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Abstract

Coexistence protocols enable collocated cognitive radio networks (CRNs) to

share the spectrum in an opportunistic manner. These protocols work under

the assumption that all spectrum bands provide the same level of throughput.

This assumption is however limited in scope because channel conditions as well

as the licensee’s usage of allocated channels can vary significantly with time and

space. Under these circumstances, CRNs are expected to have a preference over

the choice of available channels which can lead to an imbalance in contention

for disparate channels, degraded quality of service, and an overall inefficient

utilization of spectrum resource. In this paper, we analyze this situation from

a game theoretic perspective and model the coexistence of CRNs with hetero-

geneous spectrum as a non-cooperative, repeated spectrum sharing game. We

derive three solutions for the game; 1) pure and 2) mixed strategy Nash Equi-

libria as well as 3) centralized and distributed correlated equilibria which are

derived using linear programming and a channel selection learning algorithms,

respectively. We also analyze each of these solutions from the perspective of

fairness and efficiency. To that end, we utilize the concept of price of anarchy

to measure the efficiency of these solutions under selfish behavior from CRNs.
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1. Introduction

T
he TV white space (TVWS) channels in the 54-698 MHz frequency

range have been made available by the Federal Communications Com-

mission (FCC) [1] for secondary unlicensed access. This is because

of a realization that the gap between the demand and supply of wireless spec-

trum resource is ever increasing and fixed spectrum allocation is causing its

severe under-utilization [2]. Strict requirements are placed on the Secondary

Users (SU) of the spectrum which is otherwise allocated to licensees called pri-

mary users (PU), to continuously sense the spectrum and vacate it when the

presence of the PU is detected and not to cause them any interference. This

type of spectrum access is intuitively called Dynamic Spectrum Access (DSA).

Cognitive Radio Network (CRN) is a paradigm that meets precisely this com-

munication criterion and utilizes DSA to enable secondary, unlicensed access to

TVWS spectrum bands in an opportunistic and non-interfering basis [1].

DSA allows CRNs to ensure that their use of spectrum does not cause inter-

ference to PUs while at the same time all spectrum opportunities are utilized

to the maximum. The decision to select a specific channel for DSA is usually

made by a central entity in the CRN such as its base station or some algorithm

that enables all SUs in the CRN to reach a consensus in a distributed manner.

IEEE 802.22 wireless regional area network (WRANs) [3] is an example of a

CRN in which the base station controls all the operation including the choice

of spectrum bands for communication. Regardless of how a decision to utilize

a specific channel is made, every entity in the CRN is bound to abide by that

decision. However, reaching a consensus is non-trivial in the case of multiple

collocated CRNs in a given region, all of whom compete for access to the same

set of available channels. This situation is called self co-existence in the context

of CRNs which employ coexistence protocols to deal with such situations.
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1.1. Problem Definition

Most coexistence protocols work under the assumption that all spectrum

bands afford the same level of throughput and do not take into consideration

the fact that these channels can be heterogeneous. The heterogeneity of channels

can be in the sense that they may vary in their characteristics such as signal

to noise ratio (SNR) or bandwidth. Furthermore, a channel whose PU remains

idle for most of the time may be more attractive to a CRN as compared with

a channel with high PU spectrum usage. This would entail that channels can

have an associated quality parameter and CRNs may have a preference over

the set of available channels for secondary access. Without any incentive for

altruism, all CRNs would want to gain access to the highest quality channels

making it a conflict condition. Therefore, in the absence of any mechanism to

enforce fairness in accessing varying quality channels, ensuring coexistence with

fair spectrum allocation and efficient spectrum utilization for CRNs is likely to

become a very difficult task.

Game theory provides an elegant means to model strategic interaction be-

tween agents which may or may not be cooperative in nature. It has been applied

to numerous areas of research involving conflict, competition and cooperation in

multi-agent systems which also encompass wireless communications. Therefore,

by leveraging the mechanisms of game theory, we model the heterogeneous spec-

trum sharing in CRNs as a repeated, non-cooperative anti-coordination game

in which collocated CRNs in a given region are its players, as shown in figure

1. The payoff for every player in the game is determined by the quality of the

spectrum band to which it is able to gain access.

In a preliminary version of this paper [15], we presented a study of various

game theoretic solutions for the problem of self coexistence in the context of het-

erogeneous spectrum resources. In this paper, we provide a detailed discussion

on the problem and its proposed solution. We also present a detailed mathe-

matical analysis on fairness and efficiency of the solution through the concept of

Price of Anarchy which is an analysis tool that measures a system’s degradation

in the presence of selfish behavior from its entities. We also confirm our findings
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Figure 1: (a) Collocated CRNs competing for (b) Heterogeneous channels. The

channels of the spectrum band may vary in quality with respect to availability,

bandwidth or SNR, etc.

through detailed simulations.

1.2. Contribution

In this paper, we have formulated a heterogeneous spectrum sharing anti-

coordination game to come up with a solution that results in fair and efficient

utilization of the spectrum resources. Specifically, we have made the following

contributions:

• As potential solutions for the heterogeneous spectrum sharing game, we

have derived the game’s pure and mixed strategy Nash Equilibria (PSNE

and MSNE respectively) as well as its Correlated equilibrium (CE).

• We have analyzed the game’s solutions in the context of fairness and ef-

ficiency and demonstrated that the traditional solution concepts of Nash

Equilibria (NE) are either inefficient or unfair. We also show that the

strategies in CE are optimal as well as fair while sharing heterogeneous

spectrum resource.

