CDA6530: Performance Models of Computers and Networks
Chapter 2: Review of Practical Random Variables

## Two Classes of R.V.

- Discrete R.V.
- Bernoulli
- Binomial
- Geometric
- Poisson
- Continuous R.V.
- Uniform
- Exponential, Erlang
- Normal
- Closely related
- Exponential $\leftrightarrow \rightarrow$ Geometric
- Normal $\leftarrow \rightarrow$ Binomial, Poisson


## Definition

- Random variable (R.V.) X:
- A function on sample space
- $X: S \rightarrow R$
- Cumulative distribution function (CDF):
a Probability distribution function (PDF)
- Distribution function
- $F_{x}(x)=P(X \leq x)$
- Can be used for both continuous and discrete random variables
- Probability density function (pdf): - Used for continuous R.V.

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t \quad f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

- Probability mass function (pmf): - Used for discrete R.V.
$\square$ Probability of the variable exactly equals to a value

$$
f_{X}(x)=P(X=x)
$$

## Bernoulli

- A trial/experiment, outcome is either "success" or "failure".
a $X=1$ if success, $X=0$ if failure
- $P(X=1)=p, P(X=0)=1-p$
- Bernoulli Trials
- A series of independent repetition of Bernoulli trial.


## Binomial

- A Bernoulli trials with n repetitions
- Binomial: $X=$ No. of successes in $n$ trails - $\mathrm{X} \sim \mathrm{B}(\mathrm{n}, \mathrm{p})$

$$
P(X=k) \equiv f(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$



## Binomial Example (1)

- A communication channel with (1-p) being the probability of successful transmission of a bit. Assume we design a code that can tolerate up to e bit errors with $n$ bit word code.
- Q: Probability of successful word transmission?
- Model: sequence of bits trans. follows a Bernoulli Trails
a Assumption: each bit error or not is independent
- $\mathrm{P}(\mathrm{Q})=\mathrm{P}(\mathrm{e}$ or fewer errors in n trails $)$

$$
\begin{aligned}
& =\sum_{i=0}^{e} f(i ; n, p) \\
& =\sum_{i=0}^{e}\binom{n}{i} p^{i}(1-p)^{n-i}
\end{aligned}
$$

## Binomial Example (2)

---- Packet switching versus circuit switching
Packet switching allows more users to use network!

- $1 \mathrm{Mb} / \mathrm{s}$ link
- each user:
- $100 \mathrm{~kb} / \mathrm{s}$ when "active"
- active $10 \%$ of time
- circuit-switching:
- 10 users
- packet switching:
- with 35 users, prob. of > 10 active less than 0004

N users


Q: how did we know 0.0004 ?

## Geometric

- Still about Bernoulli Trails, but from a different angle.
- X: No. of trials until the first success - Y : No. of failures until the first success
- $P(X=k)=(1-p)^{k-1} p \quad P(Y=k)=(1-p)^{k} p$




## Poisson

- Limiting case for Binomial when:
- $n$ is large and $p$ is small

- $\mathrm{n}>20$ and $\mathrm{p}<0.05$ would be good approximation व $\lambda=n \mathrm{p}$ is fixed, success rate
- X: No. of successes in a time interval ( n time units) $\quad P(X=k)=e^{-\lambda \frac{\lambda^{k}}{k!}}$
- Remember that $X$ follows Binomial distr., so real value of $P(X=k)$ is:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- Why the approximation is accurate?


## Poisson

- Many natural systems have this distribution
- The number of phone calls at a call center per minute.
- Tens of thousands of customers out there.
- Each customer has very tiny probability to call at a specific minute period.
- The number of times a web server is accessed per minute.
- The number of mutations in a given stretch of DNA after a certain amount of radiation.


## Continous R.V - Uniform

व X : is a uniform r.v. on $(\alpha, \beta)$ if

$$
f(x)= \begin{cases}\frac{1}{\beta-\alpha}, & \text { if } \alpha<x<\beta \\ 0 & \text { otherwise }\end{cases}
$$

- Uniform r.v. is the basis for simulation other distributions
- Introduce later


## Exponential

a r.v. X:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

- $F_{X}(X)=1-e^{-\lambda x}$
- Very important distribution - Memoryless property (explained as bit later)
- Corresponding to geometric distr.



