
Denial of Convenience Attack to Smartphones Using
a Fake Wi-Fi Access Point

Erich Dondyk
College of Engineering and Computer Science

University of Central Florida
Orlando, United States of America

Email: erich@knights.ucf.edu

Cliff C. Zou
College of Engineering and Computer Science

University of Central Florida
Orlando, United States of America

Email: czou@cs.ucf.edu

Abstract—In this paper, we present a novel denial-of-service
attack targeted at popular smartphones that are used by normal
users who are not technology savvy. This type of attack, which we
call a denial-of-convenience attack, prevents non-technical savvy
victims from utilizing data services by exploiting the connectivity
management protocol of smartphones when encountered with a
Wi-Fi access point. By setting up a fake Wi-Fi access point
without Internet access (using a simple device such as a laptop
computer), an attacker can prompt a smartphone with enabled
Wi-Fi features to automatically terminate a valid mobile
broadband connection and connect to this fake Wi-Fi access
point. This, as a result, prevents the targeted smartphone from
having any type of Internet connection unless the victim is
capable of identifying the attack and manually disabling the Wi-
Fi features. We demonstrate that most popular smartphones,
including iPhone and Android phones, are vulnerable to denial-
of-convenience attacks. To address this attack, we propose
implementing a novel Internet-access validation protocol that
uses the cellular network to send a secret key phrase to an
Internet validation server. Then, it attempts to retrieve this secret
key phrase via the newly established Wi-Fi channel to validate
the Wi-Fi access point. We have fully developed and evaluated
the attacks as well as the defense prototypes that run on Android
phones.

Keywords: denial-of-service, mobile platforms, Android, iPhone.

I. INTRODUCTION
The smartphones are quickly taking over the mobile phone

market. Currently, half of all U.S. mobile subscribers own a
smartphone [1]. This rapid growth in smartphone adoption is
due in grant part to the multiple services these devices can
provide. However, checking email, using GPS navigation,
streaming video and many other services depend on Internet
connectivity. We have discovered that the majority of
smartphones can be easily deprived of their Internet services,
and thus, of most of their functionality through a specific form
of a denial-of-service attack presented in this paper, which we
call a “denial-of-convenience” (DoC) attack.

With 48% and 32.1% of the market share, Android and
iPhone are by far the most popular smartphones among
consumers [1]. Both of these platforms are designed to
automatically switch from a mobile broadband connection
(such as 3G data service) to a Wi-Fi connection whenever
possible. This design allows them to take advantage of the

much faster Wi-Fi Internet connection which does not utilizes
the limited mobile broadband data plan of the user. However,
neither of these platforms verifies whether or not the Wi-Fi
access point (AP) has an Internet connection. An attacker can
exploit this weakness to deny the Internet access of these
smartphones.

It is very easy for an attacker to launch such a DoC attack.
All it requires is setting up a Wi-Fi access point that does not
have an Internet connection. This can be easily achieved via a
laptop computer equipped with a cheap portable Wi-Fi adapter
such as that shown in figure 2. When inside the coverage area
of this fake access point, smartphones will automatically
disconnect from their mobile broadband and connect to this
hotspot. However, because this fake access point does not
provide an Internet connection, these smartphones will be
deprived of any form of Internet access.

(a) (b)

Figure 1: DoC attack scenarios. (a) The presence of a fake AP terminates
the mobile broadband Internet connection of all smartphones within its
coverage area and (b) when the perceived signal strength of a fake AP is
stronger than that of a valid AP, a smartphone connects to the fake AP
instead of the valid AP automatically and, hence, is denied of data service.

Such an attack can be resolved by a tech-savvy smartphone
user. A smartphone being targeted by this attack would display
an optimal network connection status. When the smartphone
user notices that her phone has no Internet connection, she can
manually disable the Wi-Fi function of her phone, and then
her phone would automatically return back to the mobile
broadband, and hence, regain Internet access. For this reason,
we call the proposed attack a “denial-of-convenience” attack
because it is not a hard denial-of-service to smartphone users.

However, with more than one third of all US adults
currently owning a smartphone [2], we cannot expect the

2

majority of users to be able to diagnose this attack and
successfully navigate through the solution above. Therefore,
we believe this DoC attack still imposes significant threat to
many smartphone users. As a result developing an automated
solution to resolve this type of attack is highly desired.