• Finally, to show that CE is scalable, we have demonstrated how CE can

be achieved in a 2-player as well as an N-player game with centralized
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as well as a distributed approach using linear optimization and channel

selection learning algorithm, respectively.

2. Related Work

In this section we provide an overview of some of the works carried out in

the domain of self coexistence in CRNs as well as application of the game theo-

retic solution concept of correlated equilibrium in the context of communication

networks.

A game theoretic approach based on correlated equilibrium has been pro-

posed in [4] for multi-tier decentralized interference mitigation in two-tier cel-

lular systems. Authors of [5] propose a multi-cell resource allocation game for

efficient allocation of resources in orthogonal frequency division multiple access

(OFDMA) systems based on throughput, inter-cell interference and complexity.

The subcarriers are considered as players of the game while the base station

acts as the provider of external recommendation signal needed for achieving

correlation of strategies of players.

The solution concept of Nash equilibrium has been adopted for distributed

spectrum management, relay selection and queuing in [6, 7] for interference-

limited cooperative wireless networks. The authors have proposed a distributed

best-response algorithm to develop a Branch and Bound-based algorithm solv-

ing the associated social problem. Authors of [8] model the competition among

multiple femtocell base stations for spectrum resource allocation in an OFDMA

LTE downlink system as a static non-cooperative game. The correlated equi-

librium of the game is derived through a distributed resource block access algo-

rithm which is a variant of the No-Regret learning algorithm. CRNs with SUs

having variable traffic characteristics are considered in [9] to tackle the problem

of distributed spectrum sensing by modeling it as a cooperative spectrum sens-

ing game for utility maximization. The authors have proposed another variant

of the no-regret learning algorithm called neighborhood learning (NBL) which

achieves correlated equilibrium for the spectrum sensing game. In contrast to
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the no-regret learning algorithm, NBL is not completely distributed and requires

some coordination among players to achieve better performance.

Correlated equilibrium has been employed in [10] for a P2P file sharing non-

cooperative game to jointly optimize players expected delays in downloading

files. Not uploading files for others causes an increase in file download time for

all players which in turn, forces even the non-cooperative players to cooperate.

The authors of [11] tackle the self-coexistence problem of finding a mechanism

that achieves a minimum number of wasted time slots for every collocated CRN

to find an empty spectrum band for communications. To do so, they employ a

distributed modified minority game under incomplete information assumption.

Different punishment strategies have been employed in [12] that form part of

a Gaussian interference game in a one-shot game as well as an infinite horizon

repeated game to enforce cooperation. Spectrum sharing is however considered

within the context of a single CRN. Evolutionary game theory is applied in [13]

to solve the problem in a joint context of spectrum sensing and sharing within a

single CRN. Multiple SUs are assumed to be competing for unlicensed access to

a single channel. SUs are considered to have half-duplex devices so they cannot

sense and access a channel simultaneously.

Utility graph coloring is used to address the problem of self-coexistence in

CRNs in [14]. Allocation of spectrum for multiple overlapping CRNs is done

using graph coloring in order to minimize interference and maximize spectrum

utilization using a combination of aggregation, fragmentation of channel carri-

ers, broadcast messages and contention resolution. The authors of [16] achieve

correlated equilibrium with the help of No-regret learning algorithm to address

the problem of network congestion when a number of SUs within a single CRN

contend for access to channels using a CSMA type MAC protocol. They model

interactions of SUs within the CRN as a prisoners dilemma game in which

payoffs for the players are based on aggressive or non-aggressive transmission

strategies after gaining access to idle channels.
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3. System Model and Assumptions

3.1. System Model

As shown in figure 1, we consider a region where IEEE 802.22 WRAN based

CRNs represented by the set of N = {1, 2, ..., n} players are collocated and

contend for secondary access to the licensed spectrum bands. The set of TVWS

channels available for secondary access by the contending CRNs is represented

as K = {1, 2, ..., k} channels. The spectrum consists of channels that differ

from each other due to various network parameters such as noise, bandwidth or

even availability. These differences make the spectrum heterogeneous in nature

with channels considered to have some ‘quality’ parameter determined by the

payoff that a CRN may achieve if it is able to gain access to that channel. The

notations commonly used in this paper are shown in table 1.

3.2. Assumptions

Following are the underlying assumptions for the work presented in this

paper:

• Time: A single MAC superframe constitutes one time slot. Every CRN

needs to gain access to a channel for which it contends with all other

collocated CRNs in every time slot. One superframe’s time slot is also

treated as one iteration in the spectrum sharing game.

• Spectrum opportunity and wastage: A given time slot’s spectrum

opportunity arises due to a PU being idle in its allocated channel. The

opportunity may result in a collision and be wasted if two or more CRNs

select the same channel for accessing in the same time slot.

• Knowledge about PU activity: In addition to the FCC mandated con-

tinuous spectrum sensing to detect PUs’ activity, CRNs are also required

to periodically access online databases such as [17, 18] in order to gain

up-to-date information about licensed PUs operating in a given region.
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• Channel quality: The amount of PU activity, bandwidth and SNR

which, for the purpose of this paper collectively determine a channel’s

quality can be learnt from online databases and measured through spec-

trum sensing over a period of time. Due to the fact that all contending

CRNs are collocated in a given region, it is reasonable to assume that a

given channel’s quality is common knowledge.

