

CDA6530: Performance Models of Computers and Networks

Chapter 8: Discrete Event Simulation (DES)

Simulation Studies

- Models with analytical formulas
 - Calculate the numerical solutions
 - Differential equations ---- Matlab Simulink
 - Or directly solve if has closed formula solutions
 - Discrete equations --- program code to solve
 - The mean value formulas for stochastic events
 - Solutions are only for the mean values
 - If you derive models in your paper, you must use real simulation to verify that your analytical formulas are accurate

Simulation Studies

Models without analytical formulas

- Monte Carlo simulation
 - Generate a large number of random samples
 - Aggregate all samples to generate final result
 - Example: use U(0,1) to compute integral
- Discrete-time simulation
 - Divide time into many small steps
 - Update system states step-by-step
 - Approximate, assume system unchanged during a time step
- Discrete event simulation (DES)
 - Accurate
 - Event-driven

- System is assumed to change only at each discrete time tick
 - Smaller time step, more accurate simulation
- Why use it?
 - Simpler than DES to code and understand
 - Fast, if system states change very quickly

While (simulation not complete){

- 1). Time tick: k ++;
- 2). For system's node i $(i=1,2,\cdots)$
 - 3). Simulate what could happen for node i during the last time step (k-1 → k)
 - 4). Update the state of node i if something happens to it
- 5). Output time tick k's system's states (e.g., status of every node in the system)

- Note: when computing system node i's state at time tick k, it should be determined only by all other system nodes' states at time tick k-1
 - Be careful in step 4): not use node j's newly updated value at current round
 - Newly updated value represents state at the beginning of next round.
 - Example: worm propagation simulation

Another example: one line of nodes

$$\Box X_{i}(t) = (U-0.5) + (X_{i-1}(t-1) + X_{i+1}(t-1)) / 2$$

```
Simul_N = 1000; n=100; X = ones(n,1);

for k=1:Simul_N,

U = rand(n,1);

X(1) = (U(1) - 0.5) + X(2)/2;

for i=2:n-1,

X(i) = (U(i) - 0.5) + (X(i-1) + X(i+1)) / 2;

end

X(n) = (U(n) - 0.5) + X(n-1) / 2;

end
```

Corrected Code:

```
Simul_N = 1000; n=100; X = ones(n,1);

Prior_X = ones(n,1);

for t=1:Simul_N,

    U = rand(n,1);

    Prior_X = X; /* save last time's data */

    X(1) = (U(1) - 0.5) + Prior_X(2)/2;

    for i=2:n-1,

         X(i) = (U(i) - 0.5) + (Prior_X(i-1) + Prior_X(i+1)) / 2;

    end

    X(n) = (U(n) - 0.5) + Prior_X(n-1) / 2;

end
```

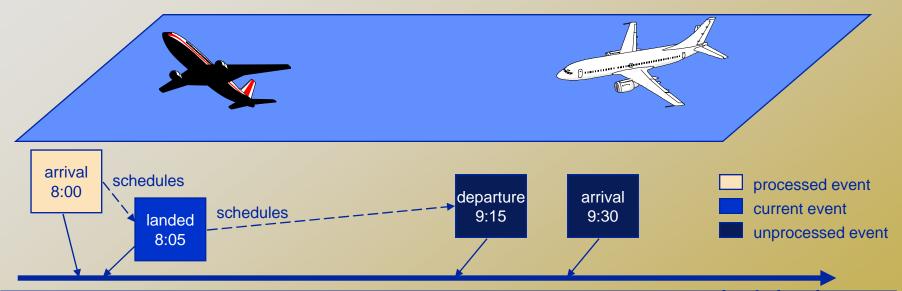
Time Concept

- physical time: time in the physical system
 - Noon, Oct. 14, 2008 to noon Nov. 1, 2008
- simulation time: representation of physical time within the simulation
 - floating point values in interval [0.0, 17.0]
 - Example: 1.5 represents one and half hour after physical system begins simulation
- wallclock time: time during the execution of the simulation, usually output from a hardware clock
 - 8:00 to 10:23 AM on Oct. 14, 2008