To handle similar types of connectivity issues, traditional
operating systems have developed several network awareness
mechanisms. Microsoft’s Windows, for instance, uses the
Network Connectivity Status Indicator (NCSI) feature to
verify the validity of an Internet connection. NCSI achieves
this by sending a validation challenge to a predetermined
service and comparing its response against the expected result
[3]. In this paper, we develop an Android application that
implements a similar network awareness mechanism. We then
test its effectiveness by exposing the Android phone to a DoC
attack under real conditions.

Although this type of solution is widely implemented by
traditional operating systems, its effectiveness against more
sophisticated DoC attacks is limited. Its weakness lies on the
fact that the validation key, the value returned in the validation
response, must remain constant. An attacker, therefore, can
easily fool the mechanism by acquiring the static validation
key and providing it to the victim when the victim’s
smartphone performs a network awareness test. As a result, we
further develop a more robust network awareness feature
capable of withstanding this type of attack. It achieves this
goal by first using the cellular network to send a dynamically-
generated secret key phrase to an Internet validation server,
and then attempting to retrieve this secret key phrase via the
newly established Wi-Fi channel to validate the Wi-Fi access
point.

In short, we make the following contributions in this paper:
(i) We expose a specific type of DoS attack that both iPhone
and Android phones are vulnerable to. In addition, we
demonstrate how it can be easily mounted on a large number of
victims simultaneously. (ii) We apply a network awareness
mechanism commonly used by traditional operating systems to
prevent this type of attack. We implement this solution in the
form of a lightweight application and test it thoroughly under
real conditions. (iii) We demonstrate how this mechanism can
be fooled by a more sophisticated version of the DoC attack.
(iv) We present a novel solution capable of overcoming the
limitations of the previously implemented network awareness
mechanism which does not require user intervention. Thus,
making it especially attractive because of the large number of
smartphone users that cannot be expected to diagnose and solve
this type of attack.

II. RELATED WORK
Previous works on smartphone security can be organized

into two subjects. The first of these subjects is smartphone
malware [4], [5], [6], [7], [8], [9]. The second subject of
smartphone security research considers the implementation of
traditional computer exploits and defenses on mobile devices
[10], [11].

Currently, there are many works available on rogue access
point detection. Several enterprise Wi-Fi security systems, for
example, rely on lists of authorized access points to detect

when a rogue access point is introduced into an area [12] [13]
[14]. ETSniffer [15], on the other hand, provides the rogue
access point detection capabilities to the end user. By utilizing
network metrics to detect latencies characteristics of this type
of exploits, ETSniffer is able of identifying evil-twin access
points with a high level of accuracy.

Our work is different from all previous works because it
considers a realistic denial-of-service attack unique to
smartphones. Also, we are able to successfully implement on
Android a defense mechanism currently employed by tradition
operating systems. Finally we propose a novel network
awareness feature that relies on the mobile broadband
connection of the device to provide an attack resistant
authentication scheme.

III. ATTACKS

A. Attack I: Simple Passive Wi-Fi Access Point
The first method considered in this paper for executing a

DoC attack is through a Wi-Fi access point without an Internet
connection. When an Android smartphone or an iPhone enters
the coverage area of a wireless access point, it is automatically
assigned an identifier and loaded into the Wi-Fi stack of the
smartphone. If the phone’s Wi-Fi connectivity options are
enabled and the access point is open or has been previously
accessed, it will automatically connect to it. It will then
terminate any ongoing mobile broadband connection that
might have been established prior to the Wi-Fi connection.
However, the smartphone does not verify, at any time during
or after the connectivity process, whether the access point has
a functioning Internet connection or not. Therefore, by setting
up a Wi-Fi access point that is not connected to the Internet, a
smartphone can be prompted to abandon its mobile broadband
data connection to establish another one that does not provide
any data. This, in turn, denies the user of any type of data
service.

The DoC attack described above can be executed in a
variety of ways. One simple approach is through a wireless
router that is not connected to the Internet. This method can be
implemented with little resources and technical knowledge.
Another possible approach is to configure a laptop as an
access point, which can be achieved by using the free network
software suite aircrack-ng [16]. Then, setting up a DHCP
server using dhcp3-server to automatically assign IP addresses
to smartphones entering the coverage area and, thus,
prompting them to connect to our fake Wi-Fi access point
[17]. Because Android or iPhone gives priority to Wi-Fi
access points based on their signal strength, providing a
stronger signal than any adjacent valid access points would
increase the chance that a smartphone connects to the fake
access point. Therefore, in our prototype we utilize an external
wireless adapter with an antenna so that the fake access point
has a stronger signal. Figure 2 shows our prototype of the fake
access point.

