

SeeShells: An Optimized Solution for Utilizing
Shellbags in a Digital Forensic Investigation

Edward L. Amoruso
Department of Computer Science

University of Central Florida
Orlando, FL 32816 US

eamoruso@knights.ucf.edu

Richard Leinecker
Department of Computer Science

University of Central Florida
Orlando, FL 32816 US

Richard.Leinecker@ucf.edu

Cliff C. Zou
Department of Computer Science

University of Central Florida
Orlando, FL 32816 US
changchun.zou@ucf.edu

Abstract— The Windows registry is a treasure trove for digital
forensics investigators. Shellbags, an important element in
registry, can assist investigators with detailed timeline evidence.
Several existing applications provide access to Shellbags, but they
lack a complete and effective interface for searching and reporting
event timelines. In this paper, we develop an optimized and
configurable application called “SeeShells” to query Shellbags to
build history of criteria-based events and efficiently display them
in a rich user interface to facilitate forensic investigation. Our
application provides analysis capabilities to flag suspicious events
in an easy-to-view frequency map with corresponding event labels.
Our frequency map, also known as a heat map, will show density
plots in a range of colors to identify the intensity of activities
satisfying a query. In addition, our application can export parsed
timeline event information into various commonly used file
formats to compliment an investigator’s digital forensic report.

Keywords— Digital forensic investigation, Shellbags, registry
datatype, event timelines, event frequency

I. INTRODUCTION
Windows operating systems have a special hierarchical

database that holds important, and many times mission critical
information. It is known as the Windows Registry. According to
the Microsoft Computer Dictionary, the registry contains user
profiles for each user, installed application, document types,
property sheet settings for folders and application icons,
detected hardware, and ports in use during the system’s
operation which is continually referenced [1]. This data is so
crucial that system restore points always contain a copy of the
registry so that in case of catastrophic system failure, an older
copy of the registry can be restored. It includes system and
hardware configuration information, user data, installed
software data, and much more. The registry is organized into
sections that contain similar information. Each of these maps to
one of seven specific physical files. There are four major classes
of registry hives: system configuration, current user, local
machine, and users. The local machine grouping is further
subdivided into security accounts, security, software, and
system. It is interesting to note that when a user logs in, the
current user data is taken from their own personal hive. This is
how each user has their own desktop, among other different
configurations.

The Windows registry contains a plethora of information
that a digital forensics investigator can leverage for evidence in
various types of cases. The registry data type that this paper

focuses on are known as Shellbags. Introduced in Windows XP,
Shellbags are utilized by the operating system to help record
views, sizes, and positions of a folder when accessed by the
current user. In Windows XP, Shellbags information is stored in
the NTUSER.dat file located in the following folder path
“%UserProfile%\LocalSettings\ApplicationData\Microsoft\Wi
ndows”. But in later releases of Windows, such as Windows
Vista thru Windows 11, another file called USRCLASS.dat
located in the following folder path
“%UserProfile%\AppData\Local\Microsoft\Windows” was
added having predominance of Shellbags information [2]. They
contain information about user activity such as folder
interaction, folder locations, folder existence even after deletion,
timestamps and more. While this may not be the smoking gun
that an investigator is looking for, it assists in developing a
timeline. And timelines in forensic investigations are extremely
important since they lead to crime solutions. The mechanism for
developing timelines based on the shellbag evidence is using the
time and date stamp of each registry entry. For instance, if a
folder is interacted with at a certain time and date, then that
represents a single user action and a shellbag record is created
or updated. With many such events that have associated times
and dates, the timeline becomes more complete. Table I shows
what information you can find from Shellbags, and what
information you cannot find from Shellbags.

TABLE I. INFORMATION FOUND AND NOT FOUND IN
SHELLBAGS

Contains Does Not Contain

Folders last interacted with Folders created with “md” or

Location of folders WSL (Windows Subsystem for
Linux) “mkdir” command

Evidence of previously existing
folder Evidence of program execution

Folder on external devices or
network resources

Folders that have existed on the
desktop

Timestamp of last interaction time
Timestamp of when a folder was

selected

The contributions of this paper are:

• An optimized and ready-to-use software application
that can be utilized by digital forensics investigators.

• A graphical heat map of events, color coded by type,
captured by Shellbags to help with anomaly detection.

• Facilitate the capability to easily filter global events by
attributes such as type, path, user, registry hive, begin
date, and end date.

• Provide extensive and flexible reporting module to
supplement reports with corresponding graphical heat
maps.

