

A Chipset Level Network Backdoor:

Bypassing Host-Based Firewall & IDS

Sherri Sparks, Shawn Embleton, Cliff C. Zou
School of Electrical Engineering and Computer Science

University of Central Florida
4000 Central Florida Blvd., Orlando, FL USA 32816-2362

+1-407-823-5015

{sparks, embleton}@clearhatconsulting.com, czou@eecs.ucf.edu

ABSTRACT
Chipsets refer to a set of specialized chips on a computer's
motherboard or an expansion card [12]. In this paper we present a
proof of concept chipset level rootkit/network backdoor. It interacts
directly with network interface card hardware based on a widely
deployed Intel chipset 8255x, and we tested it successfully on two
different Ethernet cards with this chipset. The network backdoor
has the ability to both covertly send out packets and receive packets,
without the need to disable security software installed in the
compromised host in order to hide its presence. Because of its
low-level position in a computer system, the backdoor is capable of
bypassing virtually all commodity firewall and host-based intrusion
detection software, including popular, widely deployed
applications like Snort and Zone Alarm Security Suite. Such
network backdoors, while complicated and hardware specific, are
likely to become serious threats in high profile attacks like
corporate espionage or cyber terrorist attacks.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection – invasive

software, security kernels

General Terms
Security

Keywords
Rootkit, network backdoor, hardware security

1. INTRODUCTION
Host-based firewalls and intrusion detection systems have made
significant advances in both technology and scope of deployment
within the past few years. Despite these advances, two challenges
remain: they focus mostly on defending against outside attacks
instead of inside information exfiltration, and they are mostly
relying on the underlying Operating System’s support for data
gathering and monitoring. In this paper, we present a network
rootkit / backdoor that exploits these two problems. This network

backdoor is capable of bypassing virtually all commodity,
host-based firewall and intrusion detetection software on the
market today, including popular, widely deployed products like
Snort and Zone alarm.

Traditionally, firewalls, network based intrusion detection systems
(IDS) and intrusion prevention systems (IPS have been focused on
outsider threats. These types of systems monitor incoming network
traffic or system behavior for malicious code or attacks. When an
attack is detected, the system reacts in real-time to block or prevent
it (e.g. by dropping the malicious packets while allowing other
network traffic to pass). Unfortunately, many of these systems only
filter inbound traffic, still leaving the protected machine vulnerable
to a large class of insider threats resulting from the free flow of
unauthorized, outbound traffic. The firewall provided with the
Windows XP operating system is one such example [11]. The
implications include leaving the machine vulnerable to the
exfiltration of sensitive information as well as delaying detection of
malware threats resulting from unmonitored outgoing traffic.
Extrusion detection is to deal with this security issue, which
focuses “primarily on the analysis of system activity and outbound
traffic in order to detect malicious users, malware or network traffic
that may pose a threat to the security of neighboring systems [27].”

The potential for sensitive data exfiltration is perhaps the most
significant threat arising from unrestricted outbound traffic flow.
The exfiltration of sensitive information can occur either
inadvertently or deliberately and affects both corporate
organizations and individuals. For example, spyware and adware
infestations are extremely prevalent on home PC’s with the
AOL/NCSA study showing that 80% of home computers are
infected and that the average infected user has 93 spyware or
adware components on their computer [10]. Additional threats that
remain inadequately addressed by existing IDS, IPS, and firewall
technology’s failure to filter outbound traffic include delayed
detection of DDOS attacks, Botnets, and Internet Worms.

The second problem concerns the reliance of host-based firewall
and intrusion detection tools on the trustworthiness of the
underlying Operating System. Unfortunately, malware authors
have developed an arsenal of techniques to exploit this reliance and
cheat the data returned to applications and drivers that rely on the
OS API. These techniques range from preventing security software
from loading to complex hooks in Operating System network stack
[15]. This problem should not be understated. To illustrate this
potential threat, we present a network backdoor in this paper that
operates at the physical network card interface and successfully

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASIACCS’09, March 10-12, 2009, Sydney, NSW, Australia.
Copyright 2009 ACM 978-1-60558-394-5/09/03…$5.00.

bypasses virtually all commodity host-based firewall and IDS / IPS
software on the market today.

The proposed network backdoor is essentially a rootkit (a malicious
program that tries to hide its existence on an infected computer),
thus it relies on vulnerability exploits, such as through worms or
email viruses, or other attack mechanisms to install it on a computer.
How to compromise a remote computer is not the focus of the
proposed network backdoor.

Many people may think that attackers can simply deactivate any
defense systems running on a computer once the computer is
compromised, and hence, it is not necessary for attackers to deploy
any advanced hiding techniques. This is true for computers where
their users or security managers are careless. For other computers,
however, deactivating security defense systems can be easily
noticed by security-minded users via some simple system checks.
Hiding malicious codes and their activities on an infected computer
with as small as possible system change is still essential to serious
attackers, especially in botnet attacks or long-term business
espionage.