Furthermore, by using the same SSID as that of a valid Wi-
Fi access point in the area, the attacker will be able to deprive
knowledgeable users of Wi-Fi internet access. Even if the
victim has an in-depth knowledge of the Wi-Fi connection

3

manager of the smartphone and is able to determine the
connection problems are due to the fake Wi-Fi access point,
he/she will not trust the valid access point in the area because
it has the same SSID as the fake access point. This will prompt
them to turn off the Wi-Fi features of the smartphone which,
in turn, will prevent them from using the valid access point.
We further demonstrate this in section A.5 of the Evaluation
by executing an experiment that simulates this scenario.

Figure 2: Fake AP implementation using a Linux netbook equipped with
an external ALFA network adapter costing less than $30. An attacker can
easily carry this fake AP to any place to conduct the DoC attack.

Regardless of the implementation used, this type of attack
can be very effective because: (i) The attacker has the ability
to deny data services to a large number of victims
simultaneously. (ii) The attack can be carried out in any place
while in the move. (iii) From the victim’s perspective, it is
difficult to detect this type of attack because the device would
display a nominal Wi-Fi connection status. That is, a
smartphone would show that a Wi-Fi connection has been
successfully established and that it is working properly. (iv)
This type of attack can be executed without the use of
sophisticated equipment or extensive technical expertise.

B. Attack II: Fake Validation Response
A defense against Attack I can be successfully mounted by

implementing network awareness features similar to those
used by traditional operating systems. These features test the
Internet connectivity of an access point by sending a challenge
to a validation server and comparing a validation key obtained
in the response against the expected result [3]. For this to work
the validation key must be known by the device before
performing the validation and the validation key stored in the
validation server must remain constant. However, these
conditions allow an attacker to easily obtain the validation key
from the validation server beforehand. Once the validation key
is known, it can be used to fool the traditional network
awareness procedure by responding to the probing packets
with the valid answer at the time of validation. We refer to
such an attack as Attack II in this paper.

In practice, there are many ways to implement Attack II.
Similarly to an evil-twin access point [15], we can implement
Attack II by configuring a laptop as an access point and
redirecting all probing packets to a fake validation server.
Because Android does not currently support ad-hoc IBSS
networks [18], it is necessary to configure the computer as a
full Wi-Fi access point. This can be achieved by using

aircrack-ng. Then, Linux application iptables is used to
redirect all probing packets to a local server that mimics the
validation server [19].

Using this implementation, the network awareness protocol
is able to successfully retrieve the key from the fake access
point. With the correct key retrieved, the access point will be
classified as valid by our testing Android phone. The
connection to the fake Wi-Fi access point is maintained, the
smartphone does not return to the functioning mobile
broadband connection, and the smartphone user is deprived of
all data services. This attack approach also has the advantage
of requiring few resources. Any laptop computer with a
wireless card and a UNIX/Linux operating system is sufficient
to successfully execute Attack II.

C. Attack III: Selective Internet Traffic Throttling
A successful defense against Attack II could be formulated

by implementing a challenge-response mechanism that relies
on a dynamic key. That is, the key is different for every
validation test performed. Facing this possible defense, an
attacker could possibly defeat it by using a Wi-Fi access point
that has Internet access, which is referred to as Attack III in
this paper.

With Internet access, the fake access point could fool the
dynamic-key based network awareness protocol by allowing
the validation probing packets to reach the validation server
while blocking all other traffic. This would allow a
smartphone to successfully retrieve the dynamic validation
key. As a result, the smartphone would remain connected to
the fake Wi-Fi access point without any useful data service,
thus successfully executing a DoC attack.

There are several ways of implementing Attack III. One
possible approach is almost identical to our Attack II
implementation. Essentially, it requires configuring a
computer as a Wi-Fi access point, redirecting all probing
packets to the real validation server, but blocking all other
traffic. This can be achieved by using aircrack-ng and iptables.