## Erlang

## a r.v. X (k-th Erlang):

$$
f(x ; k, \lambda)=\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{(k-1)!} \quad \text { for } x, \lambda \geq 0 \text {. }
$$

## - K-th Erlang is the sum of $k$ Exponential distr.



## Normal

ar.v. X:
$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)},-\infty<x<\infty$

- Corresponding to Binomial and Poisson distributions


## Normal

- If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$, then
a r.v. $\mathrm{Z}=(\mathrm{X}-\mu) / \sigma$ follows standard normal $\mathrm{N}(0,1)$
- $P(Z<x)$ is denoted as $\Phi(x)$
$\square \Phi(x)$ value can be obtained from standard normal distribution table (next slide)
- Used to calculate the distribution value of a normal random variable $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
${ }_{\square} \mathrm{P}(\mathrm{X}<\alpha)=\mathrm{P}(\mathrm{Z}<(\alpha-\mu) / \sigma)$

$$
=\Phi((\alpha-\mu) / \sigma)
$$

## Standard Normal Distr. Table



- $P(\mathrm{X}<\mathrm{x})=\Phi(\mathrm{x})$
- $\Phi(-\mathrm{x})=1-\Phi(\mathrm{x})$ why?

| $\mathbf{z}$ | $\mathbf{F}(\mathbf{x})$ | $\mathbf{z}$ | $\mathbf{F}(\mathrm{x})$ | $\mathbf{z}$ | $\mathbf{F}(\mathrm{x})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -2.5 | 0.006 | -1 | 0.159 | 0.5 | 0.691 |
| -2.4 | 0.008 | -0.9 | 0.184 | 0.6 | 0.726 |
| -2.3 | 0.011 | -0.8 | 0.212 | 0.7 | 0.758 |
| -2.2 | 0.014 | -0.7 | 0.242 | 0.8 | 0.788 |
| -2.1 | 0.018 | -0.6 | 0.274 | 0.9 | 0.816 |
| -2 | 0.023 | -0.5 | 0.309 | 1 | 0.841 |
| -1.9 | 0.029 | -0.4 | 0.345 | 1.1 | 0.864 |
| -1.8 | 0.036 | -0.3 | 0.382 | 1.2 | 0.885 |
| -1.7 | 0.045 | -0.2 | 0.421 | 1.3 | 0.903 |
| -1.6 | 0.055 | -0.1 | 0.46 | 1.4 | 0.919 |
| -1.5 | 0.067 | 0 | 0.5 | 1.5 | 0.933 |
| -1.4 | 0.081 | 0.1 | 0.54 | 1.6 | 0.945 |
| -1.3 | 0.097 | 0.2 | 0.579 | 1.7 | 0.955 |
| -1.2 | 0.115 | 0.3 | 0.618 | 1.8 | 0.964 |
| -1.1 | 0.136 | 0.4 | 0.655 | 1.9 | 0.971 |

- About $68 \%$ of the area under the curve falls within 1 standard deviation of the mean.
- About $95 \%$ of the area under the curve falls within 2 standard deviations of the mean.
- About $99.7 \%$ of the area under the curve falls within 3 standard deviations of the mean.
UCF
Stands For Opportunity

```17
```


## Normal Distr. Example

- An average light bulb manufactured by Acme Corporation lasts 300 days, $68 \%$ of light bulbs lasts within 300+/- 50 days. Assuming that bulb life is normally distributed.
- Q1: What is the probability that an Acme light bulb will last at most 365 days?
- Q2: If we installed 100 new bulbs on a street exactly one year ago, how many bulbs still work now on average? What is the distribution of the number of remaining bulbs?
- Step 1: Modeling
- $\mathrm{X} \sim \mathrm{N}\left(300,50^{2}\right) \quad \mu=300, \sigma=50$. Q1 is $\mathrm{P}(\mathrm{X} \leq 365)$ define $Z=(X-300) / 50$, then $Z$ is standard normal
- For Q2, \# of remaining bulbs, Y, is a Bernoulli trial with 100 repetitions with small prob. $\mathrm{p}=[1-\mathrm{P}(\mathrm{X} \leq 365)]$
- $Y$ follows Poisson distribution (approximated from Binomial distr.)
- $E[Y]=\lambda=n p=100$ * $[1-P(X \leq 365)]$


