

CDA6530: Performance Models of Computers and Networks

Chapter 2: Review of Practical Random Variables

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Two Classes of R.V.

Discrete R.V.

- Bernoulli
- Binomial
- Geometric
- Poisson

Continuous R.V.

- Uniform
- Exponential, Erlang
- Normal

UCF

Closely related

- □ Exponential $\leftarrow \rightarrow$ Geometric
- □ Normal \leftarrow → Binomial, Poisson

Definition

- Random variable (R.V.) X:
 - A function on sample space
 X: S \rightarrow R
- Cumulative distribution function (CDF):
 Probability distribution function (PDF)
 Distribution function
 - $\Box F_{X}(x) = P(X \le x)$
 - Can be used for both continuous and discrete random variables

Probability density function (pdf):
 Used for continuous R.V.
 F_X(x) = $\int_{-\infty}^{x} f_X(t) dt$ $f_X(x) = \frac{dF_X(x)}{dx}$

Probability mass function (pmf):
 Used for discrete R.V.
 Probability of the variable exactly equals to a value

$$f_X(x) = P(X = x)$$

Bernoulli

 A trial/experiment, outcome is either "success" or "failure".

 X=1 if success, X=0 if failure
 P(X=1)=p, P(X=0)=1-p

 Bernoulli Trials

 A series of independent repetition of Bernoulli trial.

Binomial

A Bernoulli trials with n repetitions \square Binomial: X = No. of successes in n trails \square X \sim B(n, p) $P(X = k) \equiv f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$ where $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ p=0.5 and n=20 p=0.7 and n=20 p=0.5 and n=40 0.10 0.05

UCF

30

40

20

6

0.00

0

10

Binomial Example (1)

- A communication channel with (1-p) being the probability of successful transmission of a bit. Assume we design a code that can tolerate up to e bit errors with n bit word code.
- Q: Probability of successful word transmission?
- Model: sequence of bits trans. follows a Bernoulli Trails
 - Assumption: each bit error or not is independent
 - $\square P(Q) = P(e \text{ or fewer errors in n trails})$

$$= \sum_{i=0}^{e} f(i; n, p)$$
$$= \sum_{i=0}^{e} \binom{n}{i} p^{i} (1-p)^{n-i}$$

UCE

Binomial Example (2)

---- Packet switching versus circuit switching

Packet switching allows more users to use network!

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 active 10% of time
- circuit-switching:
 10 users
- packet switching:
 - with 35 users, prob. of > 10 active less than .0004

Q: how did we know 0.0004?

Geometric

- Still about Bernoulli Trails, but from a different angle.
- X: No. of trials until the first success
- Y: No. of failures until the first success
 P(X=k) = $(1-p)^{k-1}p$ P(Y=k)= $(1-p)^kp$

Poisson

0.3

- n is large and p is small
 - n>20 and p<0.05 would be good approximation</p>
 - Reference: wiki
- $\lambda = np$ is fixed, success rate
- X: No. of successes in a time interval (n time units) $P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Many natural systems have this distribution

- The number of phone calls at a call center per minute.
- The number of times a web server is accessed per minute.
- The number of mutations in a given stretch of DNA after a certain amount of radiation.

UCF

10

15

20

Continous R.V - Uniform

\square X: is a uniform r.v. on (α , β) if

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \text{if} \alpha < x < \beta \\ 0 & \text{otherwise} \end{cases}$$

 Uniform r.v. is the basis for simulation other distributions
 Introduce later

Exponential

• **r.v. X:**

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$
• $F_X(x) = 1 - e^{-\lambda x}$

Very important distribution
 Memoryless property
 Corresponding to geometric distr.