Compared to Attack II, Attack III has two more
requirements to be implemented. First, it requires two separate
network interface cards to establish both the attacking Wi-Fi
access point and a valid Internet connectivity. Second, it
requires the attacking access point to have Internet access,
which makes its implementation less easy than Attack II. The
valid Internet access can be achieved in two possible ways. If
the attacking machine is within the coverage area of a valid
Wi-Fi access point (such as in a McDonald or Starbucks), it
could use this valid Wi-Fi to access the Internet; if there is no
valid Wi-Fi, the attacker could use a mobile broadband
modem to connect to the Internet.

IV. DEFENSES

A. Defense against Attack I: Static Identifier Validation
In order to counteract Attack I, we implement a network

awareness protocol on Android very similar to the NCSI
feature currently used by Microsoft’s Windows [3]. This
protocol, implemented as an Android app, which we call Wi-
Fi Authenticator, automatically verifies whether or not the

4

currently connected Wi-Fi access point has a functioning
Internet connection without the need for any user intervention.

To achieve this, Wi-Fi Authenticator relies on the
following two-step process: (i) Every time a Wi-Fi connection
is established with an access point, Wi-Fi Authenticator sends
a challenge to a validation server. If a response is not obtained
within some time period, the access point is considered
invalid. On the other hand, if a response is received, Wi-Fi
Authenticator proceeds to step 2 of the validation process. (ii)
Wi-Fi Authenticator retrieves the validation key from the
validation response and compares it with the validation key
stored in the smartphone. If the two validation keys match, the
access point is considered valid. Otherwise, it is considered
invalid. Step 2 prevents an attacker from easily fooling the
authentication protocol by sending an arbitrary response to any
challenge. In this approach, any website could be used as
validation server. For example, Google.com could be the
validation server and the word “google” the validation key.

Figure 3: Result of a Wi-Fi Authenticator validation test in which the AP
was determined to be valid.

If the Wi-Fi access point is considered invalid in either
step, Wi-Fi Authenticator terminates and disables the
connection. This prompts the Android smartphone to transit
back to its mobile broadband data connection, and hence,
returning Internet data services to the user. Also, it continues
to enable the Wi-Fi capabilities of the device, allowing it to
connect to other Wi-Fi access points that might become
available in the future.

B. Defense against Attack II: Dual Channel Validation
As demonstrated by Attack II, a more sophisticated

attacker with greater technical knowledge could overcome
Defense I introduced above. This is primarily due to the fact
that the validation key used in Defense I is constant (the same
problem exists in the network awareness protocol used in
Windows). In order address this weakness, we propose a dual-
channel network awareness protocol in which the validation
key changes every time a validation test is performed. We
achieve this by relying on the unique mobile broadband data
channel of smartphones, which cannot be easily hijacked or
blocked by an attacker. An attacker, therefore, is unable to

fool the protocol by supplying the expected response because
it is unknown to her.

This approach relies on the following five-step process to
validate a Wi-Fi access point: (i) After encountering an
accessible Wi-Fi access point, the smartphone generates a
random key and sends it along with its MAC address to the
validation server through the cellular network. Depending on
the user’s billing agreements, this data can be sent as an SMS
or a TCP packet. (ii) The validation server stores the random
key in a table using the MAC address of the smartphone as the
index. (iii) After transitioning from the mobile broadband to
the Wi-Fi connection, the smartphone sends a challenge to the
validation server with its MAC address. (iv) The validation
server responds with the key corresponding to the
smartphone’s MAC address. (v) The key obtained from the
validation response is compared against that generated earlier
by the smartphone. The Wi-Fi connection is considered valid
if these two keys match. Otherwise, it is considered invalid.

Similarly to Defense I, this validation test is performed
automatically without the need for any user intervention. Also,
if a Wi-Fi access point is considered invalid, the connection is
terminated and disabled. This allows the device to regain
Internet services by reconnecting to the mobile broadband
while maintaining its Wi-Fi capabilities enabled.

(a) (b)

Figure 4: Dual-channel validation protocol: (a) the real AP is able to
provide the secret key to the smartphone for validation and (b) the fake
AP cannot produce the secret key because it is not connected to the
Internet, and hence, the attack is detected.

C. Defense against Attack III: Network Performance
Monitoring
Given the case of Attack III in which the attacker has

Internet access, Defense II can be compromised. The
effectiveness of Defense II lies on the fact that the key is not
known prior to the validation test. However, if the attacker has
an Internet connection, it could execute a successful DoC
attack by allowing the challenge to reach the validation server
but blocking or throttling all other traffic.