## Memoryless Property

- Memoryless for Geometric and Exponential
- Easy to understand for Geometric
- Each trial is independent $\rightarrow$ how many trials before hitting a target does not depend on how many times I have missed before.
- $X$ : Geometric r.v., $P_{x}(k)=(1-p)^{k-1} p$;
- $Y: Y=X-n \quad$ No. of trials given we failed first $n$ times
- $P_{Y}(k)=P(Y=k \mid X>n)=P(X=k+n \mid X>n)$

$$
\begin{aligned}
& =\frac{P(X=k+n, X>n)}{P(X>n)}=\frac{P(X=k+n)}{P(X>n)} \\
& =\frac{(1-p)^{k+n-1} p}{(1-p)^{n}}=p(1-p)^{k-1}=P_{X}(k)
\end{aligned}
$$

a pdf: probability density function - Continuous r.v. $\mathrm{f}_{\mathrm{x}}(\mathrm{x})$
a pmf: probability mass function

- Discrete r.v. $X$ : $P_{X}(x)=P(X=x)$ $\square$ Also denoted as $\mathrm{P}_{\mathrm{x}}(\mathrm{x})$ or simply $\mathrm{P}(\mathrm{x})$


## Mean (Expectation)

- Discrete r.v. X
- $E[X]=\sum k P_{x}(k)$
- Continous r.v. X
- $\mathrm{E}[\mathrm{X}]=\int_{-\infty}^{\infty} k f(k) d k$
- Bernoulli: $E[X]=0(1-p)+1 \cdot p=p$
- Binomial: $E[X]=n p$ (intuitive meaning?)
- Geometric: $E[X]=1 / p$ (intuitive meaning?)
- Poisson: $E[X]=\lambda$ (remember $\lambda=n p$ )


## Mean

a Continuous r.v.

- Uniform: $\mathrm{E}[\mathrm{X}]=(\alpha+\beta) / 2$
- Exponential: $\mathrm{E}[\mathrm{X}]=1 / \lambda$
- $K$-th Erlang $\mathrm{E}[\mathrm{X}]=\mathrm{k} / \lambda$
- Normal: $E[X]=\mu$


## Function of Random Variables

- R.V. X, R.V. Y=g(X)
- Discrete r.v. X:
- $E[g(X)]=\sum g(x) p(x)$
- Continuous r.v. X :
- $\mathrm{E}[\mathrm{g}(\mathrm{X})]=\int_{-\infty}^{\infty} g(x) f(x) d x$
- Variance: $\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]$

$$
=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}
$$

## Joint Distributed Random Variables

- $F_{X Y}(x, y)=P(X \leq x, Y \leq y)$
- $F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$ if $X$ and $Y$ are independent
- $F_{X \mid Y}(x \mid y)=F_{X Y}(x, y) / F_{Y}(y)$
- $\mathrm{E}[\alpha \mathrm{X}+\beta \mathrm{Y}]=\alpha \mathrm{E}[\mathrm{X}]+\beta \mathrm{E}[\mathrm{Y}]$
- If $X, Y$ independent
- $E[g(X) h(Y)]=E[g(X)] . E[h(Y)]$
- Covariance
- Measure of how much two variables change together
- $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$

$$
=E[X Y]-E[X] E[Y]
$$

- If $X$ and $Y$ independent, $\operatorname{Cov}(X, Y)=0$


## Limit Theorems - Inequality

- Markov's Inequality

$$
\text { a r.v. } \mathrm{X} \geq 0: \forall \alpha>0, \mathrm{P}(\mathrm{X} \geq \alpha) \leq \mathrm{E}[\mathrm{X}] / \alpha
$$