The rest of this paper is organized as follows. Section II
covers an overview of other related works and how our paper
differs. In Section III, we introduce our proposed approach.
Section IV we discuss our implementation. Section V will go
over an evaluation based on a case study. Finally, section VI
provides our conclusion.

II. RELATED WORK
There are numerous proposed methods of shellbag analysis

techniques [3] [4] [5]. Also, there are several applications
available that have been developed by digital forensic
organizations and other entities. In the process of evaluating
several of these programs, they all shared a common theme that
required the user to manually search and extract the shellbag’s
information in a spreadsheet-like representation.

During our research for free shellbag analysis tools, we were
presented with many applications, both Shellbags specific and
general artifact recovery. Most of the applications found
performed many other features besides searching for shellbag
artifacts, making them lack in efficient and visually focused
shellbag analysis [6] [7].

The most commonly available and free tools designed
specifically for shellbag analysis consist of the following:

• Shellbags Explorer [8]
• ShellBagger [9]
• Shellbagsview [10]
After evaluating the three above-mentioned applications,

we found Shellbags Explorer, created by Eric Zimmerman, to
be the most feature shellbag artifact analysis tool available [6].
This tool provides a visual representation of Shellbags
information in a directory structure layout with features to sort,
filter, and examine shellbag entries obtained either from an
active registry or offline hive. However, compared to our
solution, Eric Zimmerman’s “Shellbags Explorer” lacks in
features such as frequency analysis with heat map, global
events filtering, and advanced reporting.

III. OUR PROPOSED APPROACH
In our proposed approach, we provide the digital forensic

investigator a tool, called SeeShells, which will help to leverage
the Windows registry in gathering evidential events from the
registry keys, also referred to as Shellbags. Unlike other tools,
SeeShells will be able to create the big picture and allow the
investigator to zoom in or out of timelines with the assistance

of our frequency mapping feature. Other basic criteria for
SeeShells are as follows:

• Can be used on multiple versions of Windows
Operating Systems.

• Can run on both live systems and offline hives.
• Requires no installation to ensure that limited artifacts

are left on live systems during an investigation.
• Provide an interface that is intuitive and efficient for the

forensic investigator.
• Provide features that will help the investigator quickly

find and report on his findings.
SeeShells can support Windows 7 through Windows 11,

which is presently the most current version of the Windows
Operating System. The events captured on these machines will
include logging in/out, powering on/off, deletions, downloads,
folder access to various document types, and insertion or
removal of USB Drives. This information, referred to as
shellbag artifacts, can be extracted either on a running Windows
system (e.g., live analysis) or the user’s specific registry file
taken from the machine in question. Once the shellbag artifacts
are extracted, each user event can be displayed in a rich
Graphical User Interface (GUI). These events can also be
filtered and sorted by the event’s date, name, type, and user by
employing intuitive controls. Finally, a report of the findings
can be exported in the following formats, comma-separated
values (CSV), hypertext transfer protocol (HTTP), and portable
document format (PDF).

In our application design, it was essential that the program
executes from a single standalone file. This provides a forensic
investigator the flexibility to perform a live analysis on the
suspect’s computer without the need of installing any software.
In this scenario, the forensic investigator must only copy this
executable file onto his or her removable media (e.g., USB
Stick, External Hard or Flash Drive). Once the file is on the
removable media, it can be connected to the suspects computer,
and directly executed. Although this approach may create
additional digital artifacts, they can be excluded from the
investigation by properly documenting the process. These
scenarios typically occur in situations when a machine cannot
be shutdown, imaged, or logged off because of the threat of
losing any evidence is predominant. On the flip side, if the
investigator is working with a post-mortem scenario, he or she
can execute the same program on their local machine and then
open the suspect’s registry file containing the Shellbags.

The first step when using SeeShells is to acquire shellbag
data. This can be done from the active registry or from an
offline registry hive as shown in Fig 1.

Fig. 1. Initial program’s screen which allows the user to select either from the
machine’s active registry or from acquired registry file.

With the acquisition complete, users see the following
program window called the SeeShells Inspector and is shown
in Fig 2. The SeeShells Inspector will consist of seven
windowpanes, also referred to as widgets, and have the
following functions:

• Shell Inspector – full description of selected event’s
time, user, location, and path

• Hex Viewer – examine the raw constituents of an item
selected to help provide insight

• User Actions Frequency – graph to help visualize the
frequency hot spots of activities

• User Actions Frequency Selector – help to select a
window for the user actions frequency pane

• Item Event List – event time and description
• Registry – presents all the data retrieved in a

hierarchical view to help explore file system
• Global Event Filters – filter events on type, path, user,

registry hive, begin and end date
• Exporting – allows users to export Shellbags in a report

formation.