This weakness can be eliminated by expanding Defense II
into considering network measurement. If traffic blocking or
throttling occurs, the network awareness protocol would
measure the network performance and detect that it is below a
predetermined threshold (e.g., too high packet loss ratio).
Then, it would regain data services by prompting the
smartphone to transition back to the mobile broadband by
disabling the Wi-Fi access point.

Status

Validation Key

Validation
S
Validation
Server Content

Wi-Fi
C i

5

There are many different metrics that could be used to
realize this defense. Packet drop, instant throughput, and
average throughput are among the many approaches that could
be taken. In [20], [21], and [22] some of these metrics are
explained and their advantages and disadvantages explored.

V. EVALUATION
In this section we evaluate our real implementations of the

proposed Attack I, Defense I, Attack II, and Defense II. Attack
III is exactly the same as Attack II but with the addition of an
Internet connection to our testing laptop. Defense III will not
be further explored in this paper because network
measurements have been well studied before. The source code
of the attack scripts, Wi-Fi Authenticator app, and the
validation server used throughout the evaluation can be found
at www.cs.ucf.edu/~czou/denialofconvenience/.

A. Attack I: Simple Passive Access Point
1) Vulnerability to Android: To examine the vulnerability of

Android to a DoC attack, we setup a typical household
wireless router without connecting it to the Internet. We enter
the coverage area of this Wi-Fi access point with an Android
smartphone in sleep mode. Then, we awake the phone and
perform a Google query using the default browser of the
device. We perform this test on three different phones running
Android 2.1, Android 2.2, and Android 2.3. In all cases,
Android automatically connects to the fake Wi-Fi access point
immediately after coming out of sleep mode and, hence, is
unable to perform the query. After approximately 15 seconds,
it displays that the web page is not available. As shown in
figure 6, Android displays a strong Wi-Fi signal throughout
this process.

2) Vulnerability to iPhone: To evaluate the vulnerability of
iPhones to a DoC attack, we execute the test previously
described on an iPhone 4S. By default, the iPhone asks the
user before connecting to a Wi-Fi network encountered for the
first time. However, after the user selects our Wi-Fi access
point, the iPhone behaves exactly like Android. It
automatically connects to the fake Wi-Fi access point
immediately after coming out of sleep mode and is unable to
perform the Google query. However, the iPhone never
displays a message informing the user that the query could not
be completed. Instead, it continues attempting top perform the
query until the screen timeouts and the phone goes back to
sleep.

3) Interruption of Existing Mobile Broadband Connection:
To examine the effects of a DoC attack on smartphones
already connected to the mobile broadband, we perform the
following test on Android 2.1, 2.2, 2.3, and iPhone 4S,
respectively. First, we begin downloading a large file through
the mobile broadband connection. Then, we introduce a fake
Wi-Fi access point in the middle of the download. When the
fake Wi-Fi access point becomes available, Android and
iPhone immediately disconnect from the mobile broadband
and connect to the fake access point. As a result, they are
unable to complete the download.

Figure 5: The smartphone connects the fake AP “TEST_AP” even though
there is a valid AP with the same SSID in the area.

4) Defeating Existing Valid Wi-Fi Access Points: If the fake
access point is introduced while there is an ongoing
connection with another valid Wi-Fi access point, our testing
shows that the existing connection will not be interrupted.
However, if the smartphone is put to sleep by the user or after
a period of inactivity (Android and iPhone can enter sleep
mode in as little as 30 seconds if not touched), it reconsiders
all Wi-Fi access points in the area when awaken. As a result,
the smartphone connects to the fake access point when it
perceives that the fake access point has the strongest signal.

In order to simulate a realistic scenario, we execute Attack
I in a location where there are several valid Wi-Fi access
points available. We use aircrack-ng to configure a Linux
laptop computer as our fake Wi-Fi access point and dhcp3-
server to authenticate devices entering its coverage area.
Because Android gives higher priority to Wi-Fi access points
with stronger signals, we utilize the AWUS036H ALFA
network adapter shown in figure 2 to increase the success
probability of the attack. With an output power of 30dBm
[23], this adapter is able to overcome other typical wireless
routers that have an average output power of 20 dBm [24].

