
Improving Software Security via Runtime
Instruction-Level Taint Checking

Jingfei Kong, Cliff C. Zou, Huiyang Zhou
School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816

{jfkong,czou,zhou}@cs.ucf.edu

Cliff C. Zou
School of EECS

University of Central Florida
Orlando, FL 32816

czou@cs.ucf.edu

Huiyang Zhou
School of EECS

University of Central Florida
Orlando, FL 32816

zhou@cs.ucf.edu

ABSTRACT
Current taint checking architectures monitor tainted data
usage mainly with control transfer instructions. An alarm is
raised once the program counter becomes tainted. However,
such architectures are not effective against non-control data
attacks. In this paper we present a generic instruction-
level runtime taint checking architecture for handling non-
control data attacks. Under our architecture, instructions
are classified as either Taintless-Instructions or Tainted-
Instructions prior to program execution. An instruction is
called a Tainted-Instruction if it is supposed to deal with
tainted data. Otherwise it is called a Taintless-Instruction.
A security alert is raised whenever a Taintless-Instruction
encounters tainted data at runtime. The proposed archi-
tecture is implemented on the SimpleScalar simulator. The
preliminary results from experiments on SPEC CPU 2000
benchmarks show that there are a significant amount of
Taintless-Instructions. We also demonstrate effective usages
of our architecture to detect buffer overflow and format
string attacks.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous; D.4.6
[Operating Systems]: Security and Protection

General Terms
Security, Design, Performance

Keywords
Buffer Overflow, Format String, Hardware Tagging

1. INTRODUCTION
The increasing size and complexity of modern software

systems lead to an increasing number of security vulnera-
bilities. Well-known examples include buffer overflow, heap

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASID ’06 October 21, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-576-2 ...$5.00.

corruption, format string, integer overflow, etc. By carefully
exploiting these vulnerabilities, attackers may cause severe
damages to the running process or even ultimately gain the
control of victim computers.

During the past decade, numerous schemes have been
developed against different kinds of security attacks. Among
them, mitigation techniques are one very important defend-
ing category since it is always difficult to discover and fix
program flaws in advance. As a way of providing additional
protection to unsafe systems, mitigation techniques usually
try to mitigate the consequence of an attack by stopping the
malicious behavior from happening upon attack detection.
Although there are a great many of mitigation techniques
being developed and deployed, no solution yet can defeat all
currently-known exploits[3].

Recently dynamic taint tracking and checking [4], [5] has
been widely accepted as a promising mitigation scheme.
Based on the observation that attacks are always launched
from suspicious I/O channels such as files or network sockets,
it seeks to capture the essence of attacks. It treats data from
those suspicious input channels as tainted data and keeps
track of the tainted data propagation as they may directly
or indirectly affect other data values in the program. In
order to do so, the processor-memory model is enhanced
to keep track of taint information. Based on tainted data
tracking, certain taint checking is performed during the
runtime execution. It is not until checking fails that the
system is to be alarmed. Given the fact that current
attacks usually seek to change the control flow of the victim
program, one commonly adopted taint checking rule is that
control data shall never be tainted [4],[5].

Although control-data attacks are currently dominant, in
this paper we focus on non-control data attacks. The reality
and applicability of these attacks have already been demon-
strated in previous work[1]. It is foreseeable that when
control data protection techniques are widely deployed,
attackers may have the incentive to bypass those techniques
by using non-control data attacks. Previous work from [2]
has used taint checking on pointers against those attacks. In
other words, if tainted data is used as an address, an alarm
is raised. However it has false negative scenarios(See Section
2). Annotating important data structures that should never
be tainted could be another approach[2] and it may involve
very complex program analysis.

In this paper, we present a generic instruction-level run-
time taint checking architecture to prevent non-control data
attacks. Under our architecture, instructions are classified

as either Taintless-Instructions or Tainted-Instructions prior
to program execution. An instruction is called a Tainted-
Instruction if it is supposed to deal with tainted data.
Otherwise it is called a Taintless-Instruction. A security
alert is alarmed whenever a Taintless-Instruction encounters
tainted data at runtime.

