
CDA6530: Performance Models of Computers and NetworksCDA6530: Performance Models of Computers and Networks

Chapter 5: Generating Random NumberChapter 5: Generating Random Number
and Random Variables

ObjectiveObjective

 Use computers to simulate stochastic Use computers to simulate stochastic
processes

 Learn how to generate random variables Learn how to generate random variables
 Discrete r.v.
 Continuous r.v.

 Basis for many system simulations

2

Pseudo Random Number Generation (PRNG)()

 xn = a xn-1 mod mn n 1
 Multiplicative congruential generator
 xn = {0, 1, , m-1}
 xn/m is used to approx. distr. U(0,1)n
 x0 is the initial “seed”

 Requirements:
 No. of variables that can be generated before o o a ab es a ca be ge e a ed be o e

repetition begins is large
 For any seed, the resultant sequence has the

“appearance” of being independentappearance of being independent
 The values can be computed efficiently on a

computer

3

 xn = a xn-1 mod mn n-1
 m should be a large prime number
 For a 32-bit machine (1 bit is sign)

231 1 2 14 483 64 m=231-1 = 2,147,483,647
 a = 75 = 16,807

 For a 36-bit machine For a 36 bit machine
 m= 235-31
 a = 55

 xn = (axn-1 + c) mod m
 Mixed congruential generator

4

In C Programming LanguageIn C Programming Language

 Int rand(void)()
 Return int value between 0 and RAND_MAX
 RAND_MAX default value may vary between

implementations but it is granted to be atimplementations but it is granted to be at
least 32767

 X=rand()()
 X={0,1,, RAND_MAX}

 X = rand()%m + n
X { +1 + 1} X={n, n+1, , m+n-1}

 Suitable for small m;
 Lower numbers are more likely picked

5

 Lower numbers are more likely picked

(0,1) Uniform Distribution(0,1) Uniform Distribution

 U(0,1) is the basis for random variable U(0,1) is the basis for random variable
generation

 C code (at least what I use): C code (at least what I use):
Double rand01(){

double temp;
temp = double(rand()+0.5) /
(double(RAND_MAX) + 1.0);

t treturn temp;
}

6

Generate Discrete Random Variables
---- Inverse Transform MethodInverse Transform Method

 r.v. X: P(X= xj) = pj, j=0,1,(j) pj, j 0, ,
 We generate a PRNG value U~ U(0,1)

 For 0<a<b<1, P(a≤ U <b} = b-a, thus(}

P (X = xj) = P (
j−1X
i=0

pi ≤ U <
jX
i=0

pi) = pj⎧⎪⎪⎪⎪⎪⎪⎪⎪x0 if U < p0
x1 if p0 ≤ U < p0 + p1

X =

⎪⎪⎨⎪⎪⎪⎪⎪
1 p0 ≤ p0 + p1
...

xj if
Pj−1
i=0 pi ≤ U <

Pj
i=0 pi

7

⎪⎪⎪⎪⎩ j
P
i=0 pi ≤

P
i=0 pi

...

ExampleExample
 A loaded dice: A loaded dice:

 P(1)=0.1; P(2)=0.1; P(3)=0.15; P(4)=0.15
 P(5)=0.2; P(6)=0.3

 Generate 1000 samples of the above
loaded dice throwing results

8

Generate a Poisson Random VariableGe e ate a o sso a do a ab e

pi = P (X = i) = e−λ
λi

i!
, i = 0,1, · · ·

 Use following recursive formula to save
t ti

pi ()
i!
, , ,

computation:

pi+1 =
λ

pipi+1 =
i+1

pi

9

Some Other ApproachesSome Other Approaches

 Acceptance-Rejection approach Acceptance Rejection approach
 Composition approach

 They all assume we have already generated
a random variable first (not U)

 Not very useful considering our simulation
purpose

10

Generate Continuous Random Variables
---- Inverse Transform MethodInverse Transform Method

 r.v. X: F(x) = P(X≤ x)() ()
 r.v. Y: Y= F-1 (U)