- Chebyshev's Inequality
a r.v. $\mathbf{X}, \mathrm{E}[\mathrm{X}]=\mu, \operatorname{Var}(\mathrm{X})=\sigma^{2}$
- $\forall \mathrm{k}>0, \mathrm{P}(|\mathrm{X}-\mu| \geq \mathrm{k}) \leq \sigma^{2} / \mathrm{k}^{2}$
a Provide bounds when only mean and variance known
- The bounds may be more conservative than derived bounds if we know the distribution


## Inequality Examples

- If $\alpha=2 \mathrm{E}[\mathrm{X}]$, then $\mathrm{P}(\mathrm{X} \geq \alpha) \leq 0.5$
- A pool of articles from a publisher. Assume we know that the articles are on average 1000 characters long with a standard deviation of 200 characters.
- Q: what is the prob. a given article is between 600 and 1400 characters?
- Model: r.v. X: $\mu=1000, \sigma=200, \mathrm{k}=400$ in Chebyshev's
- $\mathrm{P}(\mathrm{Q})=1-\mathrm{P}(|\mathrm{X}-\mu| \geq \mathrm{k})$

$$
\geq 1-(\sigma / \mathrm{k})^{2}=0.75
$$

- If we know $X$ follows normal distr.:
- The bound will be tigher
- $75 \%$ chance of an article being between 760 and 1240 characters long


## Strong Law of Large Number

a i.i.d. (independent and identically-distributed)

- $\mathrm{X}_{\mathrm{i}}$ : i.i.d. random variables, $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=\mu$

With probability 1 ,
$\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{\mathrm{n}}\right) / \mathrm{n} \rightarrow \mu$, as $\mathrm{n} \rightarrow \infty$

Foundation for using large number of simulations to obtain average results

## Central Limit Theorem

a $\mathrm{X}_{\mathrm{i}}$ : i.i.d. random variables, $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=\mu \operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right)=\sigma^{2}$

- $\mathrm{Y}=\frac{X_{1}+X_{2}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}$
- Then, $Y \sim N(0,1)$ as $n \rightarrow \infty$
a The reason for why normal distribution is everywhere
- Sample mean $\bar{X}$ is also normal distributed
- Sample mean

$$
\begin{aligned}
& \bar{X}=\sum_{i=1}^{n} X_{i} / n \\
& E[\bar{X}]=\mu \\
& \operatorname{Var}(\bar{X})=\sigma^{2} / n
\end{aligned}
$$

## Example

a Let $X_{i}, i=1,2, \cdots, 10$ be i.i.d., $X_{i}$ is uniform distr. $(0,1)$. Calculate $\quad P\left(\sum_{i=1}^{10} X_{i}>7\right)$

- $E\left[X_{i}\right]=0.5, \operatorname{Var}\left(X_{i}\right)=1 / 12$

$$
P\left(\sum_{i=1}^{10} X_{i}>7\right)=P\left(\frac{\sum_{i=1}^{10} X_{i}-5}{\sqrt{10(1 / 12)}}>\frac{7-5}{\sqrt{10(1 / 12)}}\right)
$$

$$
\approx 1-\Phi(2.2)=0.0139
$$

$\Phi(\mathrm{x})$ : prob. standard normal distr. $\mathrm{P}(\mathrm{X}<\mathrm{x})$

## Conditional Probability

- Suppose r.v. $X$ and $Y$ have joint pmf $p(x, y)$ a $p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3$ $\square$ Q: Calculate the pmf of $X$ given that $Y=1$
- $p_{Y}(1)=p(1,1)+p(2,1)=0.6$
- X sample space $\{1,2\}$
- $p_{X \mid Y}(1 \mid 1)=P(X=1 \mid Y=1)=P(X=1, Y=1) / P(Y=1)$

$$
=p(1,1) / p_{Y}(1)=5 / 6
$$

- Similarly, $p_{X \mid Y}(2,1)=1 / 6$


## Expectation by Conditioning

a r.v. $X$ and $Y$. then $E[X \mid Y]$ is also a r.v.
a Formula: $E[X]=E[E[X \mid Y]]$
$\square$ Make it clearer, $\mathrm{E}_{\mathrm{X}}[\mathrm{X}]=\mathrm{E}_{\mathrm{Y}}\left[\mathrm{E}_{\mathrm{X}}[\mathrm{X} \mid \mathrm{Y}]\right]$