(a) (b)

Figure 6: The result of Attack I on an Android phone: (a) the connection
status of the fake AP and (b) the smartphone does not have a working
Internet connection because of its Wi-Fi connection with the fake AP.

To execute our test, we first set up our fake Wi-Fi access
point in a room such that it exhibits a stronger signal than the

6

other valid Wi-Fi access points covering the area. We enter the
room with an Android 2.1, 2.2, 2.3, and an iPhone 4S
respectively and perform an arbitrary Google query using the
default browser on the smartphone. As shown in figure 6, the
smartphone always connects to the fake access point because
it provides a stronger signal than the other valid access points.
However, at the time of a second Google query, no
information is returned nor a notification shown. Thus, a
successful DoC attack is achieved.

5) Fooling Knowledgeable Users by Using a Valid SSID:
Even if the user is sufficiently technical to turn off the Wi-Fi
features of the smartphone, a DoC will have a negative effect.
We demonstrate this by implementing a fake access point that
has the same SSID as a valid access point in the area. By
utilizing the AWUS036H ALFA network adapter, the fake
access point is capable of producing a stronger signal than the
valid access point. As figure 5 illustrates, the smartphone
connect to the fake access point because the stronger signal
increases its priority in the Wi-Fi stack.

Because the fake AP has the same SSID as the valid AP,
even if the user is capable of determining the connectivity
issues of the smartphone are due to the Wi-Fi connection,
he/she will attribute the problem to the valid access point and,
as a result, disable the Wi-Fi features of the device to
terminate the connection. However, this will keep them from
taking advantage of the valid Wi-Fi access point in the area.

B. Defense I: Static Identifier Validation Protocol
We implement our proposed Defense I network awareness

feature as an Android app which we call Wi-Fi Authenticator.
Wi-Fi Authenticator tests the Internet connectivity of an
access point by accessing a website, retrieving its content, and
comparing it against a key phrase. This validation scheme is
performed automatically every time a Wi-Fi connection is
established. If Wi-Fi Authenticator is unable to access the
website or if the content retrieved does not contains the
validation key, the access point is considered invalid and
disabled. For these tests, we use the Google homepage
(74.125.227.1) as the validation website and the word
“google” as the validation key. Because the html of Google’s
homepage contains several occurrences of the word “google”,
we are able to use this configuration for proof of concept.
However, any website with an expected phrase could be used
to achieve the same results.

To evaluate the performance of Defense I, we execute an
experiment very similar to that of Attack I. We expose an
Android 2.1, 2.2, and 2.3 smartphone respectively with Wi-Fi
Authenticator to the fake AP. In all cases, Wi-Fi Authenticator
is able to determine the Wi-Fi access point is invalid,
disconnect from it, and reconnect to the mobile broadband.
Figure 7 shows the detection of the fake access point by the
Wi-Fi Authenticator app installed on the Android phones.

Wi-Fi Authenticator is able to determine whether or not a
Wi-Fi access point is valid almost immediately. However, the
time it takes for Wi-Fi Authenticator to detect a fake access
point varies. Figure 8 shows these variations in validation
times for fake Wi-Fi access points.

Mobile Broadband
Connection

(a) (b)

Figure 7: Detection of the fake AP “TEST_AP” using Wi-Fi
Authenticator: (a) result of Wi-Fi Authenticator validation test and (b)
Wi-Fi stack of the smartphone showing that the fake AP has been
disabled by Wi-Fi Authenticator.

Figure 8: Variations in the time it takes to identify a fake AP using Wi-Fi
Authenticator.

C. Attack II: Fake Validation Response
To implement Attack II, we first create a fake validation

server in the attacker’s laptop computer by setting up an
Apache HTTP Server [25]. Because Wi-Fi Authenticator uses
“google” as the validation key of our validation scheme, the
Apache server is configured to respond with a webpage
containing the word “google”. Just like in our Attack I
implementation, we also configure the attacker’s computer as
a Wi-Fi access point using aircrack-ng and a DHCP server
using dhcp3-server. Finally, we use iptables to redirect all
traffic sent to Google’s homepage (74.125.227.1) to the IP
address of the fake Wi-Fi access point network interface.

To measure the performance of Attack II, we enter the
coverage area of our attacker’s laptop computer with an
Android 2.1, 2.2 and 2.3 smartphone respectively that have
Wi-Fi Authenticator installed. This test is repeated 20 times
erasing the Wi-Fi stack of the smartphone between each test.
In all cases, Wi-Fi Authenticator is unable to determine that
the fake Wi-Fi access point is invalid. Consequently, the Wi-
Fi connection is preserved and the smartphone is denied
Internet connectivity.