• History of channel access: As stated above, all CRNs are collocated in

a given region and are contending for the same spectrum resource. Coex-

istence Beacon Protocol (CBP) of the IEEE 802.22 standard [3] specifies

how collocated CRNs are required to exchange information about their

operations including their current operating channels. Therefore, every

CRN can tell which channels other CRNs were able to gain access to in

previous time slots and maintain their channel access history.

• Non-cooperative behavior: All CRNs are rational about their choices

and want to maximize their own payoffs only. This means that at the

start of every time slot, every player has a clear preference of selecting

the best available channel without sharing. Consequently, if every player

tries to access the best channel without a central mechanism to resolve

contention, it will result in a collision and the spectrum opportunity being

wasted because of the non-cooperative behavior.

• Payoffs2: Players3 that eventually gain access to higher quality channels

will gain higher payoffs as compared to the players that end up with lower

quality channels. In the subsequent section, we show that our proposed

spectrum sharing game can be implemented solely on the basis of a CRN’s

own payoff observations.

2We use the terms utility and payoff interchangeably.
3Similarly, we use the terms CRNs and players interchangeably
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4. Equilibrium Solutions for Heterogeneous Spectrum Sharing Game

In this section, we first present the formulation of our proposed spectrum

sharing game, followed by the derivation of pure and mixed strategy NE. Next

we introduce the concept of CE and demonstrate how it can be achieved in a

centralized implementation for a 2-player game using linear optimization. We

also demonstrate that CE can be achieved in a distributed manner for an N -

player game using a learning algorithm called channel selection learning algo-

rithm which is an adaptation of the No-Regret (NR) learning algorithm [19].

Using these concepts we model the problem of self-coexistence and heteroge-

neous spectrum sharing in the following subsections as an anti-coordination

game framework. The game is a non-cooperative repeated game with perfect

information because:

• Being rational players, CRNs compete for the best channels available in

the spectrum band and are interested only in maximizing their own utility.

Therefore, CRNs are not bound to cooperate with each other.

• Utilities are common knowledge since the quality of various network pa-

rameters can be measured by every CRN. Also, every CRN can tell which

channels other CRNs were able to gain access to in the past hence they

know other CRNs’ payoffs.

4.1. Game Formulation

The heterogeneous spectrum sharing anti-coordination game presented in

this paper is represented as G = 〈N , (A), (U)〉. Players in the game G are

CRNs represented by N . Every player in the game has the same action space

represented by A = {a1, a2, ..., ak} and the set of utilities of the channels is

U = {u1, u2, ..., uk}. Let K = {1, 2, ..., k} denote the set of available channels

and there is a bijection between the sets A and K. Also, Let N and K represent

the total number of collocated CRNs and the total number of available channels,

respectively. Strategy ak means selecting channel k for communication and a
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player gets a payoff of uk if he selected channel k and no other player selected

the same channel for a given time slot. The payoff for players playing strategies

ak and aj when competing against each other is denoted by the ordered pair

u(ak, aj) ∈ U and is a function of an individual channel’s quality given by:

u(ak, aj) =

(uk, uj) when k 6= j

(0, 0) when k = j

uk, uj > 0 (1)

where the first element of the ordered pair u(ak, aj) represents the payoff for

player that selected channel k and the second element for player that selected

channel j. For the sake of clarity and ease in analysis and without any loss of

generality, we assume that uk > uj ,∀u ∈ Rk≥0. Initially, we consider a game

with 2 players and 2 heterogeneous channels. Later, we present the case with

N -players and K-channels in section IV-D. The game represented by 1 can also

be represented in strategic form as table 2, which shows the payoffs for two

players selecting channels k or j. Since uk > uj , it is in every CRN’s interest

to choose channel k instead of channel j for a larger payoff. However, when the

players select the same channel it results in a collision, the spectrum opportunity

being wasted and both player end up with a payoff of 0. On the other hand,

if both players select different channels then their payoffs reflect the quality of

the channel to which they are able to gain access. As shown in table 2, this

game is the reverse of the classic Battle of the Sexes game and is classified as

an anti-coordination game where it is in both players’ interest not to end up

selecting the same strategy.

4.2. Pure and Mixed Strategy Nash Equilibria for the Spectrum Sharing Game

In this subsection we derive the solution concepts in the form of pure strategy

Nash equilibria (PSNE) as well as the mixed strategy Nash equilibrium (MSNE)

for our spectrum sharing anti-coordination game.

Definition 1: The Pure Strategy Nash Equilibrium [20] of the spectrum
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sharing game is an action profile a∗ ∈ A of actions, such that:

u(a∗i , a
∗
−i) � u(ai, a

∗
−i),∀i ∈ N (2)

where � is a preference relation over payoffs of strategies a∗i and ai. The above

definition means that for a∗i to be a pure strategy NE, it must satisfy the con-

dition that no player i has another strategy that yields a higher payoff than the

one for playing a∗i given that every other player plays their equilibrium strategy

a∗−i.

Lemma 1: Strategy pairs (ak, aj) and (aj , ak) are pure strategy NE of the

anti-coordination game.

