
CDA6530: Performance Models of Computers and NetworksCDA6530: Performance Models of Computers and Networks

Chapter 5: Generating Random NumberChapter 5: Generating Random Number
and Random Variables

ObjectiveObjective

 Use computers to simulate stochastic Use computers to simulate stochastic
processes

 Learn how to generate random variables Learn how to generate random variables
 Discrete r.v.
 Continuous r.v.

 Basis for many system simulations

2

Pseudo Random Number Generation (PRNG)()

 xn = a xn-1 mod mn n 1
 Multiplicative congruential generator
 xn = {0, 1, , m-1}
 xn/m is used to approx. distr. U(0,1)n
 x0 is the initial “seed”

 Requirements:
 No. of variables that can be generated before o o a ab es a ca be ge e a ed be o e

repetition begins is large
 For any seed, the resultant sequence has the

“appearance” of being independentappearance of being independent
 The values can be computed efficiently on a

computer

3

 xn = a xn-1 mod mn n-1
 m should be a large prime number
 For a 32-bit machine (1 bit is sign)

231 1 2 14 483 64 m=231-1 = 2,147,483,647
 a = 75 = 16,807

 For a 36-bit machine For a 36 bit machine
 m= 235-31
 a = 55

 xn = (axn-1 + c) mod m
 Mixed congruential generator

4

In C Programming LanguageIn C Programming Language

 Int rand(void)()
 Return int value between 0 and RAND_MAX
 RAND_MAX default value may vary between

implementations but it is granted to be atimplementations but it is granted to be at
least 32767

 X=rand()()
 X={0,1,, RAND_MAX}

 X = rand()%m + n
X { +1 + 1} X={n, n+1, , m+n-1}

 Suitable for small m;
 Lower numbers are more likely picked

5

 Lower numbers are more likely picked

(0,1) Uniform Distribution(0,1) Uniform Distribution

 U(0,1) is the basis for random variable U(0,1) is the basis for random variable
generation

 C code (at least what I use): C code (at least what I use):
Double rand01(){

double temp;
temp = double(rand()+0.5) /
(double(RAND_MAX) + 1.0);

t treturn temp;
}

6

Generate Discrete Random Variables
---- Inverse Transform MethodInverse Transform Method

 r.v. X: P(X= xj) = pj, j=0,1,(j) pj, j 0, ,
 We generate a PRNG value U~ U(0,1)

 For 0<a<b<1, P(a≤ U <b} = b-a, thus(}

P (X = xj) = P (
j−1X
i=0

pi ≤ U <
jX
i=0

pi) = pj⎧⎪⎪⎪⎪⎪⎪⎪⎪x0 if U < p0
x1 if p0 ≤ U < p0 + p1

X =

⎪⎪⎨⎪⎪⎪⎪⎪
1 p0 ≤ p0 + p1
...

xj if
Pj−1
i=0 pi ≤ U <

Pj
i=0 pi

7

⎪⎪⎪⎪⎩ j
P
i=0 pi ≤

P
i=0 pi

...

ExampleExample
 A loaded dice: A loaded dice:

 P(1)=0.1; P(2)=0.1; P(3)=0.15; P(4)=0.15
 P(5)=0.2; P(6)=0.3

 Generate 1000 samples of the above
loaded dice throwing results

8

Generate a Poisson Random VariableGe e ate a o sso a do a ab e

pi = P (X = i) = e−λ
λi

i!
, i = 0,1, · · ·

 Use following recursive formula to save
t ti

pi ()
i!
, , ,

computation:

pi+1 =
λ

pipi+1 =
i+1

pi

9

Some Other ApproachesSome Other Approaches

 Acceptance-Rejection approach Acceptance Rejection approach
 Composition approach

 They all assume we have already generated
a random variable first (not U)

 Not very useful considering our simulation
purpose

10

Generate Continuous Random Variables
---- Inverse Transform MethodInverse Transform Method

 r.v. X: F(x) = P(X≤ x)() ()
 r.v. Y: Y= F-1 (U)