Discrete Event Simulation Computation

example: air traffic at an airport

events: aircraft arrival, landing, departure



- Unprocessed events are stored in a pending event list
- Events are processed in time stamp order

From: http://www.cc.gatech.edu/classes/AY2004/cs4230_fall/lectures/02-DES.ppt

DES: No Time Loop

- Discrete event simulation has no time loop
 - There are events that are scheduled.
 - At each run step, the next scheduled event with the *lowest* time schedule gets processed.
 - The current time is then that time, the time when that event is supposed to occur.
- Accurate simulation compared to discretetime simulation
- Key: We have to keep the list of scheduled events sorted (in order)

Variables

- Time variable t
 - Simulation time
 - Add time unit, can represent physical time
- Counter variables
 - Keep a count of times certain events have occurred by time t
- System state (SS) variables
- We focus on queuing systems in introducing DES

Interlude: Simulating non-homogeneous Poisson process for first T time

- Nonhomogeneous Poisson process:
 - Arrival rate is a variable $\lambda(t)$
 - Bounded: $\lambda(t) < \lambda$ for all t < T
 - Thinning Method:
 - 1. t=0, l=0
 - 2. Generate a random number U
 - 3. $t=t-ln(U)/\lambda$. If t>T, stop.
 - 4. Generate a random number U
 - If $U \le \lambda(t)/\lambda$, set I=I+1, S(I)=t
 - 6. Go to step 2
- Final I is the no. of events in time T
- \square S(1), ..., S(I) are the event times
- Remove step 4 and condition in step 5 for homogeneous Poisson

Subroutine for Generating T_s

Nonhomogeneous Poisson arrival

- T_s: the time of the first arrival after time s.
- Let t = s
- 2. Generate U
- 3. Let $t=t-ln(U)/\lambda$
- 4. Generate U
- If $U \le \lambda(t)/\lambda$, set T_s =t and stop
- 6. Go to step 2

Subroutine for Generating T_s

Homogeneous Poisson arrival

- T_s: the time of the first arrival after time s.
- 1. Let t = s
- 2. Generate U
- 3. Let $t=t-ln(U)/\lambda$
- 4. Set T_s=t and stop

M/G/1 Queue

Variables:

- □ Time: t
- Counters:
 - N_A: no. of arrivals by time t
 - N_D: no. of departures by time t
- □ System state: n no. of customers in system at t

Events:

- Arrival, departure (cause state change)
- Event list: EL = t_A, t_D
 - □ t_A: the time of the next arrival after time t
 - T_D: departure time of the customer presently being served

Output:

- A(i): arrival time of customer i
- D(i): departure time of customer i

Initialize:

- \square Set $t=N_A=N_D=0$
- □ Set SS n=0
- □ Generate T_0 , and set $t_A = T_0$, $t_D = \infty$
- Service time is denoted as r.v. Y

$$\Box t_D = Y + T_0$$
 (optional)

```
\Box If (t_A \le t_D)
```

- \Box t=t_A (we move along to time t_A)
- \square $N_A = N_A + 1$ (one more arrival)
- □ n= n + 1 (one more customer in system)
- \Box Generate T_t , reset $t_A = T_t$ (time of next arrival)
- □ If (n=1) generate Y and reset t_D=t+Y (system had been empty and so we need to generate the service time of the new customer)
- Collect output data A(N_A)=t (customer N_A arrived at time t)

```
    If (t<sub>D</sub><t<sub>A</sub>) (Departure happens next)
    t = t<sub>D</sub>
    n = n-1 (one customer leaves)
    N<sub>D</sub> = N<sub>D</sub>+1 (departure number increases 1)
    If (n=0) t<sub>D</sub>=∞; (empty system, no next departure time)
    else, generate Y and t<sub>D</sub>=t+Y (why?)
    Collect output D(N<sub>D</sub>)=t
```

Summary

- Analyzing physical system description
- Represent system states
- What events?
- Define variables, outputs
- Manage event list
- Deal with each top event one by one