Proof: Assume player 1 to be the row player and player 2 to be the column

player in table 2. From equation (1) it follows that both uk and uj are positive

values and therefore the payoffs for strategy pairs (ak, aj) and (aj , ak) are greater

than the payoffs for strategy pairs (ak, ak) and (aj , aj). Consider the payoff for

strategy pair (ak, aj) from table 2. Given that the player playing strategy aj

continues to play this strategy, then from definition 1 for NE, it follows that the

player playing strategy ak does not have any incentive to change his choice to aj

i.e., it will receive a smaller payoff of 0 if it switched to aj . Therefore, (ak, aj)

is a PSNE. The same argument can be applied to prove that the strategy pair

(aj , ak) is the second PSNE of this game. �

Definition 2: The Mixed Strategy Nash Equilibrium [20] of the spectrum

sharing game is a probability distribution p̂ over the set of actions A for any

player such that:

p̂ = (p1, p2, ..., p|K|) ∈ R|K|≥0 , and

|K|∑
j=1

pj = 1 (3)

which makes the opponents indifferent about the choice of their strategies by

making the payoffs from all of their strategies equal. Let α be the probability

with which player 1 plays strategy ak and β = (1 − α) be the probability of

playing strategy aj , then from the payoffs of table 2, the expected utility of
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player 2 for playing strategy ak is given by:

EU2(ak) = αu(ak, ak) + βu(aj , ak) = α.0 + βuk (4)

Similarly, the expected utility of player 2 for playing strategy aj is given by:

EU2(aj) = αu(ak, aj) + βu(aj , aj) = αuj + β.0 (5)

According to definition 2, player 2 will be indifferent about the choice of strate-

gies when the expected utilities from playing strategies ak and aj are equal,

i.e.,

EU2(ak) = EU2(aj) (6)

Substituting (4) and (5) in (6), we have β(uk) = α(uj). Therefore:

α =
uk

uk + uj
(7)

β = 1− α =
uj

uk + uj
(8)

The mixed strategy NE for the heterogeneous spectrum sharing game is given

by the distribution p̂ = {α, β} of equations (7) and (8) which means that when

both players select strategies ak and aj with probabilities α and β respectively,

then their opponents will be indifferent about the outcomes of the play. To

generalize, expected utility for every player i in a K-channel heterogeneous

spectrum sharing game is given as follows:

EUi =

|K|∑
m=1

um.pm,∀m ∈ K (9)

where pm represents the probability of CRN i selecting channel m all other

CRNs not selecting channel m. We will utilize eq (9) in section V for the

fairness and efficiency analysis of the various game equilibria.

4.3. Centralized Correlated Equilibrium for 2-Player Game

Under pure and mixed strategy NE, it is assumed that the players choose

their strategies independently and without any prior coordination. However as
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we demonstrate next, it is in every player’s interest to coordinate their actions

such that the outcomes are favorable to all players by avoiding the selection

of same channel. Players would maximize their utilities if somehow they could

avoid ending up selecting the same channels. A coordination, or the lack thereof,

in selecting channels would essentially make it an anti-coordination game. Such

a coordination to avoid selecting same channels can be achieved with the help

of a mutually trusted central entity that can provide all players with a recom-

mendation signal. The external recommendation signals can either be public

or private signals or they can even be learnt over a period of time eliminating

the need for a central entity making possible its distributed implementation. In

this subsection, we present the centralized algorithm to achieve the centralized

correlated equilibrium (CE) for a 2-player, 2-channel game while the distributed

algorithm to achieve CE with a channel selection learning algorithm for an N -

player K-channel game is presented in the next subsection.

CE is a state in which, when given the availability of an external recommen-

dation signal, none of the players can achieve a greater utility by ignoring that

signal when all other players follow the recommended action. In other words, π

is a correlated equilibrium if no strategy modification can result in an increase

in a player’s expected utility. Formally, CE is defined as:

Definition 3: A probability distribution π is a Correlated Equilibrium of a

game when [21]:

∑
ai∈A

π(ai, a−i)[ui(ai, a−i)− ui(a′i, a−i)] ≥ 0,∀i ∈ N (10)

π(ai, a−i) is the joint probability distribution of players to select a certain strat-

egy pair in the next time slot. The inequality (10) represents that selecting

some different strategy a′i instead of ai in the next time slot will not result in a

higher payoff for a player given that all other players adhere to the recommended

strategy. In a centralized implementation of correlated equilibrium for a 2-player

2-strategy game such as the one shown in table 3, any external entity e.g., one of

the contending CRNs may be selected as the recommender that calculates and
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provides the external recommendation signal for all contending CRNs according

to the CE joint probability distribution π = (p1,1, p1,2, p2,1, p2,2). The strategic

form of such a correlated strategy pair is shown in table 3. A correlated strat-

egy pair means that the action pair (a1, a1) is played with probability p1,1 and

action pair (a1, a2) is played with probability p1,2 etc.