D. Defense II: Dynamic Identifier Validation Protocol
In order to implement Defense II, we expand the Wi-Fi

Authenticator app used for Defense I. Immediately after the
smartphone begins the authentication process with a Wi-Fi
access point, Wi-Fi Authenticator generates a six-digit random
number. This number is sent through the mobile broadband

7

connection to our validation server. Our validation server,
implemented in the form of a desktop computer running a
HTTP server developed in Java, receives and stores the
random number in a table for two minutes. Finally, just like in
Defense I, Wi-Fi Authenticator tests the connectivity of the
access point by accessing the server, retrieving its content, and
comparing it against the random number generated earlier.

We test Defense II with the same method used before. First,
we setup the Attack II fake access point. Then, we expose an
Android 2.1, 2.2 and 2.3 smartphone respectively that has our
enhanced Wi-Fi Authenticator app installed to the fake access
point. In all cases, Wi-Fi Authenticator is able to determine
that the Wi-Fi access point is invalid, disconnect from it, and
reconnect to the mobile broadband.

VI. CONCLUSION
In this paper, we have considered a new form of denial-of-

service attack targeted at popular smartphone operating
systems. We present three possible approaches for executing
this attack along with three defenses capable of counteracting
them. We demonstrate, through real implementation and
testing, that such attacks are successful at achieving their
purpose. Also, we demonstrate how each proposed defense is
capable of counteracting the different implementations of the
attacks. Our network awareness implementation is able to
automatically validate a Wi-Fi access points in less than a
minute from the background, imposing no operation burden on
smartphone users.

REFERENCES
[1] Palis, C. Smartphone Market Share: Devices Make Up Almost

Half Of All Phones, With 2 Players Gunning For Top Spot.
http://www.huffingtonpost.com/2012/03/29/smartphone-market-
share_n_1388368.html, 2012.

[2] Smith, A. Smartphone Adoption and Usage. 2011
http://www.pewinternet.org/Reports/2011/Smartphones.aspx

[3] Appendix K: Network Connectivity Status Indicator and
Resulting Internet Communication in Windows Vista.
http://technet.microsoft.com/en-
us/library/cc766017%28WS.10%29.aspx.

[4] Backes, M., Gerling, S., and Styp-Rekowsky, P. A Local Cross-
Site Scripting Attack against Android Phones.
https://www.infsec.cs.uni-saarland.de/projects/android-
vuln/android_xss.pdf>, 2011.

[5] Sastry, B. V. S. S. R. S., and Akshitha, K. Authorizing Stockpile
Attacks on Android. International Journal of Mathematical
Archive, 2.11:2475-2479, 2011.

[6] Vidas, T., Votipka, D., and Christin, N. All Your Droid Are
Belong To Us: A Survey of Current Android Attacks. In
Proceeding of the 5th USENIX Workshop on Offensive
Technology (WOOT '11), San Francisco, CA, August 8-12,
2011.

[7] Schmidt, A. D., Schmidt, H. G., Batyuk, L., Clausen, J. H.,
Camtepe, S. A., and Albayrak, S. Smartphone Malware
Evolution Revisited: Android Next Target? In Proceeding of the
4th Annual Malicious and Unwanted Software (MALWARE
'09), Montréal, Canada, October 13-14, 2009, 1-7, 2009.

[8] Porter Felt, A., Chin, E., Hanna, S., Song, D., and Wagner, D.
Android Permissions Demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications Security
(CCS '11), Chicago, IL, October 17-21, 2011, ACM, New York,
NY, 627-638, 2011.

[9] Nauman, M., Khan, S., and Zhang, X. Apex: Extending Android
Permission Model and Enforcement with User-defined Runtime
Constraints. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS '10), Beijing, China, April 13-16, 2010, ACM, New
York, NY, 328-332, 2010.

[10] Kumar, N., and Ul Haq, M. Penetration Testing of Android-
based Smartphones. Master's Thesis. Chalmers University of
Technology, Gothenburg, Sweden, 2011.

