

CDA6530: Performance Models of Computers and Networks

Cliff Zou Fall 2014

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Course Information

Teacher: Cliff Zou

- Office: HEC243 407-823-5015
- Email: <u>czou@cs.ucf.edu</u>
- Office hour: MoWe 10:15am 11:45am

Course Webpage:

- <u>http://www.cs.ucf.edu/~czou/CDA6530-14/index.html</u>
- Syllabus is on the webpage and WebCourse
- UCF Tegrity for online lecture video streaming
 - WebCourse has a Tegrity link
 - Posted several hours after each class
- Use Webcourse@UCF for homework assignment and grading
 - Keep grade private
 - Homework submission
 - Also have a simple BBS channel

Stands For Opportunity

UCF

2

Objectives

What you need for performance analysis:

- Review practical probability theory
- Review several useful random processes
- Basic queuing theory
- Practical analysis techniques
- Useful tools (Matlab and basic usage of NS2)
- Basic simulation techniques
 - Discrete-time simulation
 - Discrete event simulation
- Example cases/papers on performance modeling
 - Prepare for your own research

UCF

Course Materials

- Reference textbook:
 - Introduction to Probability Models, Ninth Edition by Sheldon M. Ross.
 - Simulation, fouth edition by Sheldon M. Ross.
- Reference courses:
 - <u>CMPSCI673 Performance Evaluation</u>, by Don Towsley, UMass.
 - Course: <u>COMS6180 Modeling and Performance</u> <u>Evaluation</u>, by Visal Misra, Columbia Univ.

Other references that we can find online

UCF

Course Introduction

	Coursework	times	approx %
	Written homework	2	20%
	Programming projects	5	60%
	Midterm exam	1	20%
	Written homework		
- Mainly for the first half source on knowledge			wladaa

 Mainly for the first half course on knowledge: probability, random process, queuing theory

Programming projects

- Emphasis for the second half of the course
- Example:

UCF

- Basic usage of Matlab on statistical analysis
- Internet worm propagation simulation
- Networking simulation using NS2
- Discrete-event simulation

Stands For Opportunity

5

IOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENC

Course Introduction

Midterm exam

- Focus on the first half theoretic knowledge on probability, random process, queuing theory
- Since we have online session, midterm will be open book and like a special homework assignment with 24-hour submission deadline
- Programming projects oriented
 I believe programming projects are more useful for practical skills training
 Thus we will have 5 programming projects
 No final exam (to reduce workload)

UCF

Questions?

Stands For Opportunity