The contributions of this paper are as follows: First, we provide a
design and implementation of a network rootkit / backdoor that is
capable of bypassing virtually all currently available commodity,
host-based firewalls and intrusion detection systems. Our
backdoor possesses the ability to both covertly send and receive
network packets over a compromised host’s network interface.
Secondarily, we test our attack against several well-known
firewalls and intrusion detection systems. Finally, we seek to raise
awareness of the data exfiltration problem as it relates to both data
loss prevention and malware propogation and consider potential
defenses against such attacks.

This paper is organized as follows. In section 2, we give an
overview of related work in the area of extrusion detection and
prevention as well as discuss previous methods used by malware
authors to bypass IDS and IPS systems. Section 3 describes our
implementation of a network backdoor capable of bypassing a large
class of firewalls and intrusion detection tools. Results from the
testing of our implementation against several well known systems
are provided in section 4. Section 5 discusses possible defensive
measures. We conclude in section 6.

2. BACKGROUND & RELATED WORK
Several extrusion detection tools have been developed and
discussed in the literature.

Cui et al. described an extrusion-based break in detector for
personal computers called BINDER [16]. They note that many
malware applications send malicious outgoing network traffic from
compromised computers and make the observation that most
legitimate network activities are directly or indirectly triggered by
user input. BINDER detects compromises by correlating network
activity with user input on the premise that malicious code typically
runs in the background and generates connections without user
input.

Another outbound intrusion, or extrusion, detection tool called
FROID was developed and presented by Salvador Mandujano [17].
FROID attempts to protect a set of nodes in a network by having
each member monitor its own outbound traffic for evidence of
compromise. It was built using the JADE agent framework and

takes an ontology-based approach to the detection of malicious
code [18]. The prototype features a misuse based detection based
on signatures derived from network traffic and process execution.

Web Tap is an anomaly based intrusion detection tool specifically
focused on detecting malicious, covert outbound HTTP traffic, like
spyware, in an otherwise firewalled network [19]. By analyzing
outbound HTTP traffic, the authors developed filters capable of
detecting several covert web tunneling programs, a backdoor, and
several spyware / adware applications.

Zhang and Paxson tackle the problem of generically identifying
backdoors, specifically those that provide interactive access on non
standard ports [20]. They note that interactive traffic has different
traits than application generated traffic. In order to search for
traffic containing these traits, they successfully propose and test a
passive network monitoring algorithm based upon keystroke
characteristics including directionality of the connection, packet
sizes, and packet interarrival times.

Although these tools seek to address the outbound malicious
activities, the implementations described in these papers remain
vulnerable to the second problem. This is, they all rely on
host-based network monitoring for the correct operation of their
tool. In order for these tools to monitor network traffic, they must
rely upon the network API support provided by the Operating
system to intercept that network traffic. This is a common
weakness. A variety of malware techniques exist to subvert this
reliance. These techniques exploit the fact that modern Operating
Systems like Linux and Windows, are built upon a layered
architecture. In general, by inserting themselves lower in the
architecture a malware application gains more stealth and power.
For example, a malicious kernel driver is more powerful and
capable of evading detection than a malicious usermode application.
A stealthier malware application does not rely upon the OS at all,
but instead interacts directly with the hardware.

Clearly, the ability to evade a host-based firewall or IDS is a
valuable asset for malware like worms or botnets who would like to
delay detection for as long as possible. A number of methods have
been previously proposed and /or implemented.

Perhaps the simplest approach for a malicious kernel module is to
register a driver load notification callback. When a new driver is
loaded, the OS calls the malware defined callback function giving it
a chance to scan it for signatures corresponding to known firewall
drivers. If a firewall is detected, the malware simply prevents it
from successfully loading. The drawback to this method is clearly
the fact that the malware must be resident and active in memory
prior to the firewall.

More advanced attacks attempt to hook into the OS network
subsystem in order to make the OS return false information to the
IDS or firewall. NT Rootkit by Greg Hoglund is an example of this
type of rootkit [23]. For example, the two primary components of
the network subsystem of interest to malware authors on Windows
Operating Systems are TDI (Transport Driver Interface) and NDIS
(Network Driver Interface Specification) [21]. Figure 1 illustrates
the relationship between these components. Both of these
components are also used by security software to implement
firewalls and IDS.

TDI defines an upper level kernel network interface. Under
Windows 2000/XP/2003 based systems, tcpip.sys is the primary

driver that exposes the Transport Data Interface. It creates 4
devices including TCP, UDP, Raw IP, and ICMP. A firewall may
intercept the TDI interface to control network access at a per
process granularity and to simplify detection and prevention of
attacks at the application layer. For example, TDI may be used to
decide if a given process is allowed to open a TCP / UDP port or
send and receive network data. The interception is usually
performed with a special driver, called a filter driver. The filter
driver attaches itself above tcpip.sys in the Windows network stack.
From this position, it is able to transparently and invisibly snoop
communications to and from tcpip.sys devices. Unfortunately,
such a filter is limited by the fact that it sits at top of the kernel
network subsystem. As a result, it is only able to control the
network communications for drivers that exist above it. In practice,
this limits the usefulness of TDI interception to malware using the
kernel mode sockets interface.

