
CDA6530: Performance Models of Computers and Networks

Chapter 4: Using Matlab for Performance
Analysis and Simulation

2

Objective

 Learn a useful tool for mathematical
analysis and simulation
 Interpreted language, easy to learn

 Use it to facilitate our simulation projects
 A good tool to plot simulation/experiment

results figures for academic papers
 More powerful than excel
 Could directly create .eps for Latex

3

Introduction
 MatLab : Matrix Laboratory
 Numerical Computations with matrices

 Every number can be represented as matrix
 Why Matlab?

 User Friendly (GUI)
 Easy to work with
 Powerful tools for complex mathematics

 Matlab has extensive demo and tutorials
to learn by yourself
 Use help command

4

Matrices in Matlab

 To enter a matrix
2 5 3
6 4 1

>> A = [2 5 3; 6 4 1]
>> B = [1:1.5:6; 2 3 4 5]
>> for i=1:4

for j=1:3
C(i,j)=i*j;

end
end

>> D =[]; D=[D;5]; D=[D;6;7]
>> E = zeros(4, 5)

5

Basic Mathematical Operations

Remember that every variable can be a matrix!

Addition:
>> C = A + B

Subtraction:
>> D = A – B

Multiplication:
>> E = A * B (Matrix multiplication)
>> E = A .* B (Element wise multiplication, A and B same size)

Division:
Left Division and Right Division

>> F = A . / B (Element wise division)
>> F = A / B = A*inv(B) (A * inverse of B)
>> F = A . \ B (Element wise division)
>> F = A \ B=inv(A)*B (inverse of A * B)

6

Matrix with ZEROS:
>> A = zeros(m, n)

Matrix with ONES:
>> B = ones(m, n)

IDENTITY Matrix:
>> I = eye(m, n)

m  Rows
n  Columns
zeros, ones, eye  Matlab functions

Generating basic matrices

7

Obtain Information

 Size(A): return [m n]
 Length(A): length of a vector

 Length(A) = max(size(A))
 B = A(2:4,3:5)

 B is the subset of A from row 2 to row 4,
column 3 to column 5

 A(:, 2)=[]
 Delete second column

8

Basic Matrix Functions
 Inv(A): inverse of A
 Rank(A): rank of matrix A
 A’: transpose of A
 Det(A): determinant
 V= eig(A): eigenvalue vector of A

 [V,D] = eig(A) produces matrices of eigenvalues (D)
and eigenvectors (V) of matrix A, so that A*V = V*D

9

Random Number Generators
 Rand(m,n): matrix with each entry ~ U(0,1)

 You can use this for the programming project 1

 Randn(m,n): standard normal distribution
 You cannot use this in programming project 1
 You must use the polar method I introduced!

10

Basic 2-D Figure Plot
 Plot(X, Y):

 Plots vector Y versus vector X
 Hold: next plot action on the same figure
 Title(‘title text here’)
 Xlabel(‘…’), ylabel(‘…’)
 Axis([XMIN XMAX YMIN YMAX])
 Legend(‘…’)
 Grid

 Example demo

11

Elementary Math Function
 Abs(), sign()

 Sign(A) = A./abs(A)
 Sin(), cos(), asin(), acos()
 Exp(), log(), log10()
 Ceil(), floor()
 Sqrt()
 Real(), imag()

12

Elementary Math Function
 Vector operation:

 Max(), min(): max/min element of a vector
 Mean(), median()
 Std(), var(): standard deviation and variance
 Sum(), prod(): sum/product of elements
 Sort(): sort in ascending order

13

Save/Load Data
 Save fname

 Save all workspace data into fname.mat
 Save fname x y z
 Save(fname): when fname is a variable

 Load fname
 Load fname x y

 No error in data
 You can run simulation intermittently

 Save/load data between runs

14

Input/Output for Text Files
 Input data file for further analysis in Matlab

 Run simulation using C
 matlab is slow in doing many loops

 Use Matlab for post-data processing
 Matrix calculation, utilize Matlab math functions

 Simply use Matlab for figure ploting
 Excel has constraint on data vector length (<300?)

 Functions:
 [A,B…]= Textread(fname, format)

 Read formated data
 Use fprintf(), fscanf() similar to C

 Note that variables here can be vectors/matrices

15

Advanced Graph

 Subplot(m, n, p)
 breaks the Figure window into an m-by-n

matrix of small axes, selects the p-th axes for
the current plot, and returns the axis handle.

 Semilogx(), semilogy(), loglog()

16

3-D plot
 x=[0:10]; y=[0:10]; z=x’*y;
 mesh(x,y,z); figure; surf(x,y,z);

0
2

4
6

8
10

0

5

10
0

20

40

60

80

100

0
2

4
6

8
10

0

5

10
0

20

40

60

80

100

17

M-file
 Script or function

 Scripts are m-files containing MATLAB statements

 Functions are like any other m-file, but they accept arguments
 It is always recommended to name function file the same as the

function name

function A = changeSign(B)
% change sign for each element
[m,n] = size(B); A = zeros(m,n);
for i=1:m

for j=1:n
A(i,j)= -B(i,j);

end
end
return

18

Online Tutorials
 Matlab itself contains many tutorials
 Other online tutorials:

 http://www.math.siu.edu/matlab/tutorials.html
 http://www.cs.cmu.edu/~ggordon/780/lecture

s/matlab_tutorial.pdf
 Google search “matlab tutorial ppt” to find a

lot more

19

Example on Using Matlab for
Markov Chain Steady State

Calculation

20

 Discrete-time Markov Chain transition
matrix:

 π P = π , π [1 1 1… 1]T = 1
 π (P – I) = 0, But we cannot use it directly
 Replace first column in (P-I) with [1 1..1]T to

be A, then we can solve the linear equation
set by π = [1 0 0 … 0] A-1

 Another way: P*P*P*P……

21

Tutorial on Matlab Simulink

22

 Graphical programming language
 Drag and draw line to program
 Configure each object for parameters

 Powerful modeling tool
 Differential Equations
 Physiological systems
 Control systems
 Transfer functions

 M-file can call a simulink model
 “sim fname”
 Use current workspace variables

 Simulation results can be saved to workspace variables
 Thus can be process after simulink

23

Example: Internet Worm Propagation

 N: vulnerable population
 : worm host average scan rate
 : scanning IP space size

dI(t)

dt
=

η

Ω
I(t) · [N − I(t)]

η

Example 2: RC Circuit

24

Transfer function:

