UCF

 Stands For OpportunityCDA6530: Performance Models of Computers and Networks
Chapter 5: Generating Random Number and Random Variables

Objective

- Use computers to simulate stochastic processes
- Learn how to generate random variables - Discrete r.v.
- Continuous r.v.
- Basis for many system simulations

Pseudo Random Number Generation (PRNG)

- $x_{n}=a x_{n-1} \bmod m$
- Multiplicative congruential generator
- $x_{n}=\{0,1, \cdots, m-1\}$
- x_{n} / m is used to approx. distr. $\mathrm{U}(0,1)$
a X_{0} is the initial "seed"
- Requirements:
- No. of variables that can be generated before repetition begins is large
- For any seed, the resultant sequence has the "appearance" of being independent
- The values can be computed efficiently on a computer
- $x_{n}=a x_{n-1} \bmod m$
- m should be a large prime number - For a 32-bit machine (1 bit is sign)
- $m=2^{31}-1=2,147,483,647$
- $a=7^{5}=16,807$
- For a 36-bit machine
- $m=2^{35-31}$
- $a=5^{5}$
- $x_{n}=\left(a x_{n-1}+c\right) \bmod m$
\square Mixed congruential generator

In C Programming Language

- Int rand(void)
- Return int value between 0 and RAND_MAX
- RAND_MAX default value may vary between implementations but it is granted to be at least 32767
- $X=$ rand ()
- $\mathrm{X}=\{0,1, \cdots$, RAND_MAX $\}$
- $X=\operatorname{rand}() \% m+n$
- $X=\{n, n+1, \cdots, m+n-1\}$
- Suitable for small m;
- Lower numbers are more likely picked

$(0,1)$ Uniform Distribution

- $U(0,1)$ is the basis for random variable generation
- C code (at least what I use): Double rand01()\{ double temp; temp $=$ double(rand()+0.5) / (double(RAND_MAX) + 1.0); return temp; \}

Generate Discrete Random Variables ---- Inverse Transform Method

a r.v. $X: P\left(X=x_{j}\right)=p_{j}, \quad j=0,1, \cdots$

- We generate a PRNG value $\mathrm{U} \sim \mathrm{U}(0,1)$
- For $0<\mathrm{a}<\mathrm{b}<1, \mathrm{P}(\mathrm{a} \leq \mathrm{U}<\mathrm{b}\}=\mathrm{b}-\mathrm{a}$, thus

$$
P\left(X=x_{j}\right)=P\left(\sum_{i=0}^{j-1} p_{i} \leq U<\sum_{i=0}^{j} p_{i}\right)=p_{j}
$$

$$
X= \begin{cases}x_{0} & \text { if } U<p_{0} \\ x_{1} & \text { if } p_{0} \leq U<p_{0}+p_{1} \\ \vdots & \\ x_{j} & \text { if } \sum_{i=0}^{j-1} p_{i} \leq U<\sum_{i=0}^{j} p_{i}\end{cases}
$$

Example

- A loaded dice: $\square P(1)=0.1 ; P(2)=0.1 ; P(3)=0.15 ; P(4)=0.15$ - $P(5)=0.2 ; P(6)=0.3$
- Generate 1000 samples of the above loaded dice throwing results - How to write the Matlab code?

Generate a Poisson Random Variable

$$
p_{i}=P(X=i)=e^{-\lambda} \frac{\lambda^{i}}{i!}, \quad i=0,1, \cdots
$$

- Use following recursive formula to save computation:

$$
p_{i+1}=\frac{\lambda}{i+1} p_{i}
$$

Some Other Approaches

- Acceptance-Rejection approach
- Composition approach
- They all assume we have already generated a random variable first (not U)
\square Not very useful considering our simulation purpose

Generate Continuous Random Variables ---- Inverse Transform Method

a r.v. $X: F(x)=P(X \leq x)$
a r.v. $Y: Y=F^{-1}(U)$

- Y has distribution of $F .(Y=s t)$
- $P(Y \leq x)=P\left(F^{-1}(U) \leq x\right)$
$=P\left(F\left(F^{-1}(U)\right) \leq F(x)\right)$
$=\mathrm{P}(\mathrm{U} \leq \mathrm{F}(\mathrm{x}))$
$=P(X \leq x)$
- Why? Because $0<F(x)<1$ and the CDF of a uniform $F_{U}(y)=y$ for all $y \in[0 ; 1]$

Generate Exponential Random Variable

$$
\begin{gathered}
F(x)=1-e^{-\lambda x} \\
U=1-e^{-\lambda x} \\
e^{-\lambda x}=1-U \\
x=-\ln (1-U) / \lambda \\
F^{-1}(U)=-\ln (1-U) / \lambda
\end{gathered}
$$

