
CDA6530: Performance Models of Computers and Networks

Chapter 2:  Review of Practical Random 
Variables



2

Two Classes of R.V.
 Discrete R.V.

 Bernoulli 
 Binomial 
 Geometric 
 Poisson 

 Continuous R.V.
 Uniform
 Exponential, Erlang
 Normal

 Closely related
 Exponential    Geometric
 Normal  Binomial, Poisson
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Definition
 Random variable (R.V.) X:

 A function on sample space
 X: S ! R

 Cumulative distribution function (CDF):
 Probability distribution function (PDF)
 Distribution function
 FX(x) = P(X ≤ x) 
 Can be used for both continuous and discrete 

random variables



 Probability density function (pdf):
 Used for continuous R.V.

 Probability mass function (pmf):
 Used for discrete R.V.
 Probability of the variable exactly equals to a 

value
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FX(x) =
R x
¡1 fX(t)dt fX(x) =

dFX(x)
dx

fX(x) = P (X = x)
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Bernoulli 

 A trial/experiment, outcome is either 
“success” or “failure”.
 X=1 if success, X=0 if failure
 P(X=1)=p,  P(X=0)=1-p

 Bernoulli Trials
 A series of independent repetition of Bernoulli 

trial.
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Binomial

 A Bernoulli trials with n repetitions
 Binomial: X = No. of successes in n trails

 X» B(n, p)
P (X = k) ´ f(k;n; p) =

Ã
n
k

!

pk(1¡ p)n¡k

where 
Ã
n
k

!

= n!
(n¡k)!k!
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Binomial Example (1)
 A communication channel with (1-p) being the 

probability of successful transmission of a bit. Assume 
we design a code that can tolerate up to e bit errors with 
n bit word code.

 Q: Probability of successful word transmission?
 Model: sequence of bits trans. follows a Bernoulli Trails 

 Assumption: each bit error or not is independent
 P(Q) = P(e or fewer errors in n trails)

=
Pe
i=0 f(i;n; p)

=
Pe
i=0

Ã
n
i

!
pi(1¡ p)n¡i
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Binomial Example (2) 
---- Packet switching versus circuit switching

 1 Mb/s link
 each user: 

 100 kb/s when “active”
 active 10% of time

 circuit-switching: 
 10 users

 packet switching: 
 with 35 users, 

prob. of > 10 active less 
than .0004

Packet switching allows more users to use network!

N users

1 Mbps link

Q: how did we know 0.0004?
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Geometric

 Still about Bernoulli Trails, but from a different 
angle.

 X: No. of trials until the first success
 Y: No. of failures until the first success
 P(X=k) = (1-p)k-1p       P(Y=k)=(1-p)kp

X Y
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Poisson

 Limiting case for Binomial when:
 n is large and p is small

 n>20 and p<0.05 would be good approximation
 ¸=np is fixed, success rate

 X: No. of successes in a time interval (n time 
units)

 Remember that X follows Binomial distr., so real value 
of P(X=k) is:

 Why the approximation is accurate?  

P (X = k) = e¡¸¸
k

k!

Ã
n
k

!

= n!
(n¡k)!k!



Poisson
 Many natural systems have this distribution 

 The number of phone calls at a call center per minute. 
 Tens of thousands of customers out there.
 Each customer has very tiny probability to call at a specific minute period.

 The number of times a web server is accessed per minute. 
 The number of mutations in a given stretch of DNA after a 

certain amount of radiation. 

11
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Continous R.V - Uniform

 X: is a uniform r.v. on (®, ¯) if

 Uniform r.v. is the basis for simulation 
other distributions
 Introduce later

f(x) =

8
<

:

1
¯¡®; if® < x < ¯

0 otherwise
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Exponential 

 r.v. X: 

 FX(x)= 1-e-¸ x

 Very important distribution
 Memoryless property (explained a 

bit later)
 Corresponding to geometric distr.

f(x) =

8
<

:
¸e¡¸x; if x ¸ 0

0 if x < 0
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Erlang

 r.v. X (k-th Erlang):

 K-th Erlang is the sum 
of k Exponential distr.
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Normal

 r.v. X:

 Corresponding to 
Binomial and Poisson 
distributions 

f(x) = 1
¾
p
2¼
e¡(x¡¹)2=(2¾2);¡1 < x <1
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Normal

 If X~N(¹, ¾2), then 
 r.v. Z=(X-¹)/¾ follows standard normal N(0,1)
 P(Z<x) is denoted as ©(x)

 ©(x) value can be obtained from standard normal 
distribution table (next slide)

 Used to calculate the distribution value of a 
normal random variable X~N(¹, ¾2)
P(X<®) = P(Z < (®-¹)/¾) 

= ©( (®-¹)/¾ )
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Standard Normal Distr. Table

 P(X<x) = ©(x)
 ©(-x) = 1- ©(x)  why?
 About 68% of the area under the curve falls within 1 

standard deviation of the mean. 
 About 95% of the area under the curve falls within 2 

standard deviations of the mean. 
 About 99.7% of the area under the curve falls within 3 

standard deviations of the mean. 
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Normal Distr. Example
 An average light bulb manufactured by Acme 

Corporation lasts 300 days,  68% of light bulbs lasts 
within 300+/- 50 days. Assuming that bulb life is 
normally distributed.
 Q1: What is the probability that an Acme light bulb will last at 

most 365 days? 
 Q2: If we installed 100 new bulbs on a street exactly one year 

ago, how many bulbs still work now on average? What is the 
distribution of the number of remaining bulbs?

