Hidden Markov Model

- Most pages of the slides are from lecture notes from Prof. Serafim Batzoglou's course in Stanford:
- CS 262: Computational Genomics (Winter 2004)
- http://ai.stanford.edu/~serafim/cs262/

Hidden Markov Models

Applications of hidden Markov models

- HMMs can be applied in many fields where the goal is to recover a data sequence that is not immediately observable (but other data that depends on the sequence is).
- Cryptanalysis
- Speech recognition
- Machine translation
- Partial discharge
- Gene prediction
- Alignment of bio-sequences
* reference: wikipiedia.com

Example: The Dishonest Casino

A casino has two dice:

- Fair die

$$
P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6
$$

$=$

- Loaded die
$P(1)=P(2)=P(3)=P(4)=P(5)=1 / 10$
$P(6)=1 / 2$
Casino player switches back-\&-forth between fair and loaded die once roughly around every 20 turns

Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$

The dishonest casino model

Question \# 1 - Evaluation

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Question \# 2 - Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the DECODING question in HMMs

Question \# 3 - Learning

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

Model parameters:
How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs (build model in training)

The dishonest casino model

Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)

- Alphabet $\Sigma=\left\{b_{1}, b_{2}, \ldots, b_{M}\right\}$ (observable symbols)
- Set of states $\mathrm{Q}=\{1, \ldots, \mathrm{~K}\} \quad$ (hidden states)
- Transition probabilities between any two states

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{ij}}=\text { transition prob from state } \mathrm{i} \text { to state } \mathrm{j} \\
& \mathrm{a}_{\mathrm{i} 1}+\ldots+\mathrm{a}_{\mathrm{ik}}=1 \text {, for all states } \mathrm{i}=1 \ldots \mathrm{~K}
\end{aligned}
$$

- Start probabilities $\mathrm{a}_{0 \mathrm{i}}$

$$
a_{01}+\ldots+a_{0 k}=1
$$

- Emission probabilities within each state

$$
\begin{aligned}
& e_{i}(b)=P\left(x_{i}=b \mid \pi_{i}=k\right) \\
& e_{i}\left(b_{1}\right)+\ldots+e_{i}\left(b_{M}\right)=1, \text { for all states } i=1 \ldots K
\end{aligned}
$$

A Hidden Markov Model is memory-less

At each time step t , the only thing that affects future states is the current state π_{t}

$$
\begin{aligned}
& \mathrm{P}\left(\pi_{\mathrm{t}+1}=\mathrm{k} \mid \text { "whatever happened so far" }\right)= \\
& \mathrm{P}\left(\pi_{\mathrm{t}+1}=\mathrm{k} \mid \pi_{1}, \pi_{2}, \ldots, \pi_{\mathrm{t}}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{t}}\right) \\
& \mathrm{P}\left(\pi_{\mathrm{t}+1}=\mathrm{k} \mid \pi_{\mathrm{t}}\right)
\end{aligned}
$$

A parse of a sequence

Given a sequence $x=x_{1} \ldots . . x_{N}$,
A parse of x is a sequence of states $\pi=\pi_{1}, \ldots \ldots, \pi_{N}$

Likelihood of a parse

Given a sequence $x=x_{1} \ldots \ldots x_{N}$ and a parse $\pi=\pi_{1}, \ldots \ldots, \pi_{N}$,

To find how likely is the parse: (given our HMM)

$$
\begin{aligned}
P(x, \pi)= & P\left(x_{1}, \ldots, x_{N}, \pi_{1}, \ldots \ldots, \pi_{N}\right)= \\
& P\left(x_{N}, \pi_{N} \mid \pi_{N-1}\right) P\left(x_{N-1}, \pi_{N-1} \mid \pi_{N-2}\right) \ldots \ldots P\left(x_{2}, \pi_{2} \mid \pi_{1}\right) P\left(x_{1}, \pi_{1}\right)= \\
& P\left(x_{N} \mid \pi_{N}\right) P\left(\pi_{N} \mid \pi_{N-1}\right) \ldots \ldots P\left(x_{2} \mid \pi_{2}\right) P\left(\pi_{2} \mid \pi_{1}\right) P\left(x_{1} \mid \pi_{1}\right) P\left(\pi_{1}\right)= \\
& a_{0 \pi 1} a_{\pi 1 \pi 2} \ldots . a_{\pi N-1 \pi N} e_{\pi 1}\left(x_{1}\right) \ldots \ldots e_{\pi N}\left(x_{N}\right)
\end{aligned}
$$

Example: the dishonest casino

Let the sequence of rolls be:
$x=1,2,1,5,6,2,1,6,2,4$

Then, what is the likelihood of
π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs $\mathrm{a}_{0 \text { Fair }}=1 / 2, \mathrm{a}_{\text {oLoaded }}=1 / 2$)
$1 / 2 \times P(1 \mid$ Fair $) P($ Fair | Fair $) P(2 \mid$ Fair $) P($ Fair | Fair $) \ldots P(4 \mid$ Fair $)=$
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=.00000000521158647211=0.5 \times 10^{-9}$

Example: the dishonest casino

So, the likelihood the die is fair in all this run is just 0.521×10^{-9}

π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded?
$1 / 2 \times \mathrm{P}(1 \mid$ Loaded $) \mathrm{P}($ Loaded, Loaded $) \ldots \mathrm{P}(4 \mid$ Loaded $)=$
$1 / 2 \times(1 / 10)^{8} \times(1 / 2)^{2}(0.95)^{9}=.00000000078781176215=7.9 \times 10^{-10}$

Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way.

Example: the dishonest casino

Let the sequence of rolls be:
$x=1,6,6,5,6,2,6,6,3,6$
Now, what is the likelihood $\pi=F, F, \ldots, F$?
$1 / 2 \times(1 / 6)^{10} \times(0.95)^{9}=0.5 \times 10^{-9}$, same as before

What is the likelihood

$$
\pi=L, L, \ldots, L ?
$$

$1 / 2 \times(1 / 10)^{4} \times(1 / 2)^{6}(0.95)^{9}=.00000049238235134735=0.5 \times 10^{-7}$
So, it is 100 times more likely the die is loaded

The three main questions on HMMs

1. Evaluation

GIVEN	a HMM M,	and a sequence x,
FIND	$\operatorname{Prob}[x \mid M]$	

2. Decoding

GIVEN	a HMM M, \quad and a sequence x,
FIND	the sequence π of states that maximizes $P[x, \pi \mid M]$

3. Learning

GIVEN
a HMM M, with unspecified transition/emission probs., and a sequence x ,

FIND
parameters $\theta=\left(e_{i}(),. \mathrm{a}_{\mathrm{ij}}\right)$ that maximize $\mathrm{P}[\mathrm{x} \mid \theta]$

