

Objective

- Use computers to simulate stochastic processes
- Learn how to generate random variables
 - Discrete r.v.
 - Continuous r.v.
- Basis for many system simulations

Pseudo Random Number Generation (PRNG)

- $\square X_n = a X_{n-1} \mod m$
 - Multiplicative congruential generator
 - $\Box X_n = \{0, 1, \dots, m-1\}$
 - \square x_n/m is used to approx. distr. U(0,1)
 - \square x₀ is the initial "seed"
- Requirements:
 - No. of variables that can be generated before repetition begins is large
 - For any seed, the resultant sequence has the "appearance" of being independent
 - The values can be computed efficiently on a computer

 $\square X_n = a X_{n-1} \mod m$ m should be a large prime number For a 32-bit machine (1 bit is sign) \square m=2³¹-1 = 2,147,483,647 $\Box a = 7^5 = 16,807$ For a 36-bit machine \square m= 2³⁵-31 $\Box a = 5^{5}$ $\square X_n = (ax_{n-1} + c) \mod m$ Mixed congruential generator

In C Programming Language

Int rand(void)

- Return int value between 0 and RAND_MAX
- RAND_MAX default value may vary between implementations but it is granted to be at least 32767

X=rand()

- □ X={0,1,..., RAND_MAX}
- X = rand()%m + n
 - □ X={n, n+1, …, m+n-1}
 - Suitable for small m;
 - Lower numbers are more likely picked

(0,1) Uniform Distribution

- U(0,1) is the basis for random variable generation
 C code (at least what I use):
 - Double rand01(){
 double temp;
 temp = double(rand()+0.5) /
 (double(RAND_MAX) + 1.0);
 return temp;

Generate Discrete Random Variables ---- Inverse Transform Method

□ r.v. X: $P(X = x_i) = p_i$, $j = 0, 1, \cdots$ \Box We generate a PRNG value U~ U(0,1) \Box For 0<a<b<1, P(a \le U < b = b-a, thus $P(X = x_j) = P(\sum_{i=0}^{j-1} p_i \le U < \sum_{i=0}^{j} p_i) = p_j$ $X = \begin{cases} x_0 & \text{if } U < p_0 \\ x_1 & \text{if } p_0 \le U < p_0 + p_1 \\ \vdots \\ x_j & \text{if } \sum_{i=0}^{j-1} p_i \le U < \sum_{i=0}^{j} p_i \\ \vdots \end{cases}$ 7 **Stands For Opportunity**

Example

A loaded dice:

 P(1)=0.1; P(2)=0.1; P(3)=0.15; P(4)=0.15
 P(5)=0.2; P(6)=0.3

 Generate 1000 samples of the above loaded dice throwing results

Generate a Poisson Random Variable

$$p_i = P(X = i) = e^{-\lambda} \frac{\lambda^i}{i!}, \quad i = 0, 1, \cdots$$

Use following recursive formula to save computation:

$$p_{i+1} = \frac{\lambda}{i+1}p_i$$

Some Other Approaches

- Acceptance-Rejection approach
 Composition approach
 - They all assume we have already generated a random variable first (not U)
 Not very useful considering our simulation purpose

Generate Continuous Random Variables ---- Inverse Transform Method

□ r.v. X: $F(x) = P(X \le x)$ □ r.v. Y: Y= F⁻¹ (U) □ Y has distribution of F. (Y=_{st} X) □ P(Y ≤ x) = P(F⁻¹(U) ≤ x) = P(F(F⁻¹(U)) ≤ F(x)) = P(U ≤ F(x)) = P(X ≤ x)

□ Why? Because 0 < F(x) < 1 and the CDF of a uniform $F_U(y) = y$ for all $y \in [0; 1]$

Generate Exponential Random Variable

$$F(x) = 1 - e^{-\lambda x}$$
$$U = 1 - e^{-\lambda x}$$
$$e^{-\lambda x} = 1 - U$$
$$x = -\ln(1 - U)/\lambda$$
$$F^{-1}(U) = -\ln(1 - U)/\lambda$$

