

CDA6530: Performance Models of Computers and Networks

Chapter 7: Basic Queuing Networks

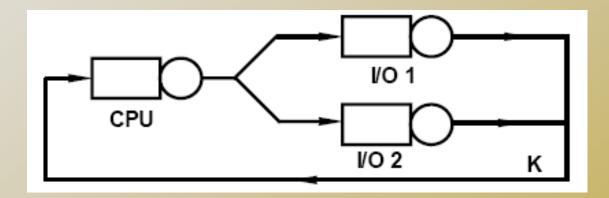
Open Queuing Network

 Jobs arrive from external sources, circulate, and eventually depart



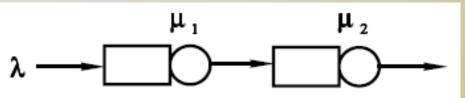
Closed Queuing Network

- Fixed population of K jobs circulate continuously and never leave
 - Previous machine-repairman problem



Feed-Forward QNs

Consider two queue tandem system



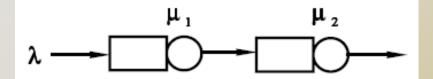
- Q: how to model?
 - System is a continuous-time Markov chain (CTMC)
 - □ State $(N_1(t), N_2(t))$, assume to be stable
 - $\pi(i,j) = P(N_1=i, N_2=j)$
 - Draw the state transition diagram
 - But what is the arrival process to the second queue?

Poisson in ⇒ Poisson out

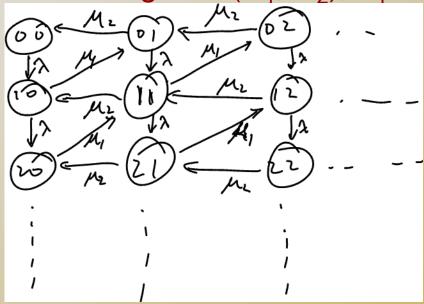
Burke's Theorem: Departure process of M/M/1 queue is Poisson with rate λ independent of arrival process.

Poisson process addition, thinning

- □ Two *independent* Poisson arrival processes adding together is still a Poisson $(\lambda = \lambda_1 + \lambda_2)$ Why?
- □ For a Poisson arrival process, if each customer lefts with prob. p, the remaining arrival process is still a Poisson $(\lambda = \lambda_1 \cdot p)$



□ State transition diagram: (N₁, N₂), N¡=0,1,2,···



$$\pi(i,j) = (1-\rho_1)\rho_1^i(1-\rho_2)\rho_2^j \quad i,j \ge 0$$

$$\rho_i = \lambda/\mu_i$$

- For a k queue tandem system with Poisson arrival and expo. service time
 Jackson's theorem:
 - $P(N_1 = n_1, N_2 = n_2, \dots, N_k = n_k) = \prod_{i=1}^k (1 \rho_i) \rho_i^{n_i},$
- Above formula is true when there are feedbacks among different queues
 - Each queue behaves as M/M/1 queue in isolation

Example

λ_i : arrival rate at queue i

$$\lambda_1 = 4 + \lambda_2/4$$
$$\lambda_2 = 5 + \lambda_1/2$$

Why?

$$\Rightarrow \lambda_1 = 6, \ \lambda_2 = 8$$

$$\pi(n_1, n_2) = \frac{1}{4} \left(\frac{3}{4}\right)^{n_1} \frac{1}{5} \left(\frac{4}{5}\right)^{n_2}$$

In M/M/1:
$$E[N] = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$$

 $\mu_1 = 8$

 $\mu_2 = 10$

$$E[N] = \sum_{i=1}^{2} E[N_i] = \sum_{i=1}^{2} \lambda_i / (\mu_i - \lambda_i)$$

= 3 + 4 = 7

$$E[T] = E[N]/(r_1 + r_2) = 7/9$$
 time units

Why?

 $r_1 = 4$

 $r_2 = 5$

T⁽ⁱ⁾: response time for a job enters queue i

$$r_1 = 4$$
 $\mu_1 = 8$
 0.5
 $\mu_2 = 10$

$$E[T^{(1)}] = 1/(\mu_1 - \lambda_1) + E[T^{(2)}]/2$$

$$E[T^{(2)}] = 1/(\mu_2 - \lambda_2) + E[T^{(1)}]/4$$

Why?

In M/M/1:
$$E[T] = \frac{1}{\mu - \lambda}$$

Extension

results hold when nodes are multiple server nodes (M/M/c), infinite server nodes finite buffer nodes (M/M/c/K) (careful about interpretation of results), PS (process sharing) single server with arbitrary service time distr.

Closed QNs

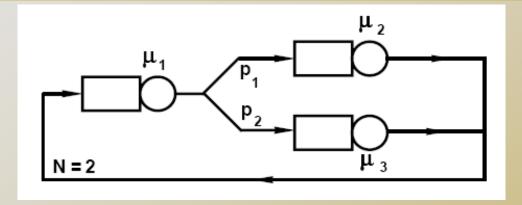
- Fixed population of N jobs circulating among M queues.
 - □ single server at each queue, exponential service times, mean $1/\mu_i$ for queue i
 - □ routing probabilities $p_{i,j}$, $1 \le i, j \le M$
 - □ visit ratios, $\{v_i\}$. If $v_1 = 1$, then v_i is mean number of visits to queue i between visits to queue 1

$$v_i = \sum_{j=1}^M v_j p_{j,i} \quad i = 2, \dots M$$

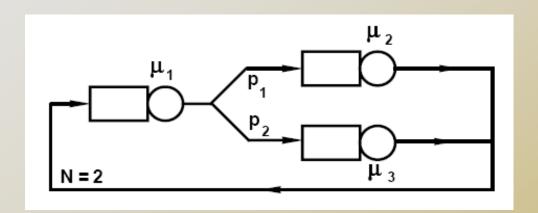
 $\neg \gamma_i$: throughput of queue *i*,

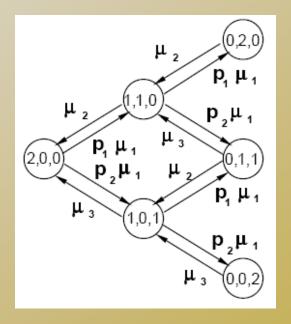
$$\gamma_i/\gamma_j = v_i/v_j, \quad 1 \le i, j \le M$$

Example



- Open QN has infinite no. of states
- Closed QN is simpler
- How to define states?
 - No. of jobs in each queue





Steady State Solution

Theorem (Gordon and Newell)

$$\pi(\vec{n}) = \frac{1}{G(N)} \prod_{i=1}^{M} \left(\frac{v_i}{\mu_i}\right)^{n_i} \quad \vec{n} \ge \vec{0}; \sum_{i=1}^{M} n_i = N$$

where $\vec{n} = (n_1, \dots, n_M)$, and G(N) is a constant chosen so that $\sum \pi(\vec{n}) = 1$.

For previous example when p1=0.75, v_i?

$$v_1 = 1, v_2 = 3/4, v_3 = 1/4$$

