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Abstract – The task of spectrum sensing for Dynamic 

Spectrum Access in Cognitive Radio Networks (CRNs) is 

very challenging in the presence of malicious secondary users 

that may launch Spectrum Sensing Data Falsification (SSDF) 

attacks. Existing solutions to detect such malicious behaviors 

cannot be utilized in scenarios where the transmission range 

of primary users is limited within a small sub-region of the 

CRN, such as low-power primary user devices like wireless 

microphones or emergency warning systems for vehicles. In 

this paper, we present a reputation system that works in the 

scenarios described above in conjunction with a semi-

supervised spatio-spectral anomaly/outlier detection system. 

This system guarantees protection of incumbent primary 

users’ communication rights while at the same time making 

optimal use of the spectrum when it is not used by primary 

users. Simulation of our proposed scheme under typical 

network conditions and SSDF attack shows that spectrum 

decision error rate is reduced to be less than 2% and 

detection rate of malicious secondary users is up to 95%. 

I. INTRODUCTION 

Cognitive Radio Network (CRN) is a natural 
development in wireless communications to increase the 
utilization of a scarce spectrum resource, especially in 
greatly under-utilized licensed spectrum bands such as TV 
broadcast. Interest in the development of CRNs is a direct 
consequence of numerous studies such as [1]. These 
studies demonstrate severe under-utilization of spectrum 
bands by the incumbent Primary Users (PUs) that have 
the license to use them, and an ever-increasing demand for 
unlicensed spectrum for a variety of new mobile and 
wireless applications. The essence of Cognitive Radio 
(CR) operation is the opportunistic utilization of licensed 
spectrum bands by the Secondary Users (SUs) that 
collectively form the CRN, without causing any disruption 
to PUs’ communications. 

Collaborative spectrum sensing is essential in 
situations where the PUs’ transmission range is much 
smaller than the size of the CRN e.g. a wireless 
microphone, since PU’s signal may only be received by a 
small subset of the SU nodes. In such situations, the 
Fusion Center (FC) has to rely on spectrum sensing 
reports from SUs spread across the CRN. However, 
collaborative spectrum sensing can also be very favorable 
to malicious nodes in the network, which may launch 
SSDF attack [2]. Such an attack may adversely affect 
spectrum sensing decisions, which in turn, may cause 
harmful interference to the PUs or deny the use of the 
vacant spectrum bands. An SSDF attack may be aimed at 
gaining spectrum opportunities for the malicious nodes’ 
own advantage or to disrupt CRN operation. As shown in 
the next section, efforts have been made to defend against 
SSDF attacks in CRNs, few have attempted to deal with 
the situation where PUs are mobile and their transmission 
range is small as compared with the overall CRN size. 

A CRN is vulnerable to selfish or malicious behavior 
because if left unchecked, the SSDF attacks may result in 
disruption of its operation to an extent that may even 
jeopardize its existence. Reputation systems have 
frequently been used in computer networks to guard 
against malicious behavior from their entities. Reputation 
score typically represents an entity’s long term 
contribution in a network’s operation. The reputation 
scores are usually derived from some form of a voting 
mechanism and are used as weights in the system’s 
decision making process. However, any reputation system 
based on voting from all of network’s nodes will not work 
in situations where a PU’s transmission can be received by 
only a small subset of nodes in the CRN.  

In this paper, we present a novel reputation-aware 
collaborative spectrum sensing framework for ad hoc 
cognitive radio networks based on spatio-spectral anomaly 
detection. It can reliably detect malicious SUs and make 
the correct spectrum sensing decisions under SSDF attack. 
It is especially suited for situations where PUs have a 
smaller transmission range compared to the coverage area 
of the CRN. Simulation of our proposed scheme shows 
that spectrum sensing decision error rate can be reduced to 
less than 2% and accuracy of detecting malicious SUs 
increased up to 95%.  