NDIS operates below TDI. Its primary purpose is to abstract the
physical network hardware from network drivers. It is possible for
a firewall to intercept NDIS functions to filter traffic at a lower
level than TDI based driver. Windows provides several methods of
hooking NDIS functions including development of an NDIS
Intermediate Driver, developing a Filter Hook Driver (Windows
firewall hook driver), and registering a new protocol to NDIS to
force the NDIS protocol characteristics table to hook the TCPIP
protocol NDIS functions. Although it is more powerful, NDIS
based firewall solutions are more complex and will have difficulty
associating opened ports with application layer processes.
Malware may also intercept NDIS functions in an effort to bypass
host-based firewalls or intrusion detection systems. One approach
is to simply replace the firewall hooks with their own malicious
hooks. This technique was demonstrated in the “DeepDoor”

rootkit by Joanna Rutkowska [5] and the “Peligroso” rootkit by
Greg Hoglund [6]. Such changes, however, may be detected by
more advanced firewalls which validate the presence of their hooks
and the integrity of their handlers.

As mentioned, TDI and NDIS hooking techniques are used both by
firewall & IDS developers as well as malware authors in an
elaborate game of cat and mouse. The general trend that can be
observed, however, is that the lower (e.g. closer to the hardware)
one goes, the greater their power and stealth. Both TDI and NDIS
hooking as used by malware authors may be viewed as a form of
“man in the middle” attack. Extending this form of attack to its
logical conclusion would be the development of a stealthy network
exfiltration backdoor that exists as low as is physically possible
(directly above the physical hardware). While relatively rare due to
their complexity, there has been some prior research into hardware
level rootkits. John Heasman discussed the development of proof
of concept BIOS and PCI rootkits on Windows NT systems [24].

The remainder of this paper discusses the feasibility and
development of a proof of concept chipset level network backdoor.
This backdoor successfully evades all firewall and intrusion
detection tools that we tested it against. We provide the details of
our implementation and experimentation on 2 popular network
cards in the following sections and provide recommendations for
mitigating this form of malware attack.

3. DESIGN & IMPLEMENTATION
In this section, we discuss our development of a chipset level
network backdoor capable of both receiving remote commands and
exfiltrating information across the boundary of most host-based
commercial firewalls and intrusion detection systems. Our
backdoor resides below both the NDIS and TDI Operating System
interfaces at the physical hardware layer of the network card. Thus,
it is capable of bypassing any malicious code detection / prevention
software running at an abstracted level above the hardware. We
chose to develop and install our proof of concept code as a
Windows kernel driver to simplify testing and debugging.
Unfortunately, we must sacrifice hardware dependence for OS
independence and increased stealth. As a result, our current
implementation is limited to cards compatible with the Intel 8255x
chipset. It is neither necessary nor desirable for us to extend our
implementation to support a larger number of chipsets. Our
intention is to provide a proof of concept that addresses a critical
hole in existing security technology, not provide the blueprints for
malware authors to develop a fully featured attack tool.
Nevertheless, it remains that the Intel 8255x chipset is compatible
with many existing Intel ethernet cards.

We break the details of our implementation down into 2 subtasks:
data exfiltration and data infiltration.

Offset Upper Word Lower Word

0x00 SCB Command Word SCB Status Word

0x04 SCB General Pointer

Figure 2: 8255x System Control Block (SCB)

KERNEL MODE

TDI Filter Driver

Network Driver Interface
Specification (NDIS) � ndis.sys

NDIS Filter

Transport Driver interface (TDI) �
tcpip.sys

Rootkit
“Deepdoor”
“Peligroso”

Proposed
Network
Backdoor

Figure 1: Windows Network Architecture

3.1. Data Exfiltration
Data exfiltration refers to the process involved in sending data out
from the compromised host. We send data out by interacting
directly with the LAN controller hardware over the PCI bus. The
LAN controller acts as both a master and a slave on the PCI bus. In
the role of master, it interacts with system memory to access
transmit and receive data buffers. As a slave, the host processor
accesses the LAN controller’s internal structures to read and write
information to its on-chip registers. These registers may be either
I/O mapped or memory mapped. The method to use is determined
by system software. First, we give a brief overview of the Intel
8255x frame transmission and reception architecture.

The Intel 8255x chipset consists of 2 primary components: the
Command Unit (CU) and the Receive Unit (RU). Software issues
commands to control these components through a memory mapped
data structure referred to as the System Control Block (SCB). The
layout for this structure is shown in Figure 2. The System
Command Block consists of a command word, a status word, and a
general pointer. Because the 8255x can interrupt the CPU for
multiple events, the status word is checked to determine the cause
of interrupts. The command word is used to mask device interrupts
and send commands to the device while the value of the general
pointer varies depending on the command being sent to the device.
Various commands cause the device to activate, suspend, resume,
or idle. The CU is primarily involved with frame transmission
while the RU is primarily involved with receiving frames.

The CU’s frame transmission function operates upon another data
structure called the Command Block List (CBL). The CBL is a
linked list data structure in shared system memory consisting of
Command Blocks containing command parameters and status
information. These blocks include diagnostic and configuration
commands in addition to the transmit command. Figure 3 shows
the layout of the command block list.

Transmitting a packet is, in fact, a fairly straightforward process.
We must first construct 2 essential data structures: the data packet
and the Transmit Command Block (TCB), a special type of
Comand Block for the transmit command. The steps are outlined
below and illustrated in Figure 4.