Erlang

Normal

□ **r.v.** X:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}, -\infty < x < \infty$$

Corresponding to
 Binomial and Poisson
 distributions

Normal

□ If X~N(μ , σ^2), then \square r.v. Z=(X- μ)/ σ follows standard normal N(0,1) \square P(Z<x) is denoted as $\Phi(x)$ $\Box \Phi(\mathbf{x})$ value can be obtained from standard normal distribution table (next slide) Used to calculate the distribution value of a normal random variable X~N(μ , σ^2) $\Box P(X < \alpha) = P(Z < (\alpha - \mu)/\sigma)$ $=\Phi((\alpha - \mu)/\sigma)$

Standard Normal Distr. Table

$P(\mathbf{X} < \mathbf{x}) = \Phi(\mathbf{x})$	
T() A T()	

 $\Box \Phi(-\mathbf{x}) = 1 - \Phi(\mathbf{x}) \text{ why?}$

z	F(X)	z	F(X)	z	F(X)
-2.5	0.006	-1	0.159	0.5	0.691
-2.4	0.008	-0.9	0.184	0.6	0.726
-2.3	0.011	-0.8	0.212	0.7	0.758
-2.2	0.014	-0.7	0.242	0.8	0.788
-2.1	0.018	-0.6	0.274	0.9	0.816
-2	0.023	-0.5	0.309	1	0.841
-1.9	0.029	-0.4	0.345	1.1	0.864
-1.8	0.036	-0.3	0.382	1.2	0.885
-1.7	0.045	-0.2	0.421	1.3	0.903
-1.6	0.055	-0.1	0.46	1.4	0.919
-1.5	0.067	0	0.5	1.5	0.933
-1.4	0.081	0.1	0.54	1.6	0.945
-1.3	0.097	0.2	0.579	1.7	0.955
-1.2	0.115	0.3	0.618	1.8	0.964
-1.1	0.136	0.4	0.655	1.9	0.971

- About 68% of the area under the curve falls within 1 standard deviation of the mean.
- About 95% of the area under the curve falls within 2 standard deviations of the mean.
- About 99.7% of the area under the curve falls within 3
 standard deviations of the mean.
 Stands For Opportunity

Normal Distr. Example

- An average light bulb manufactured by Acme Corporation lasts 300 days, 68% of light bulbs lasts within 300+/- 50 days. Assuming that bulb life is normally distributed.
 - Q1: What is the probability that an Acme light bulb will last at most 365 days?
 - Q2: If we installed 100 new bulbs on a street exactly one year ago, how many bulbs still work now on average? What is the distribution of the number of remaining bulbs?

Step 1: Modeling

- □ \dot{X} ~N(300, 50²) μ =300, σ =50. Q1 is P(X ≤ 365) define Z = (X-300)/50, then Z is standard normal
- For Q2, # of remaining bulbs, Y, is a Bernoulli trial with 100 repetitions with small prob. $p = [1 P(X \le 365)]$

Y follows Poisson distribution (approximated from Binomial distr.)

□ $E[Y] = \lambda = np = 100 * [1 - P(X \le 365)]$

Memoryless Property

- Memoryless for Geometric and Exponential
- Easy to understand for Geometric
 - Each trial is independent → how many trials before hit does not depend on how many times I have missed before.
 - X: Geometric r.v., $P_X(k)=(1-p)^{k-1}p$;
 - Y: Y=X-n No. of trials given we failed first n times

 $P_{Y}(k) = P(Y=k|X>n) = P(X=k+n|X>n)$ $= \frac{P(X=k+n,X>n)}{P(X>n)} = \frac{P(X=k+n)}{P(X>n)}$ $= \frac{(1-p)^{k+n-1}p}{(1-p)^{n}} = p(1-p)^{k-1} = P_{X}(k)$

pdf: probability density function
 Continuous r.v. f_x(x)
 pmf: probability mass function
 Discrete r.v. X: P_x(x)=P(X=x)
 Also denoted as P_x(x) or simply P(x)

UCE

Mean (Expectation)