UCF

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Generate Normal Random Variable --- Polar method

- The theory is complicated, we only list the algorithm here:
 - Objective: Generate a pair of independent standard normal r.v. ~ N(0, 1)

□ Step 1: Generate (0,1) random number U₁ and U₂ □ Step 2: Set V₁ = 2U₁ − 1, V₂ = 2U₂-1 $S = V_1^2 + V_2^2$

□ Step 3: If S> 1, return to Step 1.

Step 4: Return two standard normal r.v.:

$$X = \sqrt{\frac{-2\ln S}{S}}V_1, \quad Y = \sqrt{\frac{-2\ln S}{S}}V_2$$

Z	F(X)	Z	F(X)	Z	F(X)
-2.5	0.006	-1	0.159	0.5	0.691
-2.4	0.008	-0.9	0.184	0.6	0.726
-2.3	0.011	-0.8	0.212	0.7	0.758
-2.2	0.014	-0.7	0.242	0.8	0.788
-2.1	0.018	-0.6	0.274	0.9	0.816
-2	0.023	-0.5	0.309	1	0.841
-1.9	0.029	-0.4	0.345	1.1	0.864
-1.8	0.036	-0.3	0.382	1.2	0.885
-1.7	0.045	-0.2	0.421	1.3	0.903
-1.6	0.055	-0.1	0.46	1.4	0.919
-1.5	0.067	0	0.5	1.5	0.933
-1.4	0.081	0.1	0.54	1.6	0.945
-1.3	0.097	0.2	0.579	1.7	0.955
-1.2	0.115	0.3	0.618	1.8	0.964
-1.1	0.136	0.4	0.655	1.9	0.971

Another approximate method- Table lookup

- Treat Normal distr. r.v. X as discrete r.v.
- Generate a U, check U with F(x) in table, get z

Generate Normal Random Variable

Polar method generates a pair of standard normal r.v.s X~N(0,1)
 What about generating r.v. Y~N(μ, σ²)?

 $\Box Y = \sigma X + \mu$

Generating a Random Permutation

- Generate a permutation of {1,..., n}
- Int(kU) +1:
 - uniformly pick from {1,2,···, k}

Algorithm:

- P₁,P₂,…, P_n is a permutation of 1,2,…, n (e.g., we can let P_j=j, j=1,…, n)
- Set k = n
- Generate U, let I = Int(kU)+1
- Interchange the value of P_I and P_k
- Let k=k-1 and if k>1 goto Step 3
- \square P₁, P₂, ..., P_n is a generated random permutation

Example: permute (10, 20, 30, 40, 50)

Monte Carlo Approach ----Use Random Number to Evaluate Integral

$$\theta = \int_0^1 g(x) dx$$
 $\theta = E[g(U)]$

U is uniform distr. r.v. (0,1)
Why?

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

 $f_U(x) = 1$ if 0 < x < 1

Stands For Opportunity

UCF

. 1

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

U₁, U₂, ..., U_k are independent generated uniform distr. (0,1)
 g(U₁),..., g(U_k) are independent
 Law of large number:

 ^k g(U_i)/k → E[g(U)] = θ as k → ∞

$$\theta = \int_a^b g(x) dx$$

• Substitution: y=(x-a)/(b-a), dy = dx/(b-a) $\theta = \int_0^1 (b-a) \cdot g(a+(b-a)y) dy = \int_0^1 h(y) dy$ $h(y) = (b-a) \cdot g(a+(b-a)y)$

$$\theta = \int_0^1 \int_0^1 \cdots \int_0^1 g(x_1, \cdots, x_n) dx_1 dx_2 \cdots dx_n$$

$$\theta = E[g(U_1, \cdots, U_n)]$$

Generate many g(....)
 Compute average value

 which is equal to θ