The contribution of the paper is the architectural sup-
port for the protection of data integrity through fine-grain
instruction-level taint checking. Besides, our taint checking
architecture requires minor changes to the original taint
tracking architecture and it can complement other taint
checking techniques such as pointer taintedness checking[2]
to provide a higher degree of security protection. Our
preliminary statistical results from experiments on SPEC
CPU2000 benchmarks show that there are a significant
amount of instructions which are not supposed to deal with
tainted data. We also demonstrate the effective usage of
our architecture for buffer overflow and format string attack
detections on an enhanced SimpleScalar simulator through
manual annotation.

The rest of paper is organized as follows: Section 2
presents the background and discusses the related work;
Section 3 introduces the design of our enhanced taint
tracking and checking architecture; Section 4 discusses our
experiments; Section 5 presents the applications of our
architecture; and Section 6 concludes the paper.

2. MOTIVATION AND RELATED WORK

2.1 Low-level Vulnerabilities
Low-level software vulnerabilities such as buffer overflow,

heap corruption, format string and integer overflow account
for the largest portion of CERT advisories[2]. Malicious
users may exploit these vulnerabilities to write to arbitrary
memory locations with any specified values. For example,
an attacker may overwrite values such as function return
addresses, jump targets or function pointers. Once control
transfer instructions use those values, the control flow may
change to the code which the program should not execute.
Ultimately an attacker may compromise a host by doing so.

Buffer overflow. It results from writing to a buffer
without bounds checking. Once data is stored beyond the
boundary of a fixed length buffer, adjacent memory data
may be corrupted. It is the most common and exploitable
one among all vulnerabilities[7]. There have been enormous
efforts put into buffer overflow detection and prevention,
including static analysis and dynamic runtime monitoring.
A good summary and evaluation of dynamic buffer overflow
prevention can be found in [6]. Static analysis may generate
too many false warnings or miss errors in the code[17] while
dynamic mitigation techniques also have limitations, as
highlighted in [3]. Those exploit-focused dynamic mitigation
techniques are not completely effective against buffer over-
flow; those defect-focused dynamic mitigation techniques
such as runtime bounds checking are not broadly deployed
because of the high performance costs and application
compatibility problems.

Heap corruption. Heap data structure for dynamic
memory allocation contains user data and heap management
data. For performance reasons, user data and management
data are normally mixed together in memory. There are
certain operations on management data involved with each
malloc()/free() call. Heap vulnerabilities, such as heap

Input File/

Network Socket

Operating

System

Program with

vulnerabilities inside

Malicious code

- Injected Code

- Unintended code

Input data

from outside

hostile world

Input data are

moved into

program space

Input data

affect other

values

Tainted data

used as jump

target

address

Input data

from outside

hostile world

-Input data are tagged

and become tainted data.

-Tainted data are moved

into program space along

with their tag info

Tainted data affect

other values which also

become tainted

 Affected data

used as jump

target address

(a)
 (b)

Figure 1: Current Taint Tracking and Checking
Scheme

buffer overflow and double free, allow malicious users to
corrupt these management data to cause arbitrary memory
write.

Format string. The use of user input as the format
string parameter in certain C functions, such as printf(),
may incur security problems. A malicious user may use %s
and %x to read sensitive memory content (i.e., information
leaking) or even use %n to write arbitrary data to arbitrary
memory locations.

In summary, attackers often exploit software flaws to
compromise software systems. Low-level vulnerabilities such
as those above are all effective examples, which until now
people are still struggling to defeat[3]. Although crypto-
graphic methods can be used to protect data confidentiality
and integrity, they cannot eliminate software vulnerabilities
inside modern systems(For example, the integer overflow as
pointed out in [15]).

2.2 Taint Tracking and Checking
Program defects exist and it is always hard to stop

attackers from exploiting them. It is also well-known
that most current attacks are control data attacks, namely
hijacking the control flow of victim programs. It is this
final step that attackers follow to break systems and also
the final line people can defend their systems from being
compromised. For a successful break-in, certain value to be
assigned to the intended control data needs to be provided
by outside attackers. Based on this observation, Dynamic
Information Flow Tracking [4] and Minos [5] propose using
taint tracking and checking technique to stop the final step.
Figure 1(a) shows the normal attack procedure and Figure
1(b) shows their basic taint tracking and checking protection
mechanism. Here a data value becomes tainted if it is
arithmetically derived or simply copied from tainted data.
Their scheme is effective because normally the program
counter data value is not supposed to be tainted. After
their work, there have been several taint-related hardware

void do_auth(char* passwd)
{

 char buf[40];
 int auth;

 if (!strcmp("encrypted_passwd",passwd))
auth = 1;

 else auth = 0;

 scanf("%39s",buf);

 printf(buf); //format string!
A: if (auth)

access_granted();

}

 (a)

void information_leakage()
{

 unsigned int limit = 50;

 char buf[20];
 int p[50];
 unsigned int i;

 scanf("%s", buf); //buffer overflow!