Fig. 2. SeeShells Inspector.

Additionally, the toolbar menu will provide the
investigator the option to Import, Export, or Reset. The import
feature allows the investigator to retrieve registry hive file or
live registry. This comes in handy when the investigator is
working with multiple user registry files. When the analysis is

finished and the investigator has identified the information
needed for the case, he or she can simply select the export
option on the toolbar of the application to create a highly
customizable report. The following reports modules can be
used by the investigator:

• Captioned HeatMap - inserts a heatmap with a text
editor to the side allowing user to add personalized
text or notes

• Captioned Histogram - inserts a histogram with a text
editor to the side

• HeatMap and Histogram - inserts a side-by-side image
of a heatmap and a histogram

• Header - inserts a textbox that includes a default
header

• HeatMap - inserts a heatmap
• Overview - inserts a pie graph with shellbag event

types as percentages
• TextBox - inserts a textbox that includes a default

header
• ShellEvent Table - inserts a shellbag event table filled

with Shellbags
• Timeline Histogram - inserts a timeline
All these views can be interacted with from this menu, to

only show the specifics that the user wants to display. Events
can be pre-filtered before exporting as a report. Finally, the
report can then be saved as a PDF or XPS, sent directly to
printer, or sent to OneNote.

IV. IMPLEMENTATION

A. Finding Shellbags Data
There are two locations within the Windows registry where

shellbag data can be found. The keys are
HKEY_CURRENT_USER\SOFTWARE\Classes\Local
Settings\Software\Microsoft\Windows\Shell and
HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows
\Shell. Within these each of these two subkeys are two more
subkeys named Bags and BagMRU. The BagMRU subkey
contains the name of folders and their respective paths. The
base BagMRU represents the desktop. The folders under
BagMRU represent the disk hierarchy. If one examines the
shellbag data, most of it is binary data. For this reason, simple
examination of Shellbags is difficult and need software to
convert to usable information. Three such programs are
Shellbags Explorer, SeeShells, and Shellbags. The authors of
this paper were directly involved with the development of
SeeShells, so this tool will be examined.

B. Gathering Shellbags
The technique of gathering all Shellbags is recursive, like

traversing a disk hierarchy. Table II shows pseudocode for
gathering Shellbags from a subkey, either Bags or BagMRU.

TABLE II. PSEUDOCODE FOR GATHERING SHELLBAGS INFORMATION
SHELLBAGS

gatherShellbagData(currentSubkey)
 currentList = (SystemCall)GetSubkeysAndValues(currentSubkey)
 foreach datapoint in currentList

 if dataPoint is value then store in list
 if dataPoint is subkey then gatherShellbagData(dataPoint)

C. Parsing Shellbags Data
Each shellbag contains standalone data that describes

aspects of the system such as the system drive. There are two
things that make parsing Shellbags difficult. The first is that they
are binary, so to access data at certain offsets requires
programming techniques such as pointers in C or
“BitConverter” in C#. Many non-shellbag registry entries are
text or numeric, and thus much easier to read. The second
difficulty is that, except for the first two bytes, the data structures
are different for each of the shellbag types. There is little
uniformity in the data structure for each shellbag type.

As stated, the first two bytes contain the same data for all
types. This is the only consistency in shellbag data. These values
are a big-endian word that represents the size of the shellbag.
For some Shellbags, the third byte indicates the shellbag type.
For other Shellbags, bytes 6 through 9 contain a signature
identifying the shellbag type. In either case, there is a way to get
the shellbag type from the binary data.

It should be noted that all Shellbags have associated date and
time date values. Since these registry entries have a date/time
stamp that indicates when the registry entry was last written, all
Shellbags inherit such data from the registry itself. When
collecting shellbag data this information should be saved
because it might contain valuable and needed information.
Within the shellbag data there is at least one additional date and
time. What internal date/times represent depends on the shellbag
type. For instance, for a URI (Uniform Resource Identifier)
shellbag there is a date/time value the indicates a connection
date/time and can be found at offset 14 within the binary data.