Specifically, we have made following contributions: 

 Identified limitations of existing CRN spectrum 
sensing and reputation systems in dealing with 
short-range PUs. 

 Developed spectral map construction system and 
formulated spatio-spectral anomaly/outlier 
detection for CRNs with short-range PUs. 

 Proposed a novel reputation system to defend 
against SSDF attacks through spatio-spectral 
anomaly/outlier detection.  

II. RELATED WORK  

The idea of using Beta Reputation System as 
reputation evaluation system has been proposed in [3] in 
which a node’s confidence in its spectrum sensing report 
is used as a weight during calculation of spectrum 
decisions. This work assumes that the PU’s transmission 
range is large enough to be received by all nodes in the 
CRN including the SU base station (SUBS), the 
controlling entity of the CRN. It also assumes that the PU 
can communicate with SUBS, wherein a PU may 
complain to the SUBS regarding any interference caused 
by CRN operation. Since this work assumes that the PU 
cannot sell its unused spectrum bands, therefore there is 
no incentive for it to communicate with the CRN. This 
communication may cost a PU, additional hardware and/or 
system complexity, just to inform the CRN regarding 
interference caused to its communications. Furthermore, 
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the FCC requires that the CRN may use vacant spectrum 
bands in a non-interfering basis without the need for any 
changes to the incumbent PU. This work also does not 
deal with any mobility by SUs or PUs. 

A collaborative spectrum sensing scheme is presented 
in [4] which introduces Location Reliability and Malicious 
intent as trust parameters. The authors employ the 
Dempster-Shafer theory of evidence to evaluate 
trustworthiness of reporting secondary user nodes. The 
proposed scheme assigns trust values to different cells in 
the network which may receive abnormal levels of PU’s 
signal due to the effects of multi-path, signal fading and 
other factors in the radio environment. Equal emphasis is 
given to the spectrum sensing reports from SUs using 
Equal Gain Combining while using trust values of the 
cells from where these reports were received as weights 
for data aggregation. This approach also assumes that the 
PU’s communication range is large enough to be received 
by the entire CRN and uses the spectrum sensing reports 
of all CRN nodes to reach the final spectrum decision. 

Authors in [5] and [6] assume that the transmission 
range of PU is large enough to be received in the entire 
CRN. [5] proposes pre-filtering to remove extreme 
spectrum sensing reports and a simple average combining 
scheme to calculate spectrum sensing decisions while 
considering all reports that pass the pre-filtering phase. [6] 
characterizes the spectrum sensing problem as an M-ary 
hypotheses testing problem and considers a cluster-based 
CRN where cluster heads receive and process raw 
spectrum sensing data before forwarding to the fusion 
center. Since PU’s transmission range is assumed to be 
large enough to be received by every node in the network, 
both approaches cannot be adopted for a CRN in which a 
PU has smaller transmission range than the size of CRN. 

III. ASSUMPTIONS AND SYSTEM MODEL 

We model the Ad hoc CRN (Figure-1) as a region in 
which the PUs and SUs are mobile under the Random 
Waypoint mobility model [7]. There can be one or more 
PUs operating within the CRN at any given time. With 
techniques such as Radio Frequency Fingerprinting (RFF) 
[8], devices in the CRN can be uniquely identified. 
Therefore, in this paper, we treat it as a black box and 
assume that nodes in the CRN as well as the FC are 
capable of performing RFF and uniquely identifying other 
nodes and PUs. A Spectrum band is considered to be 

vacant when it is not being used by a PU, and occupied 
otherwise. After every Channel Detection Time (CDT) 
slot, which is also the reputation update cycle, SUs report 
their sensed Received Signal Strength (RSS) to the FC, 
which is a SU in the CRN, selected to aggregate spectrum 
sensing data from SUs and make spectrum sensing 
decisions. Selection of FC may be carried out in a similar 
manner as cluster heads are selected in various kinds of 
networks [9-10]. However, selection of FC is out of the 
scope of this paper and is assumed to be achieved by other 
protocols. It is also assumed that SUs have an on-board 
GPS device, know their location at all times and include 
this information in every spectrum sensing report.  

Let        denote the received signal strength at 

secondary user i at time k, which can be calculated 
according to [11]: 

                                   (
 

      
)
 

                (1) 

where Gr,i is the antenna gain of node i, Pt is the 
transmitted power of the PU and Gt is antenna gain of the 
PU, λ is PU signal’s wavelength and Si,k is distance 
between the PU and receiving SU i at time k. From 
Equation (1), we define RSS levels as discrete annular 
regions with    as width of a region for a given RSS level 
m (see Figure-2). A node i, whose reported RSS satisfies 
the condition              , belongs to RSS level 

m. 

After every CDT slot k, each SU i sends its spectrum 
sensing report to the FC, which includes the RSS value 
Pr,i,k and its location li,k. This is essential for the FC to 
construct a spatio-spectral map of the entire CRN which is 
then utilized to calculate spectrum occupancy decision. 
We also define a Detection Threshold    which 
corresponds to the RSS level below which a PU’s signal is 
not considered to have been detected.  

Because of the limited transmission range of a PU, it is 
possible that the FC does not receive PU’s signal directly 
when the PU is far away. For a robust system design, we 
assume that the FC always relies on the reports from the 
SUs to construct the spatio-spectral map of the CRN. 
However, with the presence of malicious nodes in the 
CRN, which may provide false spectrum sensing 
information to the FC, the accuracy of the spectrum 
sensing decisions could be severely degraded thereby 
jeopardizing the operation of the CRN. Presence of 
malfunctioning nodes i.e. Byzantine Failure, is also 
considered as a SSDF attack, in this paper.  

IV. REPUTATION AWARE SPECTRUM SENSING 

FRAMEWORK 

Spectrum sensing reports from SUs for detecting a PU 

can vary a lot because of (1) small communication range 

of PUs relative to the size of CRN, and (2) mobility of 

both SUs and PUs. This situation is, however, very 

suitable for malicious nodes to launch SSDF attack and 

cause errors in spectrum decisions. It is therefore vital for 

the FC to identify malicious nodes and prevent them from 

inducing spectrum decision errors. To detect malicious 

nodes and guard against SSDF attacks, our proposed 

reputation aware spectrum sensing framework has three 

components: 1) Spatio-spectral anomaly detection, 2) 

Ad hoc CRN 

Figure-1: Ad hoc CRN with malicious nodes. Spectrum 

sensing reports only in PU’s coverage area should be 

considered for spectrum decisions, and only those SUs’ 

reputation scores will be updated. 

- Fusion Center - Secondary (CR) User 

Primary User’s Radio Coverage and Reputation Update Areas 

- Malicious CR User - PU 



 
 

Spectrum sensing data aggregation, and 3) Reputation 

management.  

A. Semi-Supervised Spatio-Spectral Anomaly Detection 

The first phase of our spectrum sensing framework has 

three steps: (1) Gathering of spectrum sensing reports 

from the SUs at the FC; (2) Construction of the CRN’s 

spectral map; (3) Detecting of anomalies in these reports 

for current CDT slot. Step 1 is conducted by using 

existing routing protocols, which is not the focus of this 

paper. In this section we introduce the second and third 

steps as follows.  

Spectral Map Construction: In order to calculate the 
location of the PU and construct its spectral map, we 
employ the Kåsa method of circular regression, which is 
an algebraic fitting algorithm whose implementation 
details can be found in [12]. On a two-dimensional plane, 
we want to find a circle that best fits the given set of 
points that represent reporting SUs locations in a sense of 
least squares approximation. The fitted circle is assumed 
to have the center point (a, b) and a radius of R. The 
observed set of n points that represent n reporting SUs’ 
locations is given by {(                }.  