B: for (i=0; i<limit; i++)
 printf(" %x ", *(p+i));
}

 (b)

Figure 2: Examples of Non-Control Data Attacks

and software proposals adopting the similar taint tracking
and checking idea[8], [10], [2], [12] and [11]. In addition,
Chen et al [2] proposes to add pointer taintedness checking
mechanism, which makes sure that the address value for a
memory access is not tainted. Their scheme is based on
the observation that non-control data attacks using data
pointers are as effective as the well-known control data
attacks.

Our proposed architecture is closely related to TaintCheck
[8] and Vigilante[10]. In their work, taint analysis code
is added into programs at a fine-grain level by binary
instrumentation tools. Through program instrumentation,
taint tracking mechanism is implemented and taint checking
is performed on the program counter, function call pa-
rameters, etc. In comparison, our scheme aims to exploit
instruction-level taint behavior and provides a generic fine-
grain hardware infrastructure for preventing non-control
data attacks. Flexible taint checking policies can be built
upon it with minor performance overhead (see Section 6).

2.3 Non-Control Data Attack Examples
As we can see from Figure 1, current taint checking

mechanism is only for control data protection. However
there are many cases that non-control data are also impor-
tant for software security. Figure 2 shows two synthetic
cases where certain degree of damage can be done by
corrupting non-control data. In Figure 2(a), the program
is in danger if the critical variable “auth” is overwritten
by a format string attack. In Figure 2(b), unexpected
extra program data will be revealed out if the counter
value “limit” is changed by a buffer overflow attack. Since
neither of them involves control data change, attacks in both
examples cannot be detected by the original taint checking

L2
 T

L1-I
 T
 L1-D
 T

ROB

AND

T

Register

File
 T

ALU
 T-ALU

Memory bus

Exception

Figure 3: Our Taintless-Instructions-Enhanced
Processor-Memory Model

scheme. Pointer taintedness checking[2] may detect the
format string attack in example(a) if the attack embeds
the target address in the format string itself. However,
some format string attacks may use untainted data as the
target address[18]. Neither such format string attack nor
the buffer overflow in example(b) can be detected by pointer
taintedness checking[2] since there are no tainted pointers.

Using our architecture, instructions corresponding to the
statements at line A and line B are all Taintless-Instructions
since variables “auth”, “limit” and “i” are not supposed
to be tainted. Attacks in the examples cause “auth” and
“limit” become tainted because of taint tracking. Thus they
will be detected when the processor executes the instructions
corresponding to the line A or the line B. If a format string
attack uses untainted data as both the target address and
the target value, we resort to taintless instructions in the
function vfprintf (See Section 5).

3. DESIGN
Figure 3 shows our Taintless-Instructions-Profile-Enhanced

processor-memory model. The data taintedness tracking
procedures and associated hardware units are similar to
the ones in the original taint tracking scheme [4],[5]. The
operating system sets taint tag bits to suspicious input
data and forward the data along with tags into program
space. The processor fetches, computes and stores data
along with taint tags back and forth from the memory.
The special T-ALU unit is used for data taintedness tag
computation. To support instruction-level taint checking,
however, shaded structures have been added. Meanwhile
the taint tag (T) for instructions has a different meaning
from the taint tag (T) for data, although in the main
memory there is still just single extra tag bit for every
memory storage. The tag for data indicates whether a value
is derived from suspicious outside data. Setting the tag
bit to 1 indicates that the value is tainted. The tag for
instructions indicates whether an instruction is a Taintless-
Instruction. An instruction is called a Tainted-Instruction
if it is supposed to deal with tainted data. Otherwise

it is called a Taintless-Instruction. Setting the tag to
1 indicates that the instruction is a Taintless-Instruction.
During runtime execution, the taint tags of instructions are
buffered inside the processor core, e.g., in the re-order buffer
(ROB). Finally, when a committing Taintless-Instruction
meets some tainted operand, an exception will be generated
through the AND gate.

Whether an instruction is a Taintless-Instruction or Tainted-
Instruction must be determined before program runs. It
can be collected either through manual annotation, static
analysis or dynamic training. A programmer may mark
special instructions manually if the data involved is deemed
to be very important and also not supposed to be tainted.
This is very useful when there is not enough static or
dynamic information available. Although its coverage is
not as broad as those automatic methods, very important
program execution points can be protected. In this paper,
we show the effective applications of our architecture mainly
through manual annotation. Static analysis can help
to identify taint program variables and therefore those
corresponding instructions. Dynamic training can help to
expand coverage when program source code is not available
or cannot provide enough information.

During runtime execution taint checking is carried out in
the following four steps:

1. load the collected Taintless-Instructions profile along
with program code into the main memory.

2. tag data from suspicious input channels as tainted.

3. track taintedness propagation through execution.

4. raise an alarm when a Taintless-Instruction encounters
some tainted operand.

In summary, our proposed scheme defines a new generic
instruction-level taint checking architecture for protecting
software systems from outside attacks. The instruction-level
taint checking can be used to protect against a wide range
of attacks, e.g., non-control data attacks as in the examples
in Figure 2. It requires minor changes to the original taint
tracking architecture.

4. EXPERIMENTS

4.1 Implementation
We implement our scheme on the SimpleScalar proces-

sor simulator[9] with the PISA instruction set to study
the instruction-level taint behavior. Since our scheme is
concerned with protection on both control data and non-
control data, it is very important to maintain accurate taint
tracking in order to achieve good data coverage. We choose
to implement per byte tagging by adding one additional
taint bit to each byte. The byte granularity fits into the
behaviors of most applications dealing with outside data if
not all. It can provide enough accuracy without sacrificing
much performance. During program load, taintedness bits
corresponding to program code are initialized according
to the collected profile and taintedness bits for program
data are cleared. Those data coming from certain I/O
system calls like READ, RECV, etc. are tagged as tainted.
As for taintedness propagation, the common logic is that
the destination taintedness bit is the bitwise OR of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2
 gcc
 gzip mcf
 parser perl twolf
 vortex vpr

Unexecuted

Tainted-Instruction

Taintless-Instruction

Figure 4: The Percentages of Taintless-Instructions
and Tainted-Instructions in SPEC CPU2000 CINT

corresponding taintedness bits from source operands. In
addition, special attention has been paid to certain ALU
operations. Shift instructions cause taintedness bit to shift
correspondingly. Any untainted byte of value 0 with AND
instructions causes taint bit 0 for the outcome byte. Any
untainted byte of value “0xFF” with OR instructions causes
taint bit 0 for the outcome byte. These rules are borrowed
from [2]. Finally a security exception is raised whenever a
Taintless-Instruction meets some tainted operand.

4.2 Preliminary Results from SPEC CPU2000
Intuitively, in most programs, there is a large portion

of program code dealing with untainted data. Our ar-
chitecture will be of limited use if the majority of pro-
gram instructions are Tainted-Instructions. To validate
our observation, we have used the SPEC CPU2000 CINT
benchmarks for experiments and run them to completion
using the reference inputs. The instructions are classified
as either Taintless-Instructions or Tainted-Instructions. If
there are multiple reference inputs, we combine the multiple
classifications together. If an instruction is identified as a
Tainted-Instruction in one run while a Taintless-Instruction
in another, the combined result is a Tainted-Instruction.
Figure 4 shows the final statistical results. Because of
limited number of reference inputs, many instructions of
the programs have not been exercised. The statistical
results may not be complete. However it shows that
there are a significant amount of Taintless-Instructions
(average approximately 46% Taintless-Instructions against
11% Tainted-Instructions).

5. APPLICATIONS
By augmenting program code with extra taint informa-

tion, our design provides an instruction-level taint checking
architecture. It can be used to detect various security
attacks at different levels. In this section, we demonstrate
the usage of our architecture on detecting buffer overflow

void
 vuln_stack_function_ptr(int choice){

 volatile unsigned int pad_begin = 0; //padding data

 long stack_buffer[BUFSIZE];

 volatile unsigned int pad_end = 0; //padding data

 void (*stack_function_pointer)(void);

 . . .