[11] Portokalidis, G., Homburg, P., Anagnostakis, K., and Bos, H.
Paranoid Android: Versatile Protection For Smartphones. In
Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC '10), Austin, TX, December 6-10, 2010,
ACM, New York, NY, 347-356, 2010.

[12] AirMagnet WiFi Analyzer.
http://www.flukenetworks.com/enterprise-network/wireless-
network/AirMagnet-WiFi-Analyzer.

[13] AirWave.http://www.arubanetworks.com/products/management-
security-software-2/airwave.

[14] WiSentry – Wireless Access Point Detetion System.
http://wimetrics.com/Products/WAPD.htm.

[15] Song, Y., Yang, C. and Gu, G. Who Is Peeping at Your
Passwords at Starbucks? – To Catch an Evil Twin Access Point.
In Proceeding of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN '10),
Chicago, IL, June 28-July 1, 2010, 323-332, 2010.

[16] Aircrack-ng. http://www.aircrack-ng.org/index.html.
[17] ISC DHCP Server. http://www.isc.org/software/dhcp.
[18] MIC_888. Android Ad-hoc Wireless Network Support.

http://www.xda-developers.com/android/android-ad-hoc-
wireless-network-support/, 2010.

[19] iptables. http://www.netfilter.org/projects/iptables/index.html.
[20] Boschi, E., D’Antonio, S., and Schmoll, C. Network

Performance Metrics and Measurement Methods in IP
Networks. Technical Report. European Telecommunications
Standards Institute, 2008.

[21] Bandwidth, Packets Per Second, and Other Network
Performance Metrics.
http://www.cisco.com/web/about/security/intelligence/network_
performance_metrics.html.

[22] Cox, G. W. Network Metrics.
http://www.cs.uah.edu/~gcox/570/570lec02-backgroundB-
F07.pdf, 2007.

[23] ALFA Network AWUS036H.
http://www.alfa.com.tw/in/front/bin/ptdetail.phtml?Part=AWUS
036H&Category=0.

[24] Oney, M. Wireless Router Capacity.
http://www.wirelessforums.org/wireless-networking-
discussion/wireless-router-capacity-43644.html.

[25] Apache HTTP Server. http://httpd.apache.org/.

	I. Introduction
	II. Related Work
	III. Attacks
	A. Attack I: Simple Passive Wi-Fi Access Point
	B. Attack II: Fake Validation Response
	C. Attack III: Selective Internet Traffic Throttling

	IV. Defenses
	A. Defense against Attack I: Static Identifier Validation
	B. Defense against Attack II: Dual Channel Validation
	C. Defense against Attack III: Network Performance Monitoring

	V. Evaluation
	A. Attack I: Simple Passive Access Point
	1) Vulnerability to Android: To examine the vulnerability of Android to a DoC attack, we setup a typical household wireless router without connecting it to the Internet. We enter the coverage area of this Wi-Fi access point with an Android smartphone ...
	2) Vulnerability to iPhone: To evaluate the vulnerability of iPhones to a DoC attack, we execute the test previously described on an iPhone 4S. By default, the iPhone asks the user before connecting to a Wi-Fi network encountered for the first time. H...
	3) Interruption of Existing Mobile Broadband Connection: To examine the effects of a DoC attack on smartphones already connected to the mobile broadband, we perform the following test on Android 2.1, 2.2, 2.3, and iPhone 4S, respectively. First, we be...
	4) Defeating Existing Valid Wi-Fi Access Points: If the fake access point is introduced while there is an ongoing connection with another valid Wi-Fi access point, our testing shows that the existing connection will not be interrupted. However, if the...
	In order to simulate a realistic scenario, we execute Attack I in a location where there are several valid Wi-Fi access points available. We use aircrack-ng to configure a Linux laptop computer as our fake Wi-Fi access point and dhcp3-server to authen...
	5) Fooling Knowledgeable Users by Using a Valid SSID: Even if the user is sufficiently technical to turn off the Wi-Fi features of the smartphone, a DoC will have a negative effect. We demonstrate this by implementing a fake access point that has the ...
	Because the fake AP has the same SSID as the valid AP, even if the user is capable of determining the connectivity issues of the smartphone are due to the Wi-Fi connection, he/she will attribute the problem to the valid access point and, as a result, ...

	B. Defense I: Static Identifier Validation Protocol
	C. Attack II: Fake Validation Response
	D. Defense II: Dynamic Identifier Validation Protocol

	VI. Conclusion
	References

