

CDA6530: Performance Models of Computers and Networks

Chapter 9:Statistical Analysis of Simulated Data and Confidence Interval

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Sample Mean

- □ R.v. X: $E[X]=\theta$, $Var[X]=\sigma^2$
- Q: how to use simulation to derive?
 Simulate X repeatedly
 X ... X are i i d = ... X
- $\square X_1, \dots, X_n \text{ are i.i.d.}, =_{\text{statistic}} X$

\square Sample mean: \bar{X}

$$\bar{X} \equiv \sum_{i=1}^{n} \frac{X_i}{n}$$

$$E[\bar{X}] = \theta \qquad Var(\bar{X}) = \frac{\sigma}{r}$$

Sample Variance

σ² unknown in simulation
 Hard to use Var(x̄) = σ²/n to measure simulation variance
 Thus we need to estimate σ²
 Sample variance S²:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

□ n-1 instead of n is to provide unbiased estimator $E[S^2] = \sigma^2$

UCF

Estimate Error

• Sample mean \bar{X} is a good estimator of θ , but has an error

- How confidence we are sure that the sample mean is within an acceptable error?
- From central limit theorm:

$$\sqrt{n}rac{(ar{X}- heta)}{\sigma}\sim N(0,1)$$

It means that:

$$\sqrt{n}rac{(ar{X}- heta)}{S}\sim N(0,1)$$

Confidence Interval

□ R.v. Z~ N(0,1), for 0<
$$\alpha$$
<1, define:
□ P(Z>Z_{\alpha}) = α
□ Z_{0.025} = 1.96
□ P(- Z_{0.025} < Z < Z_{0.025}) = 1-2 α = 0.95
 $P(\bar{X} - z_{\alpha/2}\frac{S}{\sqrt{n}} < \theta < \bar{X} + z_{\alpha/2}\frac{S}{\sqrt{n}}) \approx 1 - \alpha$
 $P(\bar{X} - 1.96\frac{S}{\sqrt{n}} < \theta < \bar{X} + 1.96\frac{S}{\sqrt{n}}) \approx 0.95$
95% confidence interval (α = 0.05) of an estimate
 $(\bar{X} \pm 1.96S/\sqrt{n})$

Stands For Opportunity

UCF

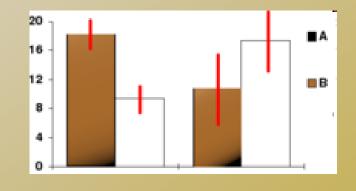
SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

is:

When to stop a simulation?

- Repeatedly generate data (sample) until 100(1-α) percent confidence interval estimate of θ is less than I
 - Generate at least 100 data values.
 - Continue generate, until you generated k values such that 2z_{α/2}S/√k < I
 The 100(1-α) percent confidence interval of estimate is

$$(\bar{X} - z_{\alpha/2}S/\sqrt{k}, \bar{X} + z_{\alpha/2}S/\sqrt{k})$$


Fix no. of simulation runs

Suppose we only simulate 100 times
 k=100

What is the 95% confidence interval?

$$(\bar{X} - z_{\alpha/2}S/\sqrt{k}, \bar{X} + z_{\alpha/2}S/\sqrt{k})$$

 $(\bar{X} - 0.196S/\sqrt{k}, \bar{X} + 0.196S/\sqrt{k})$

7

Example: Generating Expo. Distribution

😽 Stands For Opportunity

UCF