00401cb8 memcpy(stack_buffer, overflow_buffer, overflow+4);

00401cc0 pad_begin++;
 //access padding data

 |
 pad_end++;

00401cf8

 /* Function call using the function pointer */

00401d00 (void)(*stack_function_pointer)();

00401d08

(a)

00401cb8 <vuln_stack_function_ptr+2a8> jal 00404e80 <memcpy>

00401cc0 <vuln_stack_function_ptr+2b0> lw $v0[2],32($sp[29])

00401cc8 <vuln_stack_function_ptr+2b8> addiu $v0[2],$v0[2],1

00401cd0 <vuln_stack_function_ptr+2c0> sw $v0[2],32($sp[29])

00401cd8 <vuln_stack_function_ptr+2c8> lw $v0[2],32($sp[29])

00401ce0 <vuln_stack_function_ptr+2d0> lw $v0[2],104($sp[29])

00401ce8 <vuln_stack_function_ptr+2d8> addiu $v0[2],$v0[2],1

00401cf0 <vuln_stack_function_ptr+2e0> sw $v0[2],104($sp[29])

00401cf8 <vuln_stack_function_ptr+2e8> lw $v0[2],104($sp[29])

00401d00 <vuln_stack_function_ptr+2f0> lw $v0[2],108($sp[29])

00401d08 <vuln_stack_function_ptr+2f8> jalr $ra[31],$v0[2]

(b)

Figure 5: Buffer Overflow Attack Detection

and format string attacks through manual annotation.

5.1 Buffer Overflow
Figure 5 shows the way to use our architecture to detect

buffer overflow. One padding data “pad begin” is added
right before the buffer and one padding data “pad end” is
added right after the buffer. Then the simple operation
of “++” is inserted to access those padding data after the
suspicious buffer operation (“memcpy” at 0x00401cb8). The
instructions for “++” are from 0x00401cc0 till 0x00401cf8
and they are all Taintless-Instructions. Once there is a
buffer overflow in “memcpy”, tainted input data will be
copied across through “pad begin”, “pad end” and cause
them to be tainted. Therefore an exception is raised to
signal the danger. Note that the statements “pad begin++”
and “pad end++” are used to illustrate the padding data
accesses at the source code level. The compiler-generated
padding data accessing instruction may simply be a single
load instruction rather than the instruction sequence pre-
sented in Figure 5b.

The example code shown in Figure 5a is manually mod-
ified from the testbed of twenty buffer overflow attacks
developed by John Wilander[6]. Besides padding data
and corresponding access code, we construct the “over-
flow buffer” through I/O instead of the original array copy
so that “overflow buffer” data are tainted. “jmp buf”
related code is also changed since the SimpleScalar package
provides the old version of “jmp buf” data structure. Using
our Taintless-Instructions-enhanced SimpleScalar simulator,
we have tried all attack forms in the testbed using similar
modifications and successfully identified all the attacks.

Besides protecting buffers in the stack and data segment,
heap buffer overflow can be effectively detected in a similar
way by modifying the structure of memory chunks and
the management routines. The in-band heap management
data is enclosed by two padding data. Any double linked

int

DEFUN(vfprintf, (s, format, args),
 register FILE *s AND CONST char *format AND va_list args)

{

/* Pointer into the format string. */
register CONST char *f;

.
.
.

00400cb0 f = format;

00400cb8
00402f68 while (*f != ’\0’)
00402f70
00402f78 {

00400cc0 .
.
.

(a)

00400cb0 <vfprintf+1e0> addu $t0[8],$zero[0],$s0[16]
00400cb8 <vfprintf+1e8> j 00402f68 <vfprintf+2498>
00400cc0
 . . .

.
.
.

00402f68 <vfprintf+2498> lb $v0[2],0($t0[8])
00402f70 <vfprintf+24a0> lbu $v1[3],0($t0[8])

00402f78 <vfprintf+24a8> bne $v0[2],$zero[0],

00400cc0 <vfprintf+1f0>

 (b)

Figure 6: Format String Attack Detection

list manipulations which take place during the heap man-
agement process are prefaced with Taintless-Instructions
accessing those padding data. This idea is similar to the
ones in [16]. To use our architecture to effectively detect all
buffer overflow though, it is important to access the correct
padding data right after suspicious buffer operations.