Some Shellbags have text data, usually in Unicode format,
that represent information such as paths of URIs. When visually
examining shellbag data these strings can be read. As a note of
detail, they are all null terminated. That is, the string continues
until a zero is encountered. And if there is a string in the binary
data, somewhere there will be a collection of bit values
indicating specifications such as whether a shellbag uses
Unicode strings or not.

To explain how parsing works in a more cohesive way, an
example illustrating shellbag parsing follows. The process starts
with a block of binary shellbag data. Start by retrieving the
shellbag size from the first two bytes of the binary data. Next,
examine the third byte. Suppose the process encounters a
shellbag with the hex value 0x10 in the first byte of the binary
data, that is a recognized type. Note that here can be other bits
in this first byte, but the determining bit is 0x10. To filter other
bits that might have meaning later in the parsing process, the
following operation is used:

• if thirdByte & 0x70 == 0x10 then type = "Root Folder"

Now the data size has been retrieved and the shellbag type
identified. The next 16 bytes contain the Globally Unique
Identifier (GUID), which concretely identifies this shellbag.
These GUIDs are well known and can identify the subtype as
belonging to a Network, Program File, Document, and many

other types. The program described later in this paper has a built-
in table with the know GUIDs and their subtypes, so matching a
GUID to a subtype is easy.

Near the end of the data another GUID exists indicating a
shellbag extension. This may or may not exist, but if so can be
read and recorded so that the process knows that there is an
extension to this shellbag. Recording the shellbag last write date
and slot modified data should be done regardless of the shellbag
type. Other types may have a path or file name information.
Desktop folders will have location data.

V. EVALUATION BASED ON A CASE STUDY
To demonstrate how SeeShells can provide an effectively

rich interface for finding shellbag information, a situation,
analysis, and results are presented below (a case study is
provided on our GitHub page with the following URL
https://github.com/eamoruso/SeeShells).

A. Situation
Assuming the present day is 03/15/2021, while working as a

Digital Forensics and Incident Response (DFIR) analyst, you are
investigating an insider threat of Intellectual Property (IP) theft
case. The company, Tehsla, said their own Cyber Threat
Intelligence department found that a person or group was selling
a folder on the dark web with intellectual property inside the
folder. The forum post selling the information was posted at 9:34
PM on 03/08/2021. The Threat Intelligence team couldn’t verify
what exactly was being sold inside the folder, but they believe
the claim is legitimate and only people working within the
company could have accessed any confidential company
information. Therefore, the company’s security department
believes they have identified a suspect. However, the company
does not have definitive proof that this employee was the one
who did it, so they hired you to help. They were able to get the
suspected employee’s computer and registry information - are
you able to find any solid evidence and gather information on
what exactly was stolen?

B. Analysis
Using SeeShells and opening the registry file provided by

Tehsla security department, one of the first things that can be
seen is the large timeline of the events spanning from 2019 to
March 2021 shown in Fig 3.

Fig. 3. SeeShells showing one of the first events in 2019.

One thing that can be done to reduce the number of events
shown, is to filter out some events using the SeeShells Global
Events Filter. One of the key details about the investigation is
the timeline of incidents. The company’s Cyber Threat
Intelligence team said the post was put up on 03/08/2021.
Showing activity from a week before the incident date could
show a list of events that led up to it.

Within SeeShells, you can edit the Start Date and End Date
fields to only show events within that time frame. For this, I set
the Start Date on 03/01/2021 and End Date on 03/08/2021 as
shown in Fig 4.

Fig. 4. SeeShells using a Start and End Date in the Global Events Filter.

From the situation description, the company was not able to
figure out what specific confidential information is found, so
currently it is not possible to filter by event name. Looking
around at the folder names could show what could potentially
be intellectual property (IP). IP is any information, property, or
asset that the company owns which is prohibited from outside
use or distribution.

From the directory names, we can figure out the company,
industry, and potential IP items. The following are directory
names that were found that are indicative of the industry:

• Self_Driving_Code
• 2020CarDesigns
• SelfDrivingCompCode
• ElectricMotorBlueprint

We see that the employee had access to those files and was
able to modify them, shown in Fig 5. Though so far there’s no
evidence that the employee took them from his or her work
computer.

Fig. 5. Finding one of the folders that can potentially be IP.

This company is an electric vehicle company that also has
specialization in self driving technology which is highly valued.
Though it is worth noting that there are other directories within
the environment and not all are suspicious files, such as general
folders like Tehsla_Documents_1. Also, since the suspect was
an internal employee, he or she is allowed legitimate access to
those internal documents and so far, there’s no evidence they
have taken anything outside the company’s work environment.
By continuing to walk up the dates there is interesting activity
found the day before the IP is posted online for sale on the deep
web (03/08/2021) as shown in Fig 6.

