/products/SG_AW.pdf
http://wimetrics.com/Products/WAPD.htm

23

Song, Yimin. Chao Yang, Guofei Gu. “Who Is Peeping at Your Passwords at Starbucks? – To

Catch an Evil Twin Access Point.” Proceeding of the 40th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN-DCCS 2010), 28

Jun. 2010, Chicago, IL. 9 Aug. 2010. 323-332. Web. 12 Aug. 2011.

MIC_888. “Android Ad-hoc Wireless Network Support.” Xdadevelopers 9 Mar. 2012

<http://www.xda-developers.com/android/android-ad-hoc-wireless-network-support/>.

d’Otreppe, Thomas. aircrack-ng. Vers. 1.1. Computer software. Aircrack-ng.org, 2010. Ubuntu.

< http://www.aircrack-ng.org/index.html >.

Russell, Rusty. iptables. Vers. 1.4.12.2. Computer software. Netfilter Core Team, 2012. Ubuntu.

<http://www.netfilter.org/projects/iptables/index.html>.

dhcp3-server. Vers 3.1.3. Computer software. Internet Systems Consortium, 2011.

McCool, Robert. Apache HTTP Server. Vers. 2.4.1. Computer software. Apache Software

Foundation, 2012. Ubuntu. <http://httpd.apache.org/>.

http://www.xda-developers.com/android/android-ad-hoc-wireless-network-support/
http://www.aircrack-ng.org/index.html
http://www.netfilter.org/projects/iptables/index.html
http://httpd.apache.org/

	ABSTRACT
	ACKNOWLEDGEMENTS
	list of figures
	CHAPTER ONE: INTRODUCTION
	CHAPTER TWO: BACKGROUND
	CHAPTER THREE: RELATED WORK
	CHAPTER FOUR: ATTACKS
	4.1 Attack 1: Passive Access Point
	4.2 Attack 2: Fake Validation Response
	4.3 Attack 3: Selective Internet Traffic Throttling

	CHAPTER FIVE: DEFENSES
	4
	5
	5.1 Defense Against Attack 1: Static Identifier Validation Protocol
	5.2 Defense Against Attack 2: Dynamic Identifier Validation Protocol
	5.3 Defense Against Attack 3: Network Performance Monitoring

	CHATER SIX: EVALUATION
	6
	6.1 Attack 1: Passive Access Point
	6.2 Defense Against Attack 1: Static Identifier Validation Protocol
	6.3 Attack 2: Fake Validation Response

	CHAPTER SEVEN: CONCLUSIONS
	REFERENCES