Here we derive the centralized CE of the heterogeneous spectrum sharing

game using a linear optimization approach. CE can be implemented for a multi-

player game using linear optimization; however, with this method the number

of constraints for CE grows exponentially with the number of players and their

strategies and the problem grows at a polynomial rate [22]. Therefore, we

derive centralized correlated equilibrium only for a 2-player game and consider

the case for an N -player game in the next subsection when we present the case

for a decentralized CE. Let the objective function J to find the optimal strategy

CE for a 2-player game be defined as:

J = max
pi,j

2∑
i=1

2∑
j=1

[u1(ai, aj) + u2(ai, aj)]pi,j (11)

where the constraints for CE in equation (11) are:

p1,1 + p1,2 + p2,1 + p2,2 = 1 (12)

p1,1u1(a1, a1) + p1,2u1(a1, a2) ≥ p1,1u1(a2, a1) + p1,2u1(a2, a2) (13)

p2,1u1(a2, a1) + p2,2u1(a2, a2) ≥ p2,1u1(a1, a1) + p2,2u1(a1, a2) (14)

p1,1u2(a1, a1) + p2,1u2(a2, a1) ≥ p1,1u2(a1, a2) + p2,1u2(a2, a2) (15)

p1,2u2(a1, a2) + p2,2u2(a2, a2) ≥ p2,2u2(a1, a1) + p2,2u2(a2, a1) (16)

p1,2 = p2,1 and p1,1 = p2,2 = 0 (17)
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For the game of table 2, any correlated equilibrium of the form π = (0, p, 1−

p, 0) such as the one represented in table 3 will maximize the sum of expected

payoffs for the players because it eliminates the possibility of the players con-

tending for the same channel. The constraints needed for a CE represented by

equations 13 to 16 mean that given a recommendation signal is received, the

players do not have an incentive to unilaterally deviate from the recommended

strategy. This can be explained as follows: Consider the constraint of equation

13. It suggests that player 1 has been recommended channel 1 for use dur-

ing current stage of the game. Since the recommendation signal is not binding

for the two players, player 1 does not exactly know player 2’s chosen channel.

Then, the expected payoff from choosing the recommended strategy (channel

1) will yield at least the same utility as switching to another strategy (choosing

channel 2 instead of the recommended channel 1). Therefore, player 1 does not

have an incentive to unilaterally switch from the recommendation signal. The

same explanation also holds for constraints of equations 14 to 16 when the two

players are recommended available channels under the other possible scenarios.

For an egalitarian equilibrium which is fair and maximizes the sum of expected

payoffs, we have an additional constraint defined as (17).

Having the recommender to provide external signal based on equation (11)

and the constraints (12) to (17), ensures that probability of the two players

ending up in the same channel is minimized so that the likelihood of spectrum

opportunity being wasted is also minimized and hence players’ utilities can be

maximized. It must be noted that the external recommendation signal is not

binding and players are free to ignore recommended actions. The efficiency of

avoiding the collision condition is achieved only because the players know that

they will achieve higher payoffs by following the recommendation signal. This

argument is explained with the help of following example.

Consider a situation in which the recommender selects an egalitarian CE

probability distribution π = (0, 1/2, 1/2, 0) over the payoff matrix of table 3

in order for the two players to avoid selecting the strategy pairs (a1, a1) and

(a2, a2). Suppose the external signal randomly recommends player 1 to select

15



action a2 i.e., channel 2 which is of lower quality and results in a smaller payoff

of 7 compared with a payoff of 9 if channel 1 was selected for next time slot.

Player 1 knows that player 2 will follow the recommended action because it has

been recommended a higher quality channel. It is however in player 1’s interest

to select the action recommended by the external signal since it would yield a

higher payoff of 7 instead of 0 if external signal is ignored and both players end

up selecting the same higher quality channel.

4.4. Distributed Correlated Equilibrium for N-Player Game

CE for a 2-player game was derived in the previous subsection and in this

subsection we consider the case for an N -player K-channel game and demon-

strate how CE can be achieved in a distributed manner and without the need

of any communication among the CRNs or an external recommendation signal.

To this end, we propose a novel channel selection learning algorithm which is

an adaptation of the No-Regret learning algorithm [19] to achieve CE. Chan-

nel selection learning algorithm is based on the concept of minimizing a CRN’s

regret in the hindsight for not selecting a particular channel in every time slot

up to the current time t. Next we detail the working of the channel selection

learning algorithm.

Channel Selection Learning Algorithm: Suppose that the heteroge-

neous spectrum sharing game G is played repeatedly at every time slot t =

1, 2, 3, · · · and every CRN knows the history of plays ht of every other CRN

up to time t because of being collocated. Given a history of play ht = (aτi )tτ=1

up to time t, every CRN calculates a probability pt+1
i ∈ π(Ai) of selecting the

same channel aτi for the next time slot. The probability for selecting a channel

for the next time slot is calculated as follows: for every two different channel

choices a′i ∈ A and ai ∈ A up to time t, if every CRN replaces channel ai with

channel a′i every time that it was selected in the past then its utility for time τ
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will become:

ωτi (a′i) =

u
τ
i (a′i, a

τ
−i) if aτi = ai

uτi (aτi ) otherwise

∀i ∈ A (18)

Then the average difference in a CRN’s payoff up to time t is given by:

δti(a
′
i, ai) =

1

t

t∑
τ=1

[ωτi (a′i)− uτi (aτi )],∀a′i 6= ai (19)

and CRN i’s average regret at time t is given by:

NRti(a
′
i, ai) = [δti(a

′
i, ai)]

+,∀a′i 6= ai (20)

then the probabilities of selecting channels ai and a′i in the next time slot are a

function of a CRN’s average regret and given by:

pt+1
i (a′i) =

1

µ
NRti(a

′
i, ai) (21)

pt+1
i (ai) = 1−

∑
pt+1
i (a′i),∀a′i 6= ai (22)

The parameter µ determines the amount of inertia (or un-willingness) that

a CRN possesses in deviating from its current choice of a given channel and

its value is constrained by µ > 2Mi(|K| − 1), such that |K| is the number of

channels available for contention and Mi is the upper bound on |ui(.)|. Its value

is independent of time as well as the play’s history and also ensures that there

is always a positive probability of staying in the same channel as in the previous

time slot. As t→∞, the empirical probability distribution π over the N-tuples

of strategies converges to the CE [22]. A summary of the Channel Selection

learning is given in Algorithm 1.