1. First, we (on an infected computer, “we” refers to the rootkit
program) construct the data packet. Because we don’t have
access to the upper level NDIS or TDI drivers, this process
must be performed manually. For simplicity, we chose to use
the UDP protocol in our proof of concept implementation.
Thus, the basic packet structure consists of an Ethernet header
followed by an IP header, followed by a UDP header followed
by the payload.

2. Second, we build a Transmit Command Block. The exact
format of this data structure is contained in the Intel 82558

chipset documentation. Typically, the Transmit Command
Block is followed in memory by the transmit data buffer.

3. After the data packet and Transmit Command Block are
defined, we check the LAN controller to ensure that it is in an
idle state and load its System Control Block’s General Pointer
field with the physical address of the Transmit Command
Block.

4. Finally we initiate execution of the LAN controller by sending
it a CU Start command. This causes it to begin executing the
Transmit Command Block that will send the data packet out
over the network.

Data exfiltration is highly stealthy because it does not require any
long term detectable changes to any of the host Operating System
networking components or data structures. Furthermore, there is
no easy way to monitor the LAN controller on the x86 architecture
because the 8255x data structures are addressed in physical
memory. The x86 is capable of monitoring virtual memory
accesses, but not physical memory accesses.

3.2. Data Infiltration
In contrast to exfiltration, data infiltration refers to the process of
receiving incoming data from an external source.

Packet reception on the 8255x is based upon the concept of a
Receive Frame Area (RFA). The layout of RFA is shown in Figure
5. The RFA is a region of physical memory that is shared between
the NIC and the CPU. It is subdivided into blocks called Receive
Frame Descriptors (RFDs). The Receive Frame Descriptor is a data
structure consisting of two parts: a header followed by a data buffer
capable of holding the maximum Ethernet packet size. Every frame
received by the NIC controller is described by one RFD. The RFD
layout is shown in Figure 6. The NIC’s RFA can be located by
reading the “general pointer” field from the NIC’s Status Control
Block. The last RFD in the list is indicated by setting the EL bit.

Frame reception occurs when the device detects a frame on the link
with an address that matches either the individual address, a
multicast address, or broadcast address. It transfers the frame to the
receive FIFO which in turn causes the NIC’s receive DMA unit to
transfer the frame to main memory on the host machine. Successful
frame reception, in turn, causes the NIC to raise a Frame Receive
(FR) interrupt on the host machine. The FR interrupt handler is
responsible for extracting the RFD data, setting the appropriate

Transmit
Control
Block

SCB

Frame
Data

CU Start 1

2

3

4

Figure 4: Frame transmission

Cmd
Block

COMMAND BLOCK LIST
(shared system memory)

SCB

Cmd
Block

Cmd
Block

Figure 3: 8255x Command Block List

status bits in the RFD header, and ensuring that it is passed to
kernel and user components higher in the networking stack.

On Windows, during normal operating, the RFA is cooperatively
managed between the Windows NDIS driver and the Intel Bus
Driver (e100b325.sys). A malicious driver can circumvent the
normal operation of packet arrival by inserting itself between the
physical hardware interface and the Operating System. This is in
contrast to previous stealthy network backdoors like Joanna’s
DeepDoor rootkit [5] which inserted themselves in NDIS, deep in
the OS networking stack, yet still above the physical hardware
interface. Our backdoor operates one level lower. By intercepting
the NIC’s FR interrupt that indicates packet arrival, we can inspect
arriving frames prior to the OS or any firewall software running on
the host machine.

Offset Command Word Status Word

0x00
E
L

S
000000

00
H SF

00
0

C 0
O
K

Statu
s

0x04 Link Address

0x08 Reserved

0x0C 0 0 Size
EO
F

F Count

Figure 6: 8255x Receive Frame Descriptor

The Intel Advanced Programmable Interrupt Controller (APIC) is
used to manage communication between the CPU, chipset, and
external peripheral devices. When it receives interrupts, the APIC
dispatches them to the processor, one at a time, based upon their
priorities. The processor looks up the handler for the interrupt in
the Interrupt Descriptor Table (IDT) [2]. Each interrupt is assigned
a unique identifier, called a vector. The processor uses this value as
an index into the IDT. The Interrupt Descriptor Table is a
processor specific data structure containing one entry for each of
255 defined vectors. Kernel rootkits often use IDT hooking to
intercept processor interrupts and exceptions [15]. This involves
replacing the Operating System handler contained in the IDT with a
pointer to a malicious hook routine.

When the LAN controller receives an interrupt, the APIC
dispatches it to the CPU where it is looked up in the Interrupt
Descriptor Table. Normally, the interrupt handler for the network
card is managed by the Windows NDIS driver. We can intercept it
by replacing the pointer with our own. Thus, when a packet arrives,
we will receive the first notification and will be able to inspect the
receive buffer prior to any Operating System software. Figure 6
illustrates this process.

This technique, however, can be detected by checking if the NIC
interrupt in the IDT points to the OS where it should. To improve
the stealthiness of our network backdoor, we can redirect the NIC’s
interrupt to another interrupt that is not being currently used by the
OS. As mentioned previously, the IOAPIC’s primary function is to
receive and route peripheral hardware interrupts to the Local APIC
for delivery to the CPU. For this purpose, the IOAPIC architecture
defines a Redirection Table. The Redirection table contains a
dedicated entry for each interrupt pin. It is used to translate the
physical, hardware signal into an APIC message on the bus. This
table can be used to specify the destination of the interrupt, the
vector, and the delivery mode. We can therefore, change interrupt
vector for the NIC and redirect it to a different, unused entry in the
IDT. From this handler, after we inspect the incoming frame we can
pass it on to the OS handler. Figure 7 illustrates this redirection
technique.

The implementation of the process for monitoring incoming traffic
can be described as follows:

1. Identify the interrupt for 8255x compatible network card.

Frame
Data

RFD

Frame
Data

RFD

Frame
Data

RFD

RECEIVE FRAME AREA
(shared system memory)

SCB

Figure 5: 8255x Receive frame area

APIC

Hook

NDIS 0x73

Before

After

APIC NDIS

0x73

(CPU)
IDT

0x22

Figure 7: Interception of Packet Receive using IOAPIC Interrupt Redirection

2. Look up the OS handler for that interrupt in the CPU interrupt
descriptor table (IDT) and save the pointer.

3. Locate an unused interrupt in the IDT and hook it by replacing
the handler address with the address of our backdoor’s
handler.

4. Redirect the NIC interrupt to our new, hooked IDT vector by
modifying the chipset’s APIC Redirection Table.

When an interrupt from the NIC is received, the following steps
occur:

1. Determine if the interrupt is due to a frame arrival (check bit in
Status Control Block). If it’s for some other reason, call the
OS handler.

2. If the interrupt is due to frame arrival, locate the start of the
Receive Frame Area (RFA) from the SCB General Pointer
Field.

3. Scan the data portion of the Receive Frame Descriptors in the
RFA. This scan is used to identify a “special” ICMP packet.

4. If a “special” packet belonging to the backdoor is identified,
then erase it.

5. Else, pass control to the OS handler and let it process the
packet normally.

4. TESTING
We tested our implementation against several popular firewalls and
intrusion detection systems for both data infiltration and data
exfiltration. These detection systems include the Windows XP
Firewall, Zone Alarm Security Suite and the Snort Intrusion
Detection System [7][8][9]. We tested on 2 different network cards,
Intel Pro 100B and Intel Pro 100S, which are compatible with the
Intel 8255X chipset. Both cards were installed in Intel Core 2 Duo
systems running Windows XP SP2. The implementation should
also work on other cards using the Intel 8255X chipset.

For all of the experiments, we used specially crafted ICMP packets
containing the data payload “r00t was here before this!”. This string
serves as a form of “signature” in the packet receive interrupt
handler to indicate that the packet is destined for the backdoor
rather than the Operating System. In order to test data infiltration,
we used a secondary laptop running the Network Packet Generator
(NPG) program to craft these special packets. NPG is a free GNU
GPL Windows Packet injector. It uses WinPcap to send packet out
the network interface. The packets are defined in a packet file and it
is possible to craft any kind of packet, regardless of headers or
payload.

We conducted two sets of experiments, one on data infiltration and
the other on data exfiltration. Our data infiltration experiments test
the ability to intercept network packets before they reach any
software firewall or Intrusion Detection System (IDS). Once
intercepted, we must also prevent the OS or other security software
from raising an alert. We tested 2 different approaches to this
problem: packet spoofing and packet erasing. In the packet
spoofing approach, we modify the malicious ICMP packet payload
(“r00t was here!”) in the receive interrupt handler so that it appears
as the default Windows ICMP packet payload. Then we forward it
to the OS normally. The destination address and MAC header
information can also be spoofed before forwarding the packet.
Although the OS receives the packet, it just looks like a normal
ping. Because ping traffic is so common, it is unlikely for a rogue
ping to raise any red flags. If ICMP traffic is blocked by an
upstream router or firewall, another kind of packet could be used to
relay information to the backdoor (For example, HTTP traffic is
usually allowed).

Figure 8 illustrates the packet spoofing approach. The machine
installed with network backdoor has the IP address of
192.168.1.101 and the name of “EXPERIENCE”. The secondary
laptop, with IP address of 192.168.1.106 and the name of
“AMD32-LAPTOP”, sends the specially crafted ICMP packet. We

Figure 8: Packet Spoofing  Data Infiltration

use Network Packet Generator to send the malicious ICMP packets
and we view them using Microsoft Network Monitor [22][16] on
the laptop (the bottom window shown in this figure).

Note that the network monitor is not running on the machine with
backdoor---it cannot capture malicious packets on a backdoor
installed machine since the backdoor is designed to avoid
detection.

The backdoor prints the packet headers and payload to Windows
debug output for comparison (the top window shown on Figure 8 is
the debug output). From the output, it is clear that the backdoor is
installed and receiving the malicious packets, however, Microsoft
Network Monitor reports it as a default ping.