Compared to other canary protection schemes such as
Stack Guard[13], ProPolice[14], the above scheme based
on our architecture has both performance and security
advantages. It is known that Stack Guard and ProPolice
are based on the guard canary and the checking code. With
the compiler help, our scheme requires a much fewer number
of checking instructions to be executed. Instead of the need
for loading the canary, computing values for complex canary
schemes, comparing the values, our scheme will only require
one load instruction. Our scheme is more secure in the fact
that the padding data are not required to be secret. In
comparison, the canary must remain secret for other canary
schemes to be effective. Otherwise attackers can overwrite
the canary with a carefully-chosen value without being
detected. For example, if the original canary is a random
number, attackers can perform buffer overflow successfully
by overwriting the canary with the same random number.
Attacks such as above are possible given the existence
of vulnerabilities which may lead to information leakage.
Under our architecture, the padding data would be checked
by Taintless-Instructions. Even when it is overwritten with
a carefully-chosen value by tainted data, the attack will still
be detected.

In summary, our architecture can provide better support
for canary schemes against buffer overflow attacks. In
addition, if combined with control data taint checking and
pointer taintedness checking, we expect that it is very
difficult to bypass the final checking code without being
caught. Thus even some buffer overflow attack just corrupts
non-control and non-data-pointer values, it can still be
detected.

5.2 Format String
Format string vulnerability may occur when user inputs

are used as format arguments in a printing function. The
examples include sprintf, snprintf, fprintf, vprintf, vsprintf,
vsnprintf, vfprintf, syslog, and vsyslog, etc. Among them,
vfprintf is the basic function on which the other wrapper
functions are based. Figure 6(a) shows a part of source
code in vfprintf from the C library in the SimpleScalar
simulator package. Pointer “f” points to the format string
and is used to interpret all kinds of supported specifiers
including the famous “%n” in the “while” loop. To detect
the attack, the instruction at “00402f68” is marked as a
Taintless-Instruction. In other words, user inputs are not
allowed to be used as format strings. Each time a tainted
input is used as a format string, it will raise an alarm.
Similar actions can also be taken to single out the “%n”
write attacks. In summary, our architecture enables taint
checking on arguments of critical functions such as vfprintf,
system calls to provide stronger security protection.

6. DISCUSSION AND FUTURE WORK

6.1 Overhead to Taint Tracking Architecture
Since our scheme is based on the original taint tracking

architecture, there is no change to the memory system
and the processor pipeline dealing with program data and
corresponding taint tags. The overhead is related to the
taintedness bits associated with instructions, which are the
shaded structures and related data pathes in Figure 3. All
additional computation and propagation happen in parallel,
not on critical path and should not affect the number of
pipeline stages and the cycle time. The additional software
processing will only occur during the load of program code.
Thus our scheme would introduce minor overhead to the
original taint tracking architecture, while it can be used to
provide a higher degree of security protection.

6.2 Collection of Taintless-Instructions Profile
The Taintless-Instructions profile is essential to provide

security protections based upon our architecture. We have
already shown in this paper that a manually-annotated
profile can be used to protect some security critical data
structures. However, the security coverage provided by this
method is limited. The preliminary results from experiments
on SPEC CPU2000 benchmarks in Section 4 have shown
that there are a significant amount of Taintless-Instructions.
Once those Taintless-Instructions are identified, higher secu-
rity coverage can be achieved. We are currently working on
analyzing program characteristics of real applications and
using automatic methods such as static analysis, dynamic
training to identify Taintless-Instructions.

6.3 Vulnerability and Shortcoming
Under our architecture, each instruction is either a Taintless-

Instruction or a Tainted-Instruction. However a Tainted-
Instruction does not always deal with tainted data due
to the dynamic feature of program executions. Thus our
scheme may fail to provide protection to certain untainted
data which is handled by Tainted-Instructions. Also the
Taintless-Instructions profile does not provide information
about the pointer taintedness. Even combined with pointer
taintedness checking scheme[2], our architecture still faces
some challenges as highlighted in [18]: code overwrite at-
tacks for writable memory region and vulnerabilities coming
out of translation tables. Although the first challenge

can be solved through instruction taintedness checking, our
current Taintless-Instructions profile is not applicable in
that case. Further investigation is under way to evaluate
the effectiveness of the combination.