The calculated center of the annular region is the result 
of n SUs reporting the same RSS level, and with 
increasing n, the accuracy of PU location calculation also 
increases. We carry out the same process of circular 
regression with each of the K RSS levels for which the 
number of reporting SUs is at least 3. Calculation of PU’s 
location with K RSS levels is done as follows: Let 
         be the center of the annular region, calculated for 
RSS level k, where             . If    is the number 
of SUs that reported RSS level k, then the final location 
        of the PU, is calculated as a weighted average of 
K points as: 

   
∑     
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Anomaly/Outlier Detection: A report from a SU has 
the RSS as well as the node’s current location. Both of 
them can be falsely reported by malicious nodes. Based on 
the RSS values calculated at different ranges for a 
particular kind of PU transmitter and the constructed 
spatio-spectral map of the CRN, we define the normal 
behavior for reporting SUs in the form of lower and upper 
bounds on the distance between a given pair of RSS 
levels. These lower and upper bounds on normal behavior 
are formulated as matrices φ and ψ respectively, where the 
elements of these behavior matrices are derived as: 
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where the element      is the minimum distance and the 

element      is the maximum distance between RSS levels 

i and j. 

After gathering all reports from the SUs, the FC 
compares every reported RSS level with all other reported 
RSS levels, and classifies the distance between the nodes 
whose RSS levels are being compared, as either a normal 
or abnormal distance. This classification is performed by 
comparing the distance with both the minimum as well as 
maximum distance matrices. At the end of distance 
classification, the number of normal and abnormal 
distances of a given node from all other reporting nodes is 
compared. If majority of a node’s distances are normal 
then the node is considered honest in the current CDT slot, 
otherwise it is treated as a malicious node and its 
reputation score is decremented by the reputation 
management system as follows: Consider the set of 
spectrum sensing reports S in a given CDT slot, to be 

   S = {s1 (l1, r1), s2 (l2, r2), ...... sm (lm, rm)} 

where lm is the location  and rm is the reported RSS level 
of node m. Distance between nodes i and j is given by      

which can be calculated from their reported location 
information. Classification of a distance between a pair of 
nodes j and k, denoted by        is given as: 

             {
                               

               

                                                           
    (4) 

where       1 represents that the distance is within 

normal range and -1 means that the distance does not 

match with the respective location information of the 

nodes and therefore classified as abnormal. The final 

classification of a node as an outlier, denoted by  j,k, is 

done as: 

               {
                            ∑                    

                                                  
 (5) 

where  j,k = 0 represents that node j is a normal node at 

time slot k, and 1 represents an outlier node (abnormal 

node) at CDT slot k. 

B. Spectrum Sensing Data Aggregation and Spectrum 
Decision 

Typically, spectrum sensing reports are aggregated 

using voting mechanisms based on either the majority 

rule, the AND rule or the OR rule [13]. As evident from 

Figure-1, these aggregation rules cannot be applied in 

situations where PU’s transmission range is much smaller 

as compared with the overall size of the CRN. This is 

because even in the absence of malicious nodes, the 

number of nodes receiving PU’s signal is expected to be 

much less than the total number of nodes in the CRN. 

Therefore, our proposed spectrum data aggregation  

 j=1 

m  

Annular region of a single RSS level 
of PU Communication

PU’s Calculated Location

SU reported correct RSS

SU reported incorrect RSS (Malicious)

SU did not report RSS (Malicious)

Legend

Figure-2: After estimation of PU’s location/spectral map, SUs 

are classified as malicious/normal through outlier detection. 

In this figure one malicious node is calculated as within PU’s 

coverage area but did not report PU’s presence while the 

other malicious node reported false RSS level. 



 
 

technique determines the presence or absence of PU 

within an area of CRN that is equal to the PU’s 

transmission range. When all spectrum reports are 

collected at FC, each node is classified as behaving 

normally or abnormally, in every CDT slot. This node 

classification at each CDT slot can be viewed as a node’s 

instantaneous reputation; however, the reputation score of 

every node used in our proposed system is accumulated by 

every node with the passage of time and can be viewed as 

its long-term reputation. 