5. Fairness and Efficiency of Derived Equilibria

Having demonstrated how CE can be achieved for an N -player K-channel

game, we now provide an analysis on the fairness and efficiency of all of the

equilibria derived in this paper. For the sake of clarity and easy analysis we
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Algorithm 1: Channel Selection Learning Algorithm

Data: µ,Mi(upper bound on |ui(.)|)

Result: Every channel’s probability of being selected by every CRN for

the next time slot.

Initialization: t← 1, p1i (ai) = 1
|K| ;

while CRNs contend for heterogeneous channels do

for every CRN i do

Compute current Regret NRti up to time t for not selecting

channel a′i ∈ A as per equation (20);

Calculate pt+1
i i.e., prob. of selecting channel ai and all other

channels a′i for the next time slot as per equations (21) and (22);

t← t+ 1;

end

end

consider the case of a 2-player 2-channel heterogeneous spectrum sharing game

while the same arguments can be applied for analyzing an N -player K-channel

scenario. There are three different types of equilibria computed in preceding

subsections for the spectrum sharing heterogeneous game:

• Two pure-strategy NE for the anti-coordination game (ak, aj) and (aj , ak).

• A mixed strategy NE defined by the probability distribution p̂ = {α, β}

given by equations (7) and (8).

• A Correlated Equilibrium defined by the probability distribution π =

(0, p, 1− p, 0) over joint strategy pairs of table (3) given by equation (11)

and constrained by equations (12) to (17).

Price of Anarchy: To analyze the efficiency of these equilibria, we first

introduce Price of Anarchy (PoA) [23], a measure of degradation due to selfish
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behavior of non-cooperating players in a system. Let S ⊆ A be a set of strate-

gies in equilibrium such that SP , SM and SC refer to the sets of strategies in

pure strategy NE, mixed strategy NE, and CE for the heterogeneous spectrum

sharing game, respectively. We define the measure of efficiency of the game as

a utility function F : S → R such that

F (a) =

|N |∑
i=1

ui(a) (23)

then PoA is defined as the ratio between optimal efficiency and the worst equi-

librium efficiency of the game, as follows:

PoA =
arg maxa∈A F (a)

arg mina∈S F (a)
(24)

where the strategies a ∈ S represent progressively higher efficiency as PoA

approaches 1.

Optimal Efficiency: The heterogeneous spectrum sharing game will result

in optimum efficiency when all of the contending CRNs always select different

channels i.e., they are able to avoid contention for the same channel which

would result in a collision and zero payoff. In the presence of selfish players,

such optimality is only possible with a correlated choice of strategies as well as

fair distribution of spectrum resource. When these conditions are satisfied then

the maximum value of the utility function F (a) is given as the sum of utilities

of all channels as follows:

arg max
a∈A

F (a) =
∑

um,∀m ∈ K (25)

Next we discuss the fairness of equilibria as well as their efficiency by deriving

the worst equilibrium efficiencies and comparing them with optimal efficiency

of the game (25).

PoA with Pure Strategy Nash Equilibria: As assumed previously in

section 3, channel k is of higher quality than channel j therefore uk > uj . Then
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from the payoff matrix of table I, gaining access to channel k brings a larger

payoff to a CRN whereas being of comparatively lower quality, channel j brings a

smaller payoff. There are two pure-strategy Nash equilibria (ak, aj) and (aj , ak),

however both of them are unfair because uk 6= uj and one player always gets a

smaller payoff than the other. Since the game is a non-cooperative game and

every player is interested in maximizing its own payoff, all of them will end up

selecting the larger payoff channels resulting in contention and collision in every

time slot and hence zero payoffs. As a result PoA is not defined in the context

of PSNE of this game and therefore, PSNE is not a practical solution for this

game.

PoA with Mixed Strategy Nash Equilibrium: MSNE of our spectrum

sharing game is the probability distribution p̂ = α, β given by equations (7) and

(8). Since the expected utilities EUi given by equation (9) for all players are

equal when they mix their strategies according to the distribution p̂, we can

conclude that MSNE is fair.

We now derive the PoA for the game to be able to determine its efficiency

under MSNE. There is only one MSNE of the game therefore, minimum value of

the utility function F (a) under MSNE is the sum of expected utilities of every

player from equation (9) and is given by:

arg min
a∈SM

F (a) = |N |.ui.
|K|∑

m=1,m 6=i

pm,∀i ∈ N (26)

and the price of anarchy under MSNE is given by

PoAM =

∑|K|
m=1 um

|N |.ui.
∑|K|
m=1,m 6=i pm

(27)

by substituting equation (23) and (26) in (24).

PoA with Correlated Equilibrium: The correlated equilibrium (CE) of

a 2-player 2-channel spectrum sharing game is defined by the probability dis-

tribution of tuple π = (0, p, 1 − p, 0) over joint strategy pairs constrained by

equation (18). Equations (18) to (22) represent the channel selection learn-
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ing algorithm implemented to achieve CE for an N -player K-channel scenario.

Correlation in the choice of strategies ensures that the probability of players

selecting the same channel for contention is minimized so that the spectrum

opportunity is not wasted due to collision and players’ payoffs are maximized.