 Step 1: Modeling
 X~N(300, 502)   ¹=300, ¾=50.  Q1 is P(X· 365)

define Z = (X-300)/50, then Z is standard normal
 For Q2, # of remaining bulbs, Y, is a Bernoulli trial with 100 

repetitions with small prob. p = [1- P(X · 365)] 
 Y follows Poisson distribution (approximated from Binomial distr.)
 E[Y] = λ= np = 100 * [1- P(X · 365)] 
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Memoryless Property

 Memoryless for Geometric and Exponential 
 Easy to understand for Geometric

 Each trial is independent  how many trials before 
hitting a target does not depend on how many times I 
have missed before.

 X: Geometric r.v., PX(k)=(1-p)k-1p;    
 Y:  Y=X-n   No. of trials given we failed first n times
 PY(k) = P(Y=k|X>n)=P(X=k+n|X>n)

= P (X=k+n;X>n)
P (X>n)

= P (X=k+n)
P (X>n)

= (1¡p)k+n¡1p
(1¡p)n = p(1¡ p)k¡1 = PX(k)
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 pdf:  probability density function 
 Continuous r.v.  fX(x)

 pmf: probability mass function
 Discrete r.v. X:   PX(x)=P(X=x)  
 Also denoted as PX(x) or simply P(x)



21

Mean (Expectation)

 Discrete r.v.  X
 E[X] = ∑ kPX(k)

 Continous r.v.  X
 E[X] = 

 Bernoulli:  E[X] = 0(1-p) + 1¢ p = p
 Binomial: E[X]=np  (intuitive meaning?)
 Geometric: E[X]=1/p  (intuitive meaning?)
 Poisson: E[X]=¸ (remember ¸=np)

Z 1

¡1
kf(k)dk
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Mean

 Continuous r.v.
 Uniform:  E[X]= (®+¯)/2
 Exponential:  E[X]= 1/¸

 K-th Erlang E[X] = k/¸
 Normal: E[X]=¹
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Function of Random Variables

 R.V. X,      R.V. Y=g(X)
 Discrete r.v. X:

 E[g(X)] = ∑ g(x)p(x)
 Continuous r.v. X:

 E[g(X)] = 

 Variance:  Var(X) = E[ (X-E[X])2 ]
= E[X2] – (E[X])2

Z 1

¡1
g(x)f(x)dx
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Joint Distributed Random Variables

 FXY(x,y)=P(X· x, Y· y)
 FXY(x,y)=FX(x)FY(y)   if X and Y are independent
 FX|Y(x|y) = FXY(x,y)/FY(y)

 E[® X +¯ Y]=® E[X]+¯ E[Y]
 If X, Y independent 

 E[g(X)h(Y)]=E[g(X)]¢ E[h(Y)]
 Covariance

 Measure of how much two variables change together 
 Cov(X,Y)=E[ (X-E[X])(Y-E[Y]) ]

= E[XY] – E[X]E[Y]
 If X and Y independent, Cov(X,Y)=0
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Limit Theorems - Inequality

 Markov’s Inequality
 r.v. X¸ 0: 8 ®>0,  P(X¸ ®) · E[X]/® 

 Chebyshev’s Inequality
 r.v. X, E[X]=¹, Var(X)=¾2

 8 k>0,  P(|X-¹|¸ k)· ¾2/k2

 Provide bounds when only mean and 
variance known
 The bounds may be more conservative than 

derived bounds if we know the distribution



26

Inequality Examples

 If ®=2E[X], then P(X¸®)· 0.5
 A pool of articles from a publisher. Assume we know 

that the articles are on average 1000 characters long 
with a standard deviation of 200 characters.

 Q: what is the prob. a given article is between 600 and 
1400 characters?

 Model: r.v. X: ¹=1000, ¾=200, k=400 in Chebyshev’s
 P(Q) = 1- P(|X-¹|¸ k) 

¸ 1- (¾/k)2 =0.75

 If we know X follows normal distr.:
 The bound will be tigher
 75% chance of an article being between 760 and 

1240 characters long 
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Strong Law of Large Number

 i.i.d. (independent and identically-distributed)
 Xi: i.i.d. random variables,  E[Xi]=¹

With probability 1,  
(X1+X2+ +Xn)/n ¹,  as n1

Foundation for using large number of simulations to 
obtain average results
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Central Limit Theorem

 Xi: i.i.d. random variables,  E[Xi]=¹ Var(Xi)=¾2

 Y=

 Then,  Y » N(0,1)   as n1
 The reason for why normal distribution is everywhere
 Sample mean     is also normal distributed

 Sample mean 

X1 +X2 + ¢ ¢ ¢+Xn ¡ n¹

¾
p
n

¹X =
nX

i=1

Xi=n

E[ ¹X] = ¹

V ar( ¹X) = ¾2=n

What does this mean?