Fig. 6. Showing another interesting directory within the timeframe.

On March 7th, it is observed that the employee viewed
several directories within the folder labeled Confidential,
created another folder Files, and copied directories under that
Confidential folder into the new folder called “Files”. This is
highlighted and shown in Fig 7.

Fig. 7. Creation of a folder named Files.

Furthermore, filtering out the types of events to Removable
Storage Device Connect by clicking on it, will grey out
everything and show that a drive named “E:\” was connected.
Clicking on it will show that it is a removable storage device
that was connected in the interested timeframe and is shown in
Fig 8.

Fig. 8. Getting proof some type of external device was last plugged in
before the post date with confidential files within them.

On the top right-hand side of the SeeShells explorer, the
registry view will show what the filesystem looked like. We
can expand “Drives” and see both the C drive (the main
computer) and the E drive (the external device). We can expand
on the E drive which shows a few folders, one of which is the
same Files folder we found earlier. Expanding on that we see
the following folders as shown in Fig 9.

Fig. 9. The same files in that external hard drive can be found under
the Confidential Folder.

C. Analysis Conclusion
The data analyzed from Shellbags in the Windows Registry

clearly indicates that the employee copied several confidential

files from their work computer onto some type of external
storage device (E:) on 03/07/2021 at 22:09. In our case study,
using SeeShells we were able to quickly find evidence that
several files such as the 2022 Car Designs, Corporate Hierarchy,
Self-Driving Computer Code, and Source Code were all taken
from the company’s computer. Even though that external device
is no longer attached to the system, the Windows Registry (more
specifically Shellbags) was able to log information regarding
folders that had previously existed on this device. This data
should be a lead to other artifact files or data within the OS to
corroborate this assertion. Examples may include, but are not
limited to, link or shortcut files, file system artifacts, event logs,
etc.

VI. CONCLUSION
In this paper we demonstrated that by using our developed

application, SeeShells, a digital forensic investigator can find
timeline evidence more efficiently in the Windows registry,
specifically Shellbags. Unlike the other applications mentioned
earlier, where the investigator must search manually to piece
together the evidence, SeeShells helps resolve this by providing
an analyst the ability to identify anomalies and other suspicious
burst of activities with our frequency data chart containing a heat
map representation. Furthermore, by adding the global events
filtering option, SeeShells provides the ability to screen out
unwanted events reducing clutter and confusion when
examining specific evidence. Finally, we used a case study to
illustrate how to conduct a digital forensic investigation using
our developed SeeShells application and demonstrate the
easiness and effectiveness of our solution.

REFERENCES
[1] Microsoft Press. 2002. Microsoft Computer Dictionary, Fifth Edition

(5th. ed.). Microsoft Press, USA.
[2] Carvey, H., 2011. Windows registry forensics: Advanced digital forensic

analysis of the windows registry. Elsevier.
[3] 1. Zhu, Yuandong, Pavel Gladyshev, and Joshua James. "Using shellbag

information to reconstruct user activities." digital investigation 6 (2009):
S69-S77.

[4] Mize, Ryan. Behavior of Shellbags in windows 10. Diss. Utica College,
2018

[5] Đuranec, A., et al. "Investigating file use and knowledge with Windows
10 artifacts." 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE, 2019.

[6] “ArtiFast Windows”, ARTIFAST, 2022. [Online]. Available:
https://www.forensafe.com/free.html. [Accessed: Jan. 14, 2022]

[7] “Autopsy”, AUTOPSY DIGITAL FORENSICS, 2022. [Online].
Available: https://www.autopsy.com/download/ [Accessed: Jan. 14,
2022]

[8] Eric Zimmerman, “Shellbags Explorer”, SANS, 2022. [Online].
Available: https://www.sans.org/tools/Shellbags-explorer/. [Accessed:
Jan. 18, 2022]

[9] Chad Gough, “ShellBagger”, 4Discovery, 2022. [Online]. Available:
https://4discovery.com/our-tools/shellbagger/. [Accessed: Jan. 18, 2022]

[10] Nir Sofer, “ShellbagsView”, NirSoft 2022. [Online]. Available:
https://4discovery.com/our-tools/shellbagger/. [Accessed: Jan. 18, 2022]