For the purpose of data aggregation, we use soft-

combining technique where, instead of its spectrum 

sensing decision, a CRN node reports its RSS level to the 

FC. Then the FC aggregates these reports to calculate its 

final spectrum sensing decision. Nodes, whose spectrum 

sensing reports were considered anomalous in current 

CDT slot, are classified as outliers and their reputation 

scores are decremented. Spectrum sensing reports that 

pass the anomaly detection phase are next processed in 

data aggregation phase to determine if they can be used in 

spectrum decision calculation. In our reputation-aware 

spectrum sensing framework, a node has to have a 

minimum reputation score to be considered honest at the 

current CDT slot, for its report to be included in 

calculation of spectrum decision. Calculation of reputation 

score and classification of a node as either honest or 

malicious is explained in the next section. The two-stage 

approach for behavior classification mentioned above, is 

used because a malicious node may report correct 

spectrum sensing results in some of the CDT slots to hide 

its SSDF attacks with a few correct reports, as well as to 

improve its reputation score.  

A node once labeled as malicious may regain an 
honest status by providing correct spectrum sensing 
reputation, however, the rate of reputation improvement is 
much slower than its decline. This difference in the rate of 
reputation change ensures that the malicious nodes cannot 
easily manipulate their reputation scores to their 
advantage.  

In a CDT slot k, if no honest SU reported presence of a 
PU’s signal then the spectrum decision Dk , is ‘vacant’. If 
there were some reports from honest nodes that indicated 
presence of PU’s signal on the spectrum band, then a 
majority vote is conducted based on a Detection 
Threshold   , to determine the spectrum sensing decision:  

        {
                                       

                                
                              (6) 
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where      is the spectrum sensing decision (occupied = 1,  

vacant = -1) from report rj,k of node j and   
  is the final 

spectrum sensing decision (occupied = 1, vacant = 0) of 
the CRN for CDT slot k.  

C. Reputation Management 

Reputation management is undertaken by the FC in 

two phases, each after the execution of the two modules 

presented in sections IV-A and IV-B above, i.e. after the 

spatio-spectral anomaly detection phase and spectrum 

sensing data aggregation and decision phase. 

A reputation table is implemented as a two-tiered 

sliding window for every node in the CRN, as shown in 

Figure-3. Implementation of the reputation table as a 

sliding window serves two purposes: first, it represents the 

latest behavior of a node and prevents malicious nodes 

from taking advantage of their reputation score from 

distant past, and second, it gives a chance to falsely-

labeled nodes to improve their standing in the CRN by 

having a forgetting characteristic of the sliding window. 

The two-tiered implementation of reputation table is used 

to normalize the difference between the speed of a node’s 

mobility and the frequency of its spectrum sensing reports. 

Once the lower tier of the reputation table is filled, a 

corresponding entry based on majority rule, is placed in 

the upper tier. After placing an entry in the upper tier, the 

lower tier is reset and the upper tier is slid forward one 

space. 

Reputation Update Phase-1: When a node has been 

classified as behaving either normally or abnormally 

according to Equation (5), a corresponding entry    is 

added in the lower tier of the reputation table, where an 

outlier entry corresponds to    = 1 and a normal entry 

corresponds to    = 0.  

Reputation Update Phase-2: When the final spectrum 

sensing decision   
  has been made, SUs whose spectrum 

sensing reports contributed positively towards reaching 

the final decision are rewarded and the SUs whose reports 

contributed negatively towards reaching the final spectrum 

sensing reports are punished by the reputation update 

module, by adding relevant malicious / honest entries 

    in the lower tier of their reputation tables.  However, 

the second phase of reputation update is slightly more 

complex than the first phase, as follows: After the 

anomaly detection phase is over and all abnormal reports 

have been filtered out, rest of the reports are aggregated to 

reach a spectrum decision, which can have two outcomes: 

spectrum ‘vacant’ or ‘occupied’ by a PU. The reputation 

system takes different courses of action for the two 

spectrum decisions: If the spectrum decision was ‘vacant’, 

then all nodes that reported presence of PU’s signal are 

punished by adding a malicious entry   =1 in the lower 

tier of the reputation table. However, if the spectrum 

decision was ‘occupied’ then the FC has to first determine 

the location of the PU in order to reward or punish the 

nodes in PU’s coverage area only, as shown in Figure-1.  