The other approach we tested was packet erasing. In this method,
we zero out the data portion of the receive frame descriptor
including the MAC, IP, TCP, and ICMP headers. In this case, the
OS drops the packet without sending it up the network stack. When
we compared the backdoor’s Debug output with Microsoft
Network Monitor, we saw that Microsoft Network Monitor failed
to report any kind of network activity, ICMP or otherwise. Because
of this, packet erasing may be the stealthiest approach.

4.1. Data Exfiltration Test
In the data exfiltration test, the installed network backdoor program
on the first machine sends out specially crafted ICMP packets to
our secondary laptop. The laptop successfully received all these
packets no matter which of those three tested detection systems was
used. In addition, none of these detection systems provided any
alert for such exfiltration traffic.

Windows XP Firewall does not monitor or block outbound traffic.
Thus it cannot detect any data exfiltration attack. Zone Alarm and
Snort have the capability to monitor and log outgoing traffic.
However, because both of them rely on the network APIs provided

by the Operation System for traffic monitoring, they cannot detect
any exfiltration packets generated by our network backdoor, which
is in the lower level than Operating System’s network APIs as
illustrated in Fig. 1.

4.2. Data Infiltration Test

4.2.1. Testing against the Windows XP firewall
We first looked at the Windows XP Firewall. We wanted to test our
backdoor on the strictest settings. Therefore, we set the Windows
firewall to block all outside sources from connecting to the
computer and disallow any exceptions to that rull. We then used
NPG to send a malicious ICMP packet to the backdoor and
monitored the output of Microsoft Network Monitor and the
backdoor’s dump of the packet over the Debug output interface.
The network backdoor used the packet erasing approach to conceal
the packet from the OS.

Figure 9 shows the results of this experiment. The right window
shows that the Windows Firewall is turned on to block all outside
connections. The network monitor window on this figure shows
that the secondary laptop has sent out an ICMP packet to the
backdoor machine (the monitor runs on the laptop, not the
backdoor machine). The packet is clearly successfully received by
the backdoor despite the firewall’s blocking-all policy (as shown in
the “DebugView” window on this figure). This is evidenced by its
output of the header and payload data. It also remains invisible to
Microsoft Network monitor on the backdoor machine.

4.2.2. Testing against Zone Alarm
Zone Alarm is a software firewall and intrusion detection system.
In addition to providing inbound intrusion detection, Zone alarm
also monitors and controls the ability for programs to create
outbound connections. It also contains a LOCK feature which
allows the user to lock his / her computer so that applications can
neither send nor receive data from the Internet or local network.

Figure 9: Windows firewall – Data Infiltration

Like the Windows Firewall, we chose to test the backdoor under the
strictest conditions, with the internet lock enabled. We also used
the packet erasing approach. Figure 10 shows that the malicious
ICMP packet was received by the backdoor, but that Zone alarm
installed on the backdoor machine did not detect any access
attempt.

4.2.3. Testing against Snort
Snort is an open source firewall and intrusion detection/ prevention
system. It uses a rule based language. This gives it the flexibility to
incorporate signature, protocol, and anomaly based detections. It is
also the most widely deployed intrusion detection and prevention
systems. We crafted a special rule file for Snort that logs all TCP
packets and stores the logged information in a file called alert.ids.
We verified its operation by first sending normal ping traffic using
the Windows ‘ping’ command. After verifying that this traffic is
correctly logged, we sent (via the secondary laptop) the malicious
ICMP packets over TCP to the backdoor installed machine. The
network backdoor used the packet erasing approach as well to
conceal the malicious ICMP packets from the OS.

Like the previous two experiments, Snort failed to log this attack
activity while these malicious ICMP packets are intercepted
successfully by the backdoor. Due to the similarity, we do not use
another figure to show this experiment result again.

Table 1 summarizes the testing results for data infiltration and data
exfiltration by the proposed network backdoor.

Table 1: Testing results summary

Product
Monitors
Incoming
Traffic

Monitors
Outgoing
Traffic

Detects
Incoming
Backdoor
Packets

Detects
Outgoing
Backdoor
Packets

Win XP
Firewall

YES NO NO N/A

Zone
Alarm

YES YES NO NO

Snort YES YES NO NO

4.3. Network Backdoor Performance
It is difficult to estimate the performance of the network backdoor
on the overall system. In order to estimate performance, it is
necessary to obtain a comparison with the performance of the
Operating System’s network subsystem, which is a difficult task
due to the architecture. It is also difficult to measure the execution
time for the Operating System’s network handling code because
only a small portion of the code runs in the interrupt handler and the
remaining majority is executed as deferred procedure calls which
are scheduled to run asynchronously when CPU resources are not
needed for critical tasks. Because the network processing code does
not run continuously and linearly from start to finish, estimating
actual execution time is problematic.

We can however, make the observation that the backdoor will add a
relatively constant overhead to network processing. To measure
that overhead, we calculated the number of clock cycles it takes to
execute our backdoor’s network interrupt handler using the CPU
timestamp counter. On our test system, this averaged out to an
overhead of approximately 4000 additional clock cycles per

network packet received. Subjectively, however, this overhead did
not produce any human detectable lag in performance, even while
the network was subjected to heavy loads (such as downloading a
large file).