 Y has distribution of F. (Y=st X)
P(Y≤ x) P(F 1(U) ≤ x) P(Y≤ x) = P(F-1(U) ≤ x)

= P(F(F-1(U))≤ F(x))
= P(U≤ F(x)) P(U≤ F(x))
= P(X≤ x)

 Why? Because 0<F(x)<1 and the CDF of ay ()
uniform FU(y) = y for all y ∈ [0; 1]

11

Generate Exponential Random Variablep

F (x) = 1− e−λx()

U = 1− e−λx
λxe−λx = 1− U

x = − ln(1− U)/λ

F−1(U) = − ln(1− U)/λ

12

Generate Normal Random Variable
--- Polar methodPolar method

 The theory is complicated, we only list the The theory is complicated, we only list the
algorithm here:
 Objective: Generate a pair of independent j p p

standard normal r.v. ~ N(0, 1)
 Step 1: Generate (0,1) random number U1 and U2

Step 2: Set V = 2U 1 V = 2U 1 S = V 2 + V 2 Step 2: Set V1 = 2U1 – 1, V2 = 2U2-1
 Step 3: If S> 1, return to Step 1.
 Step 4: Return two standard normal r.v.:

S = V1 + V2

X =

s
−2 lnS
S

V1, Y =

s
−2 lnS
S

V2

13

s
S

s
S

 Another approximate method- Table lookup
 Treat Normal distr. r.v. X as discrete r.v.

G t U h k U ith F() i t bl t Generate a U, check U with F(x) in table, get z

14

Generate Normal Random VariableGe e ate o a a do a ab e

 Polar method generates a pair of standard Polar method generates a pair of standard
normal r.v.s X~N(0,1)

 What about generating r.v. Y~N(μ, σ2)?g g (μ,)

Y= σX + μY σX μ

15

Generating a Random Permutationg

 Generate a permutation of {1,, n}p { , , }
 Int(kU) +1:

 uniformly pick from {1,2,, k}
Al ith Algorithm:
 P1,P2,, Pn is a permutation of 1,2,, n (e.g., we

can let Pj=j, j=1,, n)j j j)
 Set k = n
 Generate U, let I = Int(kU)+1
 Interchange the value of P and P Interchange the value of PI and Pk
 Let k=k-1 and if k>1 goto Step 3
 P1, P2, , Pn is a generated random permutation

16

Example: permute (10, 20, 30, 40, 50)

Monte Carlo Approach ----
Use Random Number to Evaluate IntegralUse Random Number to Evaluate Integral

θ =
Z 1

g(x)dx θ = E[g(U)]

 U is uniform distr r v (0 1)

θ =
Z
0
g(x)dx θ = E[g(U)]

 U is uniform distr. r.v. (0,1)
 Why? Z ∞
E[X] =

Z ∞
−∞

xf(x)dxZ ∞
E[g(X)] =

Z ∞
−∞

g(x)f(x)dx

f () 1 if 0 1
17

fU(x) = 1 if 0 < x < 1

 U1, U2, , Uk are independent generated U1, U2, , Uk a e depe de t ge e ated
uniform distr. (0,1)
 g(U1),, g(Uk) are independentg(1) g(k) p
 Law of large number:

kX g(Ui) → E[g(U)] = θ as k →∞
X
i=1 k

→ E[g(U)] = θ as k →∞

18

θ =
Z b
g(x)dx

 Substitution: y=(x-a)/(b-a), dy = dx/(b-a)

Z
a

y () (), y ()

θ =
Z 1
0
(b− a) · g(a+ (b− a)y)dy =

Z 1
0
h(y)dy

h(y) = (b− a) · g(a+ (b− a)y)

19

θ =
Z 1
0

Z 1
0
· · ·

Z 1
0
g(x1, · · · , xn)dx1dx2 · · · dxn

Z
0

Z
0

Z
0

θ = E[g(U1 U)]

 Generate many g()

θ = E[g(U1, · · · , Un)]

 Generate many g(….)
 Compute average value

 which is equal to θ which is equal to θ

20