- Discrete r.v. X ■ $E[X] = \sum kP_X(k)$ ■ Continous r.v. X ■ $E[X] = \int_{-\infty}^{\infty} kf(k)dk$
- □ Bernoulli: $E[X] = O(1-p) + 1 \cdot p = p$
- Binomial: E[X]=np (intuitive meaning?)
- Geometric: E[X]=1/p (intuitive meaning?)
- Poisson: $E[X] = \lambda$ (remember $\lambda = np$)

Mean

Continuous r.v.
 Uniform: E[X]= (α+β)/2
 Exponential: E[X]= 1/λ
 K-th Erlang E[X] = k/λ
 Normal: E[X]=μ

Function of Random Variables

R.V. X, R.V. Y=g(X)
Discrete r.v. X:
E[g(X)] = ∑ g(x)p(x)
Continuous r.v. X:
E[g(X)] =
$$\int_{-\infty}^{\infty} g(x)f(x)dx$$

• Variance: $Var(X) = E[(X-E[X])^2]$ = $E[X^2] - (E[X])^2$

Joint Distributed Random Variables

- $\Box \ \mathsf{F}_{\mathsf{X}\mathsf{Y}}(\mathsf{x},\mathsf{y}){=}\mathsf{P}(\mathsf{X}{\leq}\mathsf{x},\,\mathsf{Y}{\leq}\mathsf{y})$
- □ $F_{XY}(x,y)=F_X(x)F_Y(y)$ if X and Y are independent □ $F_{X|Y}(x|y) = F_{XY}(x,y)/F_Y(y)$
- $\Box E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$
- If X, Y independent
 E[g(X)h(Y)]=E[g(X)]· E[h(Y)]
- Covariance

- Measure of how much two variables change together
- Cov(X,Y)=E[(X-E[X])(Y-E[Y])] = E[XY] - E[X]E[Y]
- If X and Y independent, Cov(X,Y)=0

Limit Theorems - Inequality

Markov's Inequality \Box r.v. X \geq 0: $\forall \alpha > 0$, P(X $\geq \alpha) \leq E[X]/\alpha$ Chebyshev's Inequality \Box r.v. X, E[X]= μ , Var(X)= σ^2 \square \forall k>0, P(|X- μ |> k)< σ^2/k^2 Provide bounds when only mean and variance known The bounds may be more conservative than derived bounds if we know the distribution

UCE

Inequality Examples

□ If α =2E[X], then P(X≥ α)≤ 0.5

- A pool of articles from a publisher. Assume we know that the articles are on average 1000 characters long with a standard deviation of 200 characters.
- Q: what is the prob. a given article is between 600 and 1400 characters?
- □ Model: r.v. X: μ =1000, σ =200, k=400 in Chebyshev's
- □ $P(Q) = 1 P(|X-\mu| \ge k)$ $\ge 1 - (\sigma/k)^2 = 0.75$
- If we know X follows normal distr.:
 - The bound will be tigher
 - 75% chance of an article being between 760 and 1240 characters long

Stands For Opportunity

Strong Law of Large Number

i.i.d. (independent and identically-distributed)
 X_i: i.i.d. random variables, E[X_i]=µ

With probability 1, $(X_1+X_2+\dots+X_n)/n \rightarrow \mu$, as $n \rightarrow \infty$

Foundation for using large number of simulations to obtain average results

Central Limit Theorem

□ X_i: i.i.d. random variables, $E[X_i] = \mu Var(X_i) = \sigma^2$ □ Y= $\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$

□ Then, $Y \sim N(0,1)$ as $n \rightarrow \infty$

The reason for why normal distribution is everywhere
 Sample mean x̄ is also normal distributed

Sample mean

$$\bar{X} = \sum_{i=1}^{n} X_i/n$$

$$E[\bar{X}] = \mu$$

$$Var(\bar{X}) = \sigma^2/n$$
What does this mean?

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENC

UCE

□ Let X_i , i=1,2,..., 10 be i.i.d., X_i is uniform distr. (0,1). Calculate $P(\sum_{i=1}^{10} X_i > 7)$

 \Box E[X_i]=0.5, Var(X_i)=1/12

$$P(\sum_{i=1}^{10} X_i > 7) = P(\frac{\sum_{i=1}^{10} X_i - 5}{\sqrt{10(1/12)}} > \frac{7 - 5}{\sqrt{10(1/12)}})$$

 $\approx 1 - \Phi(2.2) = 0.0139$ $\Phi(x)$: prob. standard normal distr. P(X< x)

Conditional Probability

Suppose r.v. X and Y have joint pmf p(x,y)
 p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3
 Q: Calculate the pmf of X given that Y=1

• Similarly, $p_{X|Y}(2,1) = 1/6$

UCE

Expectation by Conditioning

- r.v. X and Y. then E[X|Y] is also a r.v.
- Formula: E[X]=E[E[X|Y]]
 - Make it clearer, $E_X[X] = E_Y[E_X[X|Y]]$
 - □ It corresponds to the "law of total probability" □ $E_x[X] = \sum E_x[X|Y=y] \cdot P(Y=y)$
 - Used in the same situation where you use the law of total probability

- r.v. X and N, independent • $Y=X_1+X_2+\cdots+X_N$
- Q: compute E[Y]?

- A company's network has a design problem on its routing algorithm for its core router. For a given packet, it forwards correctly with prob. 1/3 where the packet takes 2 seconds to reach the target; forwards it to a wrong path with prob. 1/3, where the packet comes back after 3 seconds; forwards it to another wrong with prob. 1/3, where the packet comes back after 5 seconds.
- Q: What is the expected time delay for the packet reach the target?
 - Memoryless

UCF

Expectation by condition

- Suppose a spam filter gives each incoming email an overall score. A higher score means the email is more likely to be spam. By running the filter on training set of email (known normal + known spam), we know that 80% of normal emails have scores of 1.5 ± 0.4 ; 68% of spam emails have scores of 4 ± 1 . Assume the score of normal or spam email follows normal distr.
- Q1: If we want spam detection rate of 95%, what threshold should we configure the filter?
- Q2: What is the false positive rate under this configuration?

UCE

- A ball is drawn from an bottle containing three white and two black balls. After each ball is drawn, it is then placed back. This goes on indefinitely.
 - Q: What is the probability that among the first four drawn balls, exactly two are white?

$$P(X = k) \equiv f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

UCE

- A type of battery has a lifetime with μ=40 hours and σ=20 hours. A battery is used until it fails, at which point it is replaced by a new one.
 - Q: If we have 25 batteries, what's the probability that over 1100 hours of use can be achieved?
 Approximate by central limit theorem

- If the prob. of a person suffer bad reaction from the injection of a given serum is 0.1%, determine the probability that out of 2000 individuals (a). exactly 3 (b). More than 2 individuals suffer a bad reaction? (c). If we inject one person per minute, what is the average time between two bad reaction injections?
 - Poisson distribution (for rare event in a large number of independent event series)
 Can use Binomial, but too much computation
 Geometric

Stands For Opportunity

- A group of n camping people work on assembling their individual tent individually. The time for a person finishes is modeled by r.v. X.
 - Q1: what is the PDF for the time when the first tent is ready?
 - Q2: what is the PDF for the time when all tents are ready?
 - Suppose X_i are i.i.d., i=1, 2, …, n
 Q: compute PDF of r.v. Y and Z where

 Y= max(X₁, X₂, …, X_n)
 Z= min(X₁, X₂, …, X_n)
 Y, Z can be used for modeling many phenomenon

 A coin having probability p of coming up heads is flipped until two of the most recent three flips are heads. Let N denote the number of heads. Find E[N].

0001000100101

□ $P(N=n) = P(Y_2 \ge 3, \dots, Y_{n-1} \ge 3, Y_n \le 2)$