As demonstrated in next section, the NR algorithm takes some time to converge

to CE during which they may select the same channels resulting in collisions.

However after convergence, the contending CRNs never select the same channel

thus wastage of spectrum opportunities is avoided altogether and all channels

are utilized to the maximum. Therefore, minimum value of the utility function

F (a) under CE is the sum of expected utilities of every player given as:

arg min
a∈SC

F (a) =
|K|∑
m=1

um (28)

and PoA under CE is given as:

PoAC =

∑|K|
m=1 um∑|K|
m=1 um

= 1 (29)

Discussion: Under the constraint for the MSNE probabilities of selecting

different channels 0 < pm < 1 and
∑|K|
m=1 pm = 1, minimum value of the utility

function F (a) in equation (26) will always be smaller than 1. This means that

PoA under MSNE of equation (27) will always be greater than 1. On the other

hand CE has a price of anarchy equal to 1 which according to its definition,

is the most efficient case. This is a clear evidence of CE not only being fair

but also the most efficient solution for the problem of heterogeneous spectrum

sharing game.

Figure 2 illustrates the overall scenario of non-cooperative behavior from

CRNs for self coexistence and the improvement that can be achieved with our

proposed channel selection learning algorithm. Figure 2a shows how selfish

behavior may result in collision and wastage of spectrum resource. figure 2b de-

picts a scenario where MSNE results in a fair yet inefficient spectrum utilization

while figure 2c shows performance improvement achieved through CE.
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Figure 2: Channel access pattern of CRNs. (a) Selfish behavior from CRNs

for best quality channel (channel 1) will always result in a collision. (b) Fair

distribution of spectrum resource when CRNs mix their choice of channels ac-

cording to MSNE. However, MSNE is inefficient becuse of collisions and wasted

opportunities. (c) Fair and efficient resource distribution with CE.

6. Simulations and Results

6.1. Simulation Setup

For the purpose of validating the effectiveness of CE, we implemented our

proposed anti-coordination game along with the channel selection learning al-

gorithm. We verify that CE is achievable, fair and efficient as it always yields a

higher expected utility per CRN as compared with MSNE. For the purpose of

simulation, n represents the number of CRNs and k represents the number of

channels in the spectrum available for secondary access by the CRNs. We first

carry out the comparison of CE and MSNE with a 2-player 2-channel game i.e.,

n = 2 and k = 2 and calculate expected utilities per CRN. Later we carry out

simulations with varying number of CRNs and channels and demonstrate that

the game always converges to CE. Since the channel selection learning algorithm
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approaches CE based solely on a given network’s own payoff observations, it al-

lows the distributed implementation of our proposed anti-coordination game.

Inertia parameter of the channel selection learning algorithm is µ whose value

is kept constant for all simulations except for the simulation of figure 1 in which

we demonstrate the effect of changing the values of µ.

6.2. Simulation Results

Figure 3 shows a comparison of expected utilities per CRN under MSNE and

CE with various values for the inertia parameter µ. Payoff value for channel 1 is

u1 = 9 while channel 2 has a payoff of u2 = 7. Compared with all the four plots

for CE in figure 3 where the expected utilities converge to 8 per CRN, MSNE

yields a smaller expected utility of 3.93 per CRN, proving our analysis that CE

is more efficient than MSNE. Different values of µ achieve CE at different rates

however the convergence values are identical. As evident from figure 3, µ being

the inertia parameter, reflects a CRN’s propensity towards staying in the same

channel in next time as the previous one.

Figure 4 shows a comparison of CE at different values of the number of

networks (n) and channels (k). For this simulation, the number of CRNs is kept

the same as the number of channels available for contention i.e., n = k such that

utilities of the channels are u1 = 9, u2 = 7 and u3 = 6. With every additional

CRN, a lower quality channel was added to the spectrum resulting in smaller

expected utility per CRN and slower convergence to equilibrium.

Figure 5 shows the CE for expected utilities per CRN over time such that

k ≥ n i.e., increasing the number of available channels from 4 to 6 while keeping

the number of contending CRNs constant at 4. Notice that the convergence

value for expected utility is the same for all cases. It shows a very important

aspect of the channel selection learning algorithm which allows CRNs to always

have a fair as well as an efficient distribution of channel resources as players

choose the highest quality channels from the pool of available channels. Also,

the speed of convergence to CE is fastest when the number of CRNs is equal

to the number of available channels i.e., n = k. Payoff values for channels 1
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through 6 for this simulation are kept at 9, 7, 6, 5, 4 and 3 respectively.

Figure 6 shows the CE for expected utilities per CRN over time such that

n ≤ k i.e., decreasing the number of CRNs from 4 to 2 while keeping the

number of available channels constant at 4. Intuitively, expected utility per

CRN is lowest at n = 4 and k = 4 as compared with the situation when the

number of contending networks is smaller however, the speed of convergence to

CE is fastest when n = k. Payoff values for channels 1 through 4 are 9, 7, 6 and

5 respectively.

Finally, figure 7 shows the results of simulation when n ≥ k and the number

of channels is kept fixed while the number of contending CRNs is increased. It

shows that as soon as the number of CRNs contending for channels becomes

more than the number of channels available, there will always be at least one

collision between two or more CRNs in every time slot making the expected

utility per CRN to drop significantly. However, the channel selection learning

algorithm still manages to achieve CE despite much degraded expected utilities

per CRN.