 Y has distribution of F. (Y=st X)
P(Y≤ x) P(F 1(U) ≤ x) P(Y≤ x) = P(F-1(U) ≤ x)

= P(F(F-1(U))≤ F(x))
= P(U≤ F(x)) P(U≤ F(x))
= P(X≤ x)

 Why? Because 0<F(x)<1 and the CDF of ay ()
uniform FU(y) = y for all y ∈ [0; 1]

11

Generate Exponential Random Variablep

F (x) = 1− e−λx()

U = 1− e−λx
λxe−λx = 1− U

x = − ln(1− U)/λ

F−1(U) = − ln(1− U)/λ

12

Generate Normal Random Variable
--- Polar methodPolar method

 The theory is complicated, we only list the The theory is complicated, we only list the
algorithm here:
 Objective: Generate a pair of independent j p p

standard normal r.v. ~ N(0, 1)
 Step 1: Generate (0,1) random number U1 and U2

Step 2: Set V = 2U 1 V = 2U 1 S = V 2 + V 2 Step 2: Set V1 = 2U1 – 1, V2 = 2U2-1
 Step 3: If S> 1, return to Step 1.
 Step 4: Return two standard normal r.v.:

S = V1 + V2

X =

s
−2 lnS
S

V1, Y =

s
−2 lnS
S

V2

13

s
S

s
S

 Another approximate method- Table lookup
 Treat Normal distr. r.v. X as discrete r.v.

G t U h k U ith F() i t bl t Generate a U, check U with F(x) in table, get z

14

Generate Normal Random VariableGe e ate o a a do a ab e

 Polar method generates a pair of standard Polar method generates a pair of standard
normal r.v.s X~N(0,1)

 What about generating r.v. Y~N(μ, σ2)?g g (μ,)

Y= σX + μY σX μ

15

Generating a Random Permutationg

 Generate a permutation of {1,, n}p { , , }
 Int(kU) +1:

 uniformly pick from {1,2,, k}
Al ith Algorithm:
 P1,P2,, Pn is a permutation of 1,2,, n (e.g., we

can let Pj=j, j=1,, n)j j j)
 Set k = n
 Generate U, let I = Int(kU)+1
 Interchange the value of P and P Interchange the value of PI and Pk
 Let k=k-1 and if k>1 goto Step 3
 P1, P2, , Pn is a generated random permutation

16

Example: permute (10, 20, 30, 40, 50)

Monte Carlo Approach ----
Use Random Number to Evaluate IntegralUse Random Number to Evaluate Integral

θ =
Z 1

g(x)dx θ = E[g(U)]

 U is uniform distr r v (0 1)

θ =
Z
0
g(x)dx θ = E[g(U)]

 U is uniform distr. r.v. (0,1)
 Why? Z ∞
E[X] =

Z ∞
−∞

xf(x)dxZ ∞
E[g(X)] =

Z ∞
−∞

g(x)f(x)dx

f () 1 if 0 1
17

fU(x) = 1 if 0 < x < 1

 U1, U2, , Uk are independent generated U1, U2, , Uk a e depe de t ge e ated
uniform distr. (0,1)
 g(U1),, g(Uk) are independentg(1) g(k) p
 Law of large number:

kX g(Ui) → E[g(U)] = θ as k →∞
X
i=1 k

→ E[g(U)] = θ as k →∞

18

θ =
Z b
g(x)dx

 Substitution: y=(x-a)/(b-a), dy = dx/(b-a)

Z
a

y () (), y ()

θ =
Z 1
0
(b− a) · g(a+ (b− a)y)dy =

Z 1
0
h(y)dy

h(y) = (b− a) · g(a+ (b− a)y)

19

θ =
Z 1
0

Z 1
0
· · ·

Z 1
0
g(x1, · · · , xn)dx1dx2 · · · dxn

Z
0

Z
0

Z
0

θ = E[g(U1 U)]

 Generate many g()

θ = E[g(U1, · · · , Un)]

 Generate many g(….)
 Compute average value

 which is equal to θ which is equal to θ

20