5. DEFENSE
We have shown that it is relatively easy for an attacker to develop a
network backdoor capable of evading a large number of popular,
widely deployed firewalls and intrusion detection systems. The
first problem lies in the fact that most of these systems fail to
monitor outbound traffic. This deficiency may result in the leakage
of potentially secure data and the delayed detection of malware
threats like worms, and botnets. Support for extrusion detection
would be a valuable addition to many commodity firewalls and
intrusion detection / prevention systems.

However, the second issue concerns the reliable implementation of
such support. Systems which rely upon the trustworthiness of the
Operating System for monitoring network data may be easily
spoofed using a variety of existing rootkit techniques (e.g. TDI /
NDIS hooking). In general, malware becomes more stealthy and
difficult to detect as it insinuates itself deeper in the OS and closer
to the physical hardware. We take this paradigm to its logical
conclusion by developing a network backdoor that operates at the
network card chipset interface. Detecting such malware becomes a
difficult problem for several reasons.

First, it is difficult for security vendors to operate at this level.
Second, there is no network protocol stack support from the OS at
this level. Finally, the hardware specific nature of the code
becomes an obstacle to producing a generic, robust product. From
the software side, we can break defense into two related challenges:
detecting outbound traffic, and detecting inbound traffic. Between
these two challenges, detecting inbound traffic is easier. This is
due to the fact that in order to intercept incoming traffic, the
malware must be able to intercept the card's frame arrival interrupt.
If it hooks the OS interrupt handler directly, it will be detectable by
the changes it makes to the Interrupt Descriptor Table (i.e. the
pointer no longer points within the OS handler). Our method of
redirecting the interrupt at the IOAPIC redirection table increases
its stealth because we are not directly hooking the OS interrupt
handler for the network. Instead, we take an unused interrupt and
reprogram the chipset to interrupt on the new vector. In addition to
scanning the IDT for changes, security software should also check
chipset level data structures, like the APIC redirection table, for
suspicious modifications.

Detecting outbound traffic is more difficult. This is due to the fact
that the malicious code does not need to make any permanent
changes to the OS or architectural data structures (e.g. the IDT) to
send data frames out over the network. It merely needs to know the
location of the card's shared memory space and write to a few
registers on the card. If one were able to detect and validate reads
and writes on the shared memory region of the card, it might be
possible to monitor outgoing traffic. Unfortunately, the card
addresses memory physically rather than virtually and the x86 does
not support monitoring physical memory accesses.

In order to detect packet erasing approach used by the proposed
backdoor, a host must cooperate with a network firewall/gateway
that take charge of this host’s incoming traffic. The network
firewall could provide the exact number of packets incoming

targeting the host. By comparing the host’s monitored number of
incoming packets, the host could possibly detect if there are some
packets being erased or not. This approach does not place much
burden to network firewalls and should be able to be implemented
without much difficulty.

The best software option may, in fact, be moving the firewall into a
virtual machine monitor (VMM) with support for I/O virtualization.
The new Intel and AMD CPU’s have the hardware support for this
[25]. This would allow the virtual machine monitor to receive
notification on hardware accesses and validate them accordingly. In
addition, VMsafe from VMware [29] and the XenAccess [30]
provide software based virtual machine monitor platform.
Alternatively, the Operating System could provide a trusted virtual
machine monitor that abstracts critical components like the
networking hardware and provides an interface to kernel drivers.

Another hardware supported defense is to use virtualization for
directed I/O. For example, Intel VT-d supports the remapping of
I/O DMA transfers and device-generated interrupts [26], thus only
memory blessed by the OS can be accessed by devices for DMA.

The best defense, however, is likely to be a hardware firewall
capable of inspecting and blocking outgoing traffic. A hardware
firewall will be immune to the attacks discussed in this paper;
however, detecting malicious outbound traffic is still likely to pose
challenges if it is encrypted or obsfucated using steganographic
techniques.

Finally, we can rely on network-based intrusion detection systems
(NIDS), to detect the backdoor, or any other rootkit secret traffic
since they do not rely on host’s integrity for malicious traffic
detection. The drawback is that a network-based detection system
only has packet-level monitoring capability without any knowledge
of host-level information, which makes it difficult to detect
advanced malicious activities that hide with either encryption or
embedded within normal traffic.

6. CONCLUSIONS & FUTURE WORK
The greatest limitation of our implementation is the fact that its
hardware and chipset specific. Our implementation is limited to
cards using the Intel 8255x chipset. While this may appear to limit
the usefulness of such an attack, the Intel 8255x is a widely
deployed chipset that is compatible with a large number of network
cards. The complexity and level of effort required to implement
chipset specific malicious code places this type of attack out of the
reach of most casual hackers and malware developers. It is more
suited to advanced, targeted attacks where the attackers are capable
of investing considerable resources in terms of time and money.
Such attacks are likely to be profit driven goal oriented, and target
specific as in the case of economic espionage or cyber terrorism
attacks.

The range of the threat would be increased if one were able to target
a wider subset of commodity networking hardware. For example,
our network backdoor might be extended to support the Intel
Centrino wireless network card specification. Since Intel Centrino
mobile platform defines a built-in wireless capability, it has created
a homogenous networking environment for Intel laptops. Were
adversaries capable of creating a similar backdoor to the one
proposed in this paper that would work on the Intel Centrino
chipset, it would greatly reduce the hardware specific limitation
and greatly increase the threat. Intel has not published the

specifications for the Intel Centrino wireless chipset, but
experienced adversaries could reverse engineer the Intel drivers to
figure out how it works. This is one potential area of future work
we’d like to persue. We intend to study this wireless chipset and
figure out whether it is possible and whether it is easy for
adversaries to produce such a backdoor.

Another limitation of our current design is that it is non persistent.
Non persistent malware is incapable of persisting across reboots.
To persist across reboots, malware must usually have some method
of gaining control of execution during the boot sequence so that it
can install itself. It must also have some means of storing itself on
non-volatile media (e.g. a hard disk) so that it can be loaded into
volatile RAM. Adding the persistent capability to a malicious
application decreases its stealth and becomes another vector for
detection because many anti virus and security applications inspect
the boot process and scan non persistent media like hard disks. In
practice, non persistence is not a big limitation. Many servers
remain active for weeks or months at a time between reboots. This
is almost certain to give an attacker adequate time to inspect and
exfiltrate sensitive information from the target computer.

In conclusion, our design and implementation serves to highlight
two important weaknesses in commodity host-based firewall and
intrusion detection technology: the lack of support for outbound
traffic monitoring and a continuing reliance on the trustworthiness
of a potentially compromised OS.

7. ACKNOWLEDGMENTS
This work was supported by NSF Grant CNS-0627318 and Intel
Research Fund.

8. REFERENCES

 [1] Intel Corporation. Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 3B: System Programming Guide,
Part 2. May 2007.

[2] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual Volume 3A: System Programming Guide,
Part 1. May 2007.

[3] Intel Corporation. Intel 8255x 10/100 Mbps Ethernet
Controller Family: Open Source Software Developer Manual,
January 2006.

[4] R. Bejtlich. Extrusion Detection: Security Monitoring for
Internal Intrusions. AddisonWesley, first edition, 2006.

[5] Joanna Rutkowska. "Rootkits vs. Stealth by Design Malware",
Presented at Black Hat, Europe 2006.

[6] Alexander Tereshkin. "Rootkits: Attacking Personal
Firewalls", Presented at Black Hat USA, 2006.

[7] Windows XP Firewall.
http://www.microsoft.com/windowsxp/using/networking/sec
urity/winfirewall.mspx

[8] Zone Alarm.
http://www.zonealarm.com/store/content/home.jsp

[9] Snort. http://www.snort.org/
[10] AOL/NCSA Online Safety Study. Conducted by America

Online and the National Cyber Security Alliance. Dec. 2005.
[11] Microsoft Corporation. Windows XP Firewall.
[12] Chipset. http://en.wikipedia.org/wiki/Chipset
[13] Gramm-Leach Bliley Act.

http://www.ftc.gov/privacy/privacyinitiatives/glbact.html

[14] Payment Card Industry Data Security Standard.
https://www.pcisecuritystandards.org/

[15] J. Bulter and G. Hoglund. “Rootkits: Subverting the Windows
Kernel.” Addison Wesley. 2005.

[16] W. Cui, R.H. Katz, and W. Tan. BINDER: An
Extrusion-based Break-In Detector for Personal Computers.
In 2005 USENIX Annual Technical Conference. 2005.

[17] Salvador Mandujano. “Identifying Attack Code through an
Ontology-Based Multiagent Tool: FROID.” In Proceedings of
the World Academy of Science, Engineering, and Technology,
June 2005.

[18] F. Bellifemine, A. Poggi, and G. Rimassa. “JADE – A
FIPA-compliant agent framework.” In Proceedings of
Practical Applications of Intelligent Agents, 1999.

[19] K. Borders and A. Prakash. “Web Tap: Detecting
 Covert Web Traffic”. In ACM Conference on Commputer

and Communications Security. 2004.
[20] Y. Zhang and V. Paxson. “Detecting Backdoors”. In

Proceedings of the 9th USENIX Security Symposium. August,
2000.

[21] NDIS. http://en.wikipedia.org/wiki/Network_
Driver_Interface_Specification

[22] Network Packet Generator.
http://www.wikistc.org/wiki/Network_packet_generator

[23] Greg Hoglund. “A *REAL* NT Rootkit, patching the NT
Kernel”. In Phrack Vol. 9, Issue 55. 1999.

[24] J. Heasman. Implementing and Detecting an ACPI BIOS
Rootkit. Presented at Black Hat Federal, 2006.

[25] x86 virtualization.
http://en.wikipedia.org/wiki/X86_virtualization

[26] Intel® Virtualization Technology for Directed I/O.
http://www.intel.com/technology/itj/2006/v10i3/2-io/7-concl
usion.htm

[27] Extrusion detection.
http://en.wikipedia.org/wiki/Extrusion_detection

[28] D. Whyte, P. Oorschot, E. Kranakis. Exposure Maps:
Removing Reliance on Attribution during Scanning Detection.
USENIX HotSec 2006.

[29] VMware VMsafe Security Technology.
http://www.vmware.com/technology/security/vmsafe.html

[30] XenAccess Library. http://code.google.com/p/xenaccess/