¹X



29

Example

 Let Xi, i=1,2,, 10 be i.i.d., Xi is uniform 
distr. (0,1). Calculate 

 E[Xi]=0.5, Var(Xi)=1/12

P (
10X

i=1

Xi > 7)

P (
10X

i=1

Xi > 7) = P (

P10
i=1Xi ¡ 5
q
10(1=12)

>
7¡ 5

q
10(1=12)

)

¼ 1¡©(2:2) = 0:0139

©(x): prob. standard normal distr. P(X< x)
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Conditional Probability

 Suppose r.v. X and Y have joint pmf p(x,y)
 p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3
 Q: Calculate the pmf of X given that Y=1

 pY(1)=p(1,1)+p(2,1)=0.6
 X sample space {1,2}
 pX|Y (1|1) =P(X=1|Y=1) =  P(X=1, Y=1)/P(Y=1)

= p(1,1)/pY(1) = 5/6

 Similarly,  pX|Y(2,1) = 1/6
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Expectation by Conditioning

 r.v. X and Y. then E[X|Y] is also a r.v.
 Formula:  E[X]=E[E[X|Y]]

 Make it clearer,  EX[X]= EY[ EX[X|Y] ]
 It corresponds to the “law of total probability”

 EX[X]= ∑ EX[X|Y=y] ¢ P(Y=y)
 Used in the same situation where you use the law 

of total probability
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Example

 r.v. X and N, independent
 Y=X1+X2+ +XN

 Q: compute E[Y]?
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Example 1
 A company’s network has a design problem on its 

routing algorithm for its core router. For a given packet, 
it forwards correctly with prob. 1/3 where the packet 
takes 2 seconds to reach the target; forwards it to a 
wrong path with prob. 1/3, where the packet comes back 
after 3 seconds; forwards it to another wrong with prob. 
1/3, where the packet comes back after 5 seconds.

 Q: What is the expected time delay for the packet reach 
the target?
 Memoryless
 Expectation by condition



34

Example 2
 Suppose a spam filter gives each incoming email an 

overall score. A higher score means the email is more 
likely to be spam.  By running the filter on training set of 
email (known normal + known spam), we know that 80% 
of normal emails have scores of 1.5 ± 0.4; 68% of spam 
emails have scores of 4 ± 1. Assume the score of 
normal or spam email follows normal distr.

 Q1: If we want spam detection rate of 95%, what threshold should 
we configure the filter?

 Q2: What is the false positive rate under this configuration?

 Terminology: 
 False positive: mistakenly treat normal event as abnormal event.
 False negative: mistakenly treat abnormal event as normal event.
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Example 3

 A ball is drawn from an bottle containing 
three white and two black balls. After each 
ball is drawn, it is then placed back. This 
goes on indefinitely. 
 Q: What is the probability that among the first 

four drawn balls, exactly two are white?

P (X = k) ´ f(k;n; p) =

Ã
n
k

!

pk(1¡ p)n¡k
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Example 4

 A type of battery has a lifetime with ¹=40 
hours and ¾=20 hours. A battery is used 
until it fails, at which point it is replaced by 
a new one. 

 Q: If we have 25 batteries, what’s the 
probability that over 1100 hours of use can 
be achieved?

 Approximate by central limit theorem
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Example 5

 If the prob. of a person suffer bad reaction from 
the injection of a given serum is 0.1%, 
determine the probability that out of 2000 
individuals (a). exactly 3  (b). More than 2 
individuals suffer a bad reaction? (c). If we inject 
one person per minute, what is the average time 
between two bad reaction injections?

 Poisson distribution (for rare event in a large number 
of independent event series)
 Can use Binomial, but too much computation

 Geometric
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Example 6
 A group of n camping people work on 

assembling their individual tent individually. The 
time for a person finishes is modeled by r.v. X. 
 Q1: what is the PDF for the time when the first tent is 

ready?
 Q2: what is the PDF for the time when all tents are 

ready?

 Suppose Xi are i.i.d., i=1, 2, , n
 Q: compute PDF of r.v. Y and Z where

 Y= max(X1, X2, , Xn)
 Z= min(X1, X2, , Xn)
 Y, Z can be used for modeling many phenomenon
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Example 7

 A coin having probability p of coming up 
heads is flipped until two of the most 
recent three flips are heads. Let N denote 
the number of heads. Find E[N].

 P(N=n) = P(Y1¸ 3, , Yn-1¸ 3, Yn· 2)

0 0 0 1 0 0 0 0 1 0 0 1 0 1
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