The FC carries out circular regression [12] based on 

the reported locations and RSS levels of the honest nodes 

demonstrating normal behavior only, and determines the 

estimated location of PU. Estimation of PU’s location and 

its coverage area with the help of circular regression is 

reasonable due to the PU’s very short transmission range, 

i.e., 100 - 200m. Based on the same spectrum reports, the 

FC then constructs a spectral map of the PU and calculates 

the expected spectrum sensing reports. For a given CRN 

node, if reported and expected spectrum sensing reports 

do not match, then a malicious entry   =1 is added in the 

lower tier of the node’s reputation table. Otherwise, an 

 j=1 

m  



 
 

‘honest’ entry   =0 is added. Classification of a CRN 

node j to be malicious or otherwise at CDT slot k is 

represented by the upper tier reputation table entry Mj and 

is done based on the following:  

        {
                                                        
                                                                    

 

    {
                               ∑                    

                                                         
 

where Rj is the reputation table entry for node j and N is 

the size of lower tier of the reputation table.  T is the 

threshold for a node’s reputation score to be considered 

malicious or honest. In this manner, the decision to reward 

or to punish a node is reached by the reputation system by 

determining if the node contributed towards or against the 

final spectrum sensing decision.  

V. PERFORMANCE EVALUATION 

In this section we present an evaluation of our 

proposed reputation aware collaborative spectrum sensing 

framework to defend against SSDF attack. For the purpose 

of our simulations, we define SSDF attack as follows: A 

SSDF attack refers to malicious nodes reporting absence 

of PUs from the spectrum band, which in fact, are 

currently using the spectrum. The purpose of this attack is 

to trick the CRN into believing that the spectrum is vacant 

and “induce” transmission by SUs thereby causing 

interference to the PUs. We refer to such an attack as an 

Induction attack and use the term Induction attack and 

SSDF attack interchangeably. This attack can have 

devastating and far reaching effect on the CRN, as it can 

cause harmful interference to PU’s signal and can 

jeopardize the existence of the CRN.  

 

A. Simulation Setup 

For the purpose of evaluating our proposed framework 

for defending against aforementioned SSDF attack, we 

have considered an ad hoc CRN with the dimension of 

1000m x 1000m, in which there exists a single PU and 

many SU nodes. Both the PU and the SUs are mobile 

under the Random waypoint mobility model [5], with their 

speed varying between 0 and 4m/s and maximum 

transmission ranges for both the PU and the SUs is 200 

meters. We have conducted simulations with multiple PUs 

operating within the CRN’s area, however, we do not 

present those results here due to space limitation. We have 

carried out simulations for both dense (100 SU nodes) and 

sparse (50 SU nodes) network configurations.  

 Figure-4 shows the number of SUs within PU’s 

transmission range at a given point in time during a 

simulation run, with the mean of 4.7 and variance 5.1 for a 

sparse network and a mean of 12.7 and variance 9.2 for a 

dense network. The threshold T for a node to be 

considered as malicious was studied for 3, 9 and 15 

malicious entries in the reputation window with the total 

reputation window size of N=20. However, due to space 

limitations, the malicious threshold value considered for 

this paper is kept at T=3. Spectrum sensing reports are 

generated by the SUs in every CDT slot, which equals 100 

msec. These sensing reports are then aggregated by the FC 

to reach the final spectrum sensing decision Mj for the 

current CDT slot. All the graphs represent results that are 

averaged over 100 simulation runs each. 

