CDA6530: Performance Models of Computers and Networks

> Chapter 9:Statistical Analysis of Simulated Data and Confidence Interval

Sample Mean

a R.v. X: $\mathrm{E}[\mathrm{X}]=\theta, \operatorname{Var}[\mathrm{X}]=\sigma^{2}$
\square Q: how to use simulation to derive?

- Simulate X repeatedly
- X_{1}, \cdots, X_{n} are i.i.d., $=_{s_{\text {statistic }} X} X$
- Sample mean: $\bar{X} \equiv \sum_{i=1}^{n} \frac{X_{i}}{n}$

$$
E[\bar{X}]=\theta \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Sample Variance

- σ^{2} unknown in simulation
- Hard to use $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$ to measure simulation variance
- Thus we need to estimate σ^{2}
- Sample variance S^{2} :

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- $\mathrm{n}-1$ instead of n is to provide unbiased estimator

$$
E\left[S^{2}\right]=\sigma^{2}
$$

Estimate Error

- Sample mean \bar{X} is a good estimator of θ, but has an error
- How confidence we are sure that the sample mean is within an acceptable error?
- From central limit theorm:

$$
\sqrt{n} \frac{(\bar{X}-\theta)}{\sigma} \sim N(0,1)
$$

- It means that:

$$
\sqrt{n} \frac{(\bar{X}-\theta)}{S} \sim N(0,1)
$$

Confidence Interval

- R.v. Z~N(0,1), for $0<\alpha<1$, define:

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{Z}>\mathrm{Z}_{\alpha}\right)=\alpha \\
& \mathrm{Z}_{0.025}=1.96
\end{aligned}
$$

$$
\mathrm{P}\left(-\mathrm{Z}_{0.025}<\mathrm{Z}<\mathrm{Z}_{0.025}\right)=1-2 \alpha=0.95
$$

$$
\begin{aligned}
& P\left(\bar{X}-z_{\alpha / 2} \frac{S}{\sqrt{n}}<\theta<\bar{X}+z_{\alpha / 2} \frac{S}{\sqrt{n}}\right) \approx 1-\alpha \\
& P\left(\bar{X}-1.96 \frac{S}{\sqrt{n}}<\theta<\bar{X}+1.96 \frac{S}{\sqrt{n}}\right) \approx 0.95
\end{aligned}
$$

95% confidence interval ($\alpha=0.05$) of an estimate is:

$$
(\bar{X} \pm 1.96 S / \sqrt{n})
$$

When to stop a simulation?

- Repeatedly generate data (sample) until 100(1- α) percent confidence interval estimate of θ is less than I
a Generate at least 100 data values.
- Continue generate, until you generated k values such that $2 z_{\alpha / 2} S / \sqrt{k}<I$
\square The 100(1- α) percent confidence interval of estimate is

$$
\left(\bar{X}-z_{\alpha / 2} S / \sqrt{k}, \bar{X}+z_{\alpha / 2} S / \sqrt{k}\right)
$$

Fix no. of simulation runs

- Suppose we only simulate 100 times - k=100
- What is the 95\% confidence interval?

$$
\begin{gathered}
\left(\bar{X}-z_{\alpha / 2} S / \sqrt{k}, \bar{X}+z_{\alpha / 2} S / \sqrt{k}\right) \\
(\bar{X}-0.196 S / \sqrt{k}, \bar{X}+0.196 S / \sqrt{k})
\end{gathered}
$$

Example: Generating Expo. Distribution