6.4 Conclusion
This paper proposes a new generic instruction-level run-

time taint checking architecture. It requires minor changes
to the original taint tracking architecture and it can com-
plement other taint checking techniques to provide a higher
degree of security protection. The effective usages of our
architecture for buffer overflow and format string attack
detections are presented as examples in the paper.

7. REFERENCES
[1] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar,

and Ravi Iyer. “Non-Control-Data Attacks Are
Realistic Threats”. In Proceedings of USENIX
Security Symposium, August 2005.

[2] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew
Kalbarczyk, Ravi Iyer. “Defeating Memory Corruption
Attacks via Pointer Taintedness Detection”. In
Proceedings of IEEE International Conference on
Dependable Systems and Networks (DSN), June, 2005.

[3] Jonathan Pincus and Brandon Baker. “Mitigations for
Low-level Coding Vulnerabilities: Incomparability and
Limitations”. http://research.microsoft.com/users/
jpincus/mitigations.pdf, 2004.

[4] G. Edward Suh, Jae W. Lee, David X. Zhang, and
Srinivas Devadas, “Secure Program Execution via
Dynamic Information Flow Tracking”. Proceedings of
the 11th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-XI), Oct 2004.

[5] Jedidiah R. Crandall, Frederic T. Chong. “Minos:
Control Data Attack Prevention Orthogonal to
Memory Model”. in the 37th International Symposium
on Microarchitecture, December 2004.

[6] John Wilander and Mariam Kamkar, “A Comparison
of Publicly Available Tools for Dynamic Buffer
Overflow Prevention”, In Proceedings of the 10th
Network and Distributed System Security Symposium
(NDSS’03), February 2003.

[7] Jonathan Pincus and Brandon Baker. “Beyond stack
smashing: Recent advances in exploiting buffer
overruns”. IEEE Security and Privacy, 2004.

[8] James Newsome and Dawn Song. “Dynamic taint
analysis for automatic detection, analysis, and
signature generation of exploits on commodity
software”. In Proceedings of the 12th Annual Network
and Distributed System Security Symposium (NDSS
05), February 2005.

[9] D. Burger and T. M. Austin. “The Simplescalar Tool
Set Version 2.0”. Technical Report, Computer Science
Department, University of Wisconsin-Madison, 1997.

[10] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
Zhou, L. Zhang, and P. Barham, “Vigilante:
End-to-End Containment of Internet Worms”, 20th
ACM Symposium on Operating Systems Principles
(SOSP), Brighton, UK, October 2005.

[11] Georgios Portokalidis, Asia Slowinska and Herbert
Bos. “Argos: an Emulator for Fingerprinting Zero-Day

Attacks”. In proceedings of ACM SIGOPS EUROSYS
2006, Leuven, Belgium, April 2006.

[12] Alex Ho, Michael Fetterman, Christopher Clark,
Andrew Warfield and Steven Hand. “Practical
Taint-based Protection using Demand Emulation”. In
proceedings of ACM SIGOPS EUROSYS 2006,
Leuven, Belgium, April 2006.

[13] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P.
Bakke, A. Grier, S. Beattie, P. Wagle, and Q. Zhang.
“StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks”. In
Proceedings in the 7th USENIX Security Symposium,
January 1998.

[14] Etoh, Hiroaki and Yoda, K. “Protecting from
stack-smashing attacks”. http://www.research.ibm.
com/trl/projects/security/ssp/main.html (2004).

[15] SSH CRC-32 Compensation Attack Detector
Vulnerability. http://www.securityfocus.com/bid/2347

[16] W. Robertson, C. Kruegel, D. Mutz, F. Valeur.
“Run-time Detection of Heap-based Overflows”. In the
Proceedings of the 17th USENIX Large Installation
Systems Administration Conference (LISA). October
2003, San Diego, CA USA.

[17] Olatunji Ruwase and Monica S. Lam. “A Practical
Dynamic Buffer Overflow Detector”. In Proceedings of
the 11th Annual Network and Distributed System
Security Symposium, February 2004.

[18] Michael Dalton, Hari Kannan, Christos Kozyrakis,
“Deconstructing Hardware Architectures for
Security”. 5th Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD) at ISCA,
Boston, MA, June 2006.