Generate Normal Random Variable --- Polar method

- The theory is complicated, we only list the algorithm here:
\square Objective: Generate a pair of independent standard normal r.v. ~ N(0, 1)
- Step 1: Generate $(0,1)$ random number U_{1} and U_{2}
- Step 2: Set $\mathrm{V}_{1}=2 \mathrm{U}_{1}-1, \mathrm{~V}_{2}=2 \mathrm{U}_{2}-1 \quad S=V_{1}^{2}+V_{2}^{2}$
- Step 3: If S> 1, return to Step 1.
- Step 4: Return two standard normal r.v.:

$$
X=\sqrt{\frac{-2 \ln S}{S}} V_{1}, \quad Y=\sqrt{\frac{-2 \ln S}{S}} V_{2}
$$

\mathbf{z}	$\mathbf{F}(\mathrm{X})$	\mathbf{z}	$\mathbf{F}(\mathrm{X})$	\mathbf{z}	$\mathbf{F}(\mathrm{X})$
-2.5	0.006	-1	0.159	0.5	0.691
-2.4	0.008	-0.9	0.184	0.6	0.726
-2.3	0.011	-0.8	0.212	0.7	0.758
-2.2	0.014	-0.7	0.242	0.8	0.788
-2.1	0.018	-0.6	0.274	0.9	0.816
-2	0.023	-0.5	0.309	1	0.841
-1.9	0.029	-0.4	0.345	1.1	0.864
-1.8	0.036	-0.3	0.382	1.2	0.885
-1.7	0.045	-0.2	0.421	1.3	0.903
-1.6	0.055	-0.1	0.46	1.4	0.919
-1.5	0.067	0	0.5	1.5	0.933
-1.4	0.081	0.1	0.54	1.6	0.945
-1.3	0.097	0.2	0.579	1.7	0.955
-1.2	0.115	0.3	0.618	1.8	0.964
-1.1	0.136	0.4	0.655	1.9	0.971

- Another approximate method- Table lookup
- Treat Normal distr. r.v. X as discrete r.v.
- Generate a U, check U with $F(x)$ in table, get z

Generate Normal Random Variable

- Polar method generates a pair of standard normal r.v.s $\quad \mathrm{X} \sim \mathrm{N}(0,1)$
- What about generating r.v. $\mathrm{Y} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$?

$$
\square \mathrm{Y}=\sigma \mathrm{X}+\mu
$$

Generating a Random Permutation

- Generate a permutation of $\{1, \cdots, n\}$
- $\operatorname{Int}(\mathrm{kU})+1$:
- uniformly pick from $\{1,2, \cdots, k\}$
- Algorithm:
- $P_{1}, P_{2}, \cdots, P_{n}$ is a permutation of $1,2, \cdots, n$ (e.g., we can let $P_{j}=j, j=1, \cdots, n$)
- Set $\mathrm{k}=\mathrm{n}$
- Generate U, let I = Int(kU)+1
- Interchange the value of P_{l} and P_{k}
- Let $\mathrm{k}=\mathrm{k}-1$ and if $\mathrm{k}>1$ goto Step 3
$\square P_{1}, P_{2}, \cdots, P_{n}$ is a generated random permutation Example: permute (10, 20, 30, 40, 50)

Example of Generating Random Variable

- A loaded dice has the pmf:

$$
\text { a } P(X=1)=P(2)=P(3)=P(4)=0.1, P(5)=P(6)=0.3
$$

- Generate 100 samples, compare pmf of simulation with pmf of theoretical values
- Matlab code is on course webpage

Monte Carlo Approach ----

Use Random Number to Evaluate Integral

$\theta=\int_{0}^{1} g(x) d x$
$\theta=E[g(U)]$
$\square U$ is uniform distr. r.v. $(0,1)$ - Why?
$E[X]=\int_{-\infty}^{\infty} x f(x) d x$

$$
\begin{gathered}
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x \\
f_{U}(x)=1 \quad \text { if } 0<x<1
\end{gathered}
$$

- $\mathrm{U}_{1}, \mathrm{U}_{2}, \cdots, \mathrm{U}_{\mathrm{k}}$ are independent generated uniform distr. $(0,1)$
a $g\left(U_{1}\right), \cdots, g\left(U_{k}\right)$ are independent
- Law of large number:

$$
\sum_{i=1}^{k} \frac{g\left(U_{i}\right)}{k} \rightarrow E[g(U)]=\theta \text { as } k \rightarrow \infty
$$

$$
\theta=\int_{a}^{b} g(x) d x
$$

- Substitution: $y=(x-a) /(b-a), d y=d x /(b-a)$

$$
\begin{gathered}
\theta=\int_{0}^{1}(b-a) \cdot g(a+(b-a) y) d y=\int_{0}^{1} h(y) d y \\
h(y)=(b-a) \cdot g(a+(b-a) y)
\end{gathered}
$$

$$
\theta=\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} g\left(x_{1}, \cdots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

$$
\theta=E\left[g\left(U_{1}, \cdots, U_{n}\right)\right]
$$

- Generate many g(....)
- Compute average value
- which is equal to θ