B. Simulation Results 

Spectrum sensing accuracy is the most important 

metric with regards to the collaborative spectrum sensing 

because the existence of the CRN depends on accurate 

spectrum sensing decisions. Performance of our proposed 

reputation aware collaborative spectrum sensing 

framework with respect to spectrum sensing accuracy is 

shown in Figure-5. As the number of malicious users in 

the CRN grows, it will have a negative impact on the 

overall spectrum sensing decisions. Our proposed 

framework successfully detects malicious behavior and 

reaches correct spectrum sensing decisions up to 99.3% of 

the time when malicious nodes are 10% of the entire SUs, 

which is a fairly large number of malicious nodes. 

Spectrum decision accuracy of our proposed framework 

drops to 97% with malicious node count of 35%, which is 

a highly unlikely number of malicious nodes in a network. 

In order to launch a successful Induction attack in a 

CRN, a malicious node has to report the absence of the PU  

in the spectrum band when it is actually been used by a 

PU. The honest nodes in the vicinity of a malicious node 

will, however, report the presence of the PU and the 

attempted attack on the CRN will fail. This makes the 

   =1 
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Induction attack difficult to launch successfully. In order 

to find out exactly how difficult it is to launch an 

Induction attack, we increased the malicious node 

probability to 60% of the total nodes in the CRN as shown 

in Figure-5, which shows that the attack’s success rate was 

around 6% for a sparse network and our reputation 

framework was able to achieve a spectrum decision 

accuracy of 90% for a dense network.  

Figure-6 shows the speed and accuracy of our 

proposed framework to detect malicious nodes in dense as 

well as sparse networks under the SSDF attack. As 

discussed earlier, the Induction attack is difficult to launch 

successfully; on the other hand, it is also difficult to detect 

malicious nodes launching an Induction attack. To 

accurately identify a malicious node launching an 

Induction attack, PU localization has to be perfect. 

However, since PU localization will always have some 

degree of error, if a node did not report the presence of a 

PU, we can never be absolutely certain whether the node 

really did not sense the PU since it is out of the PU’s 

transmission range, or it was launching an Induction 

attack. Once an estimated PU location is calculated, if the 

number of nodes in its transmission range that did not 

report presence of PU is more than the number of nodes 

that reported PU’s presence, then this condition is 

considered to have been caused due to PU localization 

error and nodes suspected of providing false spectrum 

sensing reports are not punished. In this manner, the 

reputation framework is very careful so as not to punish 

honest nodes on which the system relies for future 

spectrum decisions. This careful handling of induction 

attack by the reputation framework results in slower 

detection of malicious nodes.  

 Figure-7 shows the error rate of categorizing an 

honest node as a malicious node by our proposed 

reputation framework under SSDF attacks. For the 

duration of every simulation run i.e. 300 sec, false 

detection percentage is less than 15%. Figure-8 shows the 

long term dynamic for malicious detection accuracy under 

Induction attack as well as false detection percentage. 

VI. CONCLUSION AND FUTURE WORK 

 

In this paper we have proposed a novel reputation aware 
collaborative spectrum sensing framework based on 
spatio-spectral anomaly detection. Our proposed system is 
well suited for situations where the PU’s communication 
range is limited within a sub-region of the CRN. 

Simulations of our system show that it is robust against 
SSDF attacks and can detect malicious behavior up to 
99.3 percent of the time when malicious node density is 
within a reasonable range and is still very effective when 
the number malicious nodes is even greater. Our proposed 
system is also flexible enough to be used where PU’s 
communication range spans the entire CRN. We are 
studying other kinds of SSDF attacks in similar settings 
and will present the results in a future work. 
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Figure-8: Time to achieve steady state for 

detecting malicious nodes under SSDF 

Attack 

Figure-7: Percent of Honest nodes falsely 

labeled as Malicious 

Figure-6 Malicious Node Detection 

Accuracy under SSDF attack 