Figure 8 shows the effect of varying channel quality on the expected utilitiy

for every CRN. When the payoff for channel 2 is dropped from a value of 7 to

5, it results in a proportional drop in the expected utility from 8 (a) to 7 (b).

A proportional drop is shown in (c) when channel 2’s payoff further drops to

3. Similar results are expected from a greater number of channels and this is

shown in figure 9 where the number of channels is 3. In this figure, payoff from

channel 3 is reduced progressively with similar results. As can be noticed in

figures 8 and 9, another aspect of varying channel quality is that the rate of

convergence to CE decreases with the increase in variance of channel quality.

7. Conclusions

Coexistence protocols employed by collocated CRNs usually do not take into

consideration the fact that spectrum bands vary significantly with regards to

channel quality thereby making some channels of the spectrum bands more at-
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tractive to CRNs than others. In this paper, we aimed at solving the problem of

sharing heterogeneous spectrum by adopting a game theoretic approach. By an-

alyzing the system’s efficiency and fairness with the help of price of anarchy, we

demonstrated that correlated equilibrium solves the problem of inefficiency and

unfairness associated with the game solutions of pure and mixed strategy Nash

equilibria. Furthermore, to address the problems associated with a centralized

implementation, we proposed the use of a novel channel selection learning algo-

rithm that enables the CRNs to achieve correlated equilibrium in a distributed

manner.
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Table 1: Notations & Acronyms

Notation Definition

ak CRN’s action of selecting channel k

uk CRN’s utility for gaining access to channel k

N set of contending CRNs

K set of available channels

p̂ prob. distr over set of channels (in MSNE)

EUk Expected Utility from accessing channel k

π joint prob. distr of available channels (in CE)

t current time

ωτi (a′i) utility if all ai in time slot τ were replaced by a′i

δti(a
′
i, ai) average difference in utility upto time t if CRN i replaces channel

ai every time that it was selected in the past, with channel a′i,

∀a′i 6= ai

µ Inertia or un-willingness of a CRN to change its strategy

NRti(a
′
i, ai) CRN i’s average regret upto time t for selecting channel ai instead

of every other other channel a′i that was not selected

pt+1
i prob. of selecting a channel for next time slot

S Set of strategies in equilibrium

F (a) utility function for all actions in equilibrium

PoA Price of Anarchy

PU Primary User

SU Secondary User

NE Nash Equilibrium

PSNE Pure Strategy Nash Equilibrium

MSNE Mixed Strategy Nash Equilibrium

CE Correlated Equilibrium
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Table 2: Strategic form representation of the Heterogeneous Spectrum Sharing

game with strategies ak and aj .

ak aj

ak (0, 0) (uk, uj)

aj (uj , uk) (0, 0)

Table 3: Joint prob. distribution over strategies a1 and a2.

a1 a2

a1 p1,1 p1,2

a2 p2,1 p2,2
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Figure 3: Expected utilities per CRN for N = 2,K = 2 and utilities from the

two channels are: u1 = 9 and u2 = 7 with varying inertia parameter µ. (a)

µ = 20, (b) µ = 100, (c) µ = 200 and (d) µ = 300. Different values of µ achieve

the same convergence value of expected utility however as inertia increases, it

causes a decrease in convergence rate.
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Figure 4: Comparison of CE at different values of the number of networks (n)

and channels (k). Y-axes represent expected utility per CRN. For this simulation

n = k where (a) n = k = 2, (b) n = k = 3, (c) n = k = 4 such that u1 = 9,

u2 = 7 and u3 = 6.

Figure 5: Comparison of CE when k ≥ n and number of networks is kept fixed.

Y-axes represent expected utility per CRN. (a) k = n = 4, (b) k = 5, n = 4,

(c) k = 6, n = 4. CRNs always select the best out of the available pool of

channels therefore the convergence value of expected utilities are equal however

convergence rate increase as n→ k.
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Figure 6: n ≤ k and number of networks is kept fixed. Y-axes represent expected

utility per CRN. (a) k = n = 4, (b) k = 3, n = 4, (c) k = 2, n = 4. Decrease

in number of networks results in an increase in expected utilities. Convergence

rate decreases as the number of channels increases.

Figure 7: Comparison of CE when n ≥ k and number of channels is kept fixed.

Y-axes represent expected utility per CRN. (d) k = n = 2, (e) k = 2, n = 3,

(f) k = 2, n = 4. Increase in number of networks results in a corresponding

decrease in expected utility per CRN however the convergence rate decreases as

the number of channels increases.
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Figure 8: Comparison of CE values when channel payoffs (quality of channels)

are varied. Y-axes represent expected utility per CRN with k = n = 2, (a)

u1 = 9, u2 = 7, (b) u1 = 9, u2 = 5 and (c) u1 = 9, u2 = 3 Decrease in the quality

of channel 2 results in a proportional decrease in the expected utility for every

CRN. Also, the convergence rate decreases as the variance in channel quality

increases.

Figure 9: Comparison of CE values when channel payoffs (quality of channels)

are varied. Y-axes represent expected utility per CRN with k = n = 3, (a)

u1 = 9, u2 = 8, u3 = 7, (b) u1 = 9, u2 = 8, u3 = 4 and (c) u1 = 9, u2 = 8, u3 = 1

Decrease in the quality of channel 3 results in a proportional decrease in the

expected utility for every CRN. Also, the convergence rate decreases as the

variance in channel quality increases.
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