- It corresponds to the "law of total probability"
${ }_{\square} E_{X}[X]=\sum E_{x}[X \mid Y=y] \cdot P(Y=y)$
- Used in the same situation where you use the law of total probability


## Example

a r.v. $X$ and $N$, independent

- $Y=X_{1}+X_{2}+\cdots+X_{N}$
- Q: compute E[Y]?


## Example 1

- A company's network has a design problem on its routing algorithm for its core router. For a given packet, it forwards correctly with prob. $1 / 3$ where the packet takes 2 seconds to reach the target; forwards it to a wrong path with prob. $1 / 3$, where the packet comes back after 3 seconds; forwards it to another wrong with prob. $1 / 3$, where the packet comes back after 5 seconds.
- Q: What is the expected time delay for the packet reach the target?
- Memoryless
- Expectation by condition


## Example 2

- Suppose a spam filter gives each incoming email an overall score. A higher score means the email is more likely to be spam. By running the filter on training set of email (known normal + known spam), we know that $80 \%$ of normal emails have scores of $1.5 \pm 0.4 ; 68 \%$ of spam emails have scores of $4 \pm 1$. Assume the score of normal or spam email follows normal distr.
- Q1: If we want spam detection rate of $95 \%$, what threshold should we configure the filter?
- Q2: What is the false positive rate under this configuration?
- Terminology:
- False positive: mistakenly treat normal event as abnormal event.
- False negative: mistakenly treat abnormal event as normal event.


## Example 3

- A ball is drawn from an bottle containing three white and two black balls. After each ball is drawn, it is then placed back. This goes on indefinitely.
$\square$ Q: What is the probability that among the first four drawn balls, exactly two are white?

$$
P(X=k) \equiv f(k ; n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

## Example 4

- A type of battery has a lifetime with $\mu=40$ hours and $\sigma=20$ hours. A battery is used until it fails, at which point it is replaced by a new one.
- Q: If we have 25 batteries, what's the probability that over 1100 hours of use can be achieved?
- Approximate by central limit theorem


## Example 5

- If the prob. of a person suffer bad reaction from the injection of a given serum is $0.1 \%$, determine the probability that out of 2000 individuals (a). exactly 3 (b). More than 2 individuals suffer a bad reaction? (c). If we inject one person per minute, what is the average time between two bad reaction injections?
a Poisson distribution (for rare event in a large number of independent event series)
- Can use Binomial, but too much computation
- Geometric


## Example 6

- A group of $n$ camping people work on assembling their individual tent individually. The time for a person finishes is modeled by r.v. X.
- Q1: what is the PDF for the time when the first tent is ready?
- Q2: what is the PDF for the time when all tents are ready?
- Suppose $X_{i}$ are i.i.d., $i=1,2, \cdots, n$
- Q: compute PDF of r.v. $Y$ and $Z$ where
- $Y=\max \left(X_{1}, X_{2}, \cdots, X_{n}\right)$
$\square Z=\min \left(X_{1}, X_{2}, \cdots, X_{n}\right)$
- $Y, Z$ can be used for modeling many phenomenon


## Example 7

- A coin having probability p of coming up heads is flipped until two of the most recent three flips are heads. Let N denote the number of heads. Find $\mathrm{E}[\mathrm{N}]$.

$$
\underbrace{0001} \underbrace{00001} \underbrace{00101}
$$

- $P(N=n)=P\left(Y_{1} \geq 3, \cdots, Y_{n-1} \geq 3, Y_{n} \leq 2\right)$

