
CDA6530: Performance Models of Computers and Networks

Chapter 8: Discrete Event Simulation
Example --- Three callers problem in

homwork 2

Problem Description
 Two lines services three callers. Each caller makes calls

that are exponentially distributed in length, with mean
1/μ. If both lines are in service by two callers and the
third one requests service, the third caller will be
blocked. A caller whose previous attempt to make a call
was successful has an exponentially distributed time
before attempting the next call, with rate λ. A caller
whose previous call attempt was blocked is impatient
and tries to call again at twice that rate (2λ), also
according to exponential distribution. The callers make
their calls independent of one another.

2

Analysis Results
 Steady state prob: π

 Matlab code:
Q = [………];
Pi = zeros(1, 6);
Q_m = [Q(:, 1:5) ones(6,1)];
B = [0 0 0 0 0 1];
Pi = B * inv(Q_m);

3

πQ = 0

π1 = 1

Simulation based on
Markov Model

4

Pre Simulation
 Strictly refer to the state transition diagram

 Remember current state: currentState
 Determine next state: nextState

 This is a continuous-time Markov Chain
 Method #1:

 State duration time (for the transition node in the
right):
 Exp. distr. with rate (λ + μ)
 Determine the next transition event time

 At the time of transition event:
 Use discrete r.v. simulation method to determine nextState:

 Transit first path with prob. of λ/(λ+μ)
 Transit second path with prob. of μ/(λ+μ)

5

λ

μ

Pre Simulation
 Method #2:

 Should jump to 1 by exp. distr. Time with rate
λ  find jump time t1

 Should jump to 2 by exp. distr. Time with rate
μ  find jump time t2

 If t1 < t2, the actual jump is to 1 at even time t1
 If t2 < t1, the actual jump is to 2 at even time t2

6

λ

μ

1

2

Pre Simulation
 Events:

 Transition out from currentState to nextState
 Event List:

 EL ={ ttran }: time of the next transition event
 Simpler than queuing systems

 Output:
 Tran(i): event time of the i-th transition
 State(i): system’s state after i-th transition

 Termination condition:
 N: # of transitions we simulate

7

Simulation
Set stateN, initState, N, lambda, mu, Q
currentState = initState; currentTime = 0;
for i=1:N, % simulate N transitions

% first, simulation currentState during time (next event time)
% Given that we know the Markov model and the Q matrix
outRate = - Q(currentState, currentState);
Tran(i) = currentTime - log(rand)/outRate; % exp. distr. with rate of outRate
% next, determine which state transits to?
U = rand;
vector = Q(currentState,:); vector(currentState) = 0;
for j=1:stateN,

if U <= sum(vector(1:j))/sum(vector),
nextState = j; break;

end
end
State(i) = nextState;
currentState = nextState; currentTime = Tran(i); % prepare for next round

end

8

Post Simulation Analysis
 Objective:

 Compute Pi based on simulation
 Pi(k) = time spent in state k

overall simulation time
 Overall simulation time = Tran(N)
 Time spent in state k: Time(k)

Time = zeros(6,1); Time(initState) = Tran(1);
for k=1:6,

for i=1:N-1,
if State(i) == k,

Time(k) = Time(k) + Tran(i+1) - Tran(i);
end

end
end

9

Simulation Results

N=100

10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Theoretical
Simulation

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Theoretical
Simulation

N=5000
 Shows that our simulation is

consistent with analytical result

Realistic Simulation
With physical meaning

11

Problem for the Simulation Above

 The simulation actually simulates
continuous-time Markov Chain only
 Only based on Markov model
 The simulation does not really simulate the

physical world events
 Three callers? What’s their status?
 Two service lines?

 More accurate & realistic simulation
 Simulate the physical entities

actions/behaviors/events

12

Pre Simulation
 What physical entities should we consider?

 Should directly correspond to physical entities
 Should uniquely define system status

 There are two types of entities
 Two service lines
 Three callers

 If we do not care which service line is
working
 We should treat three callers as simulation

nodes

13

Pre Simulation
 Each caller’s data:

 status: ‘patient’, ‘impatient’, ‘calling’
 Caller[3]; each entry = ‘P’ or ‘I’ or ‘C’

 nextT: event time for its next action
 What “next action” could be?

 Finishing phone call
 When current status is ‘calling’

 Making phone call attempt
 When current status is ‘idle’ or ‘impatient’

 Event list:
 Each caller only has one next event/action
 Event list: EventList[3]

 Three nodes’ next action time
 We do not really need to save nextT in caller data since it is

saved in EventList
14

Pre Simulation
 Next event: the smallest time in EventList

 Suppose it is EventList[k]
 Means caller k does the next action first

 Update system at this time EventList[k]
 Move simulation time to this event time
 Check caller k: what’s its action?
 Regenerate the next event time nextT for caller k

 Based on its next status: calling? Patient? Impatient?
 We need to know the status of those two service lines in

order to determine this
 serveLineNum: # of lines that are using

 Update EventList[k] = nextT

15

Pre Simulation
 Update output data:

 Tran(i) = EventList[k]
 State(i): system’s state after this node action

 In order to compare with analytical results
 If we care about each caller’s behavior:

 Tran(i) = EventList[k]
 ActCaller(i) = k

 The k-th caller acts at time Tran(i)
 CallerState(i) = Caller(k)

 k-th caller’s state after the i-th event
 The other callers do not change their state after this event

16

Simulation Pseudo Code
Initialize N, \lambda, \mu, State[], Tran[]
Initialize initState and Caller[3]; currentTime = 0;
Initialize EventList[] (use corresponding distribution to generate)
For i=1:N,

Find the smallest time tick in Eventlist[]  index is k
% caller k’s action is the event we simulate now

currentTime = EventList[k];
Update caller k’s status;
Update how many phone lines are used
Generate caller k’s next action time, assign to EventList[k]

% Update output data
Tran(i) = currentTime;
State(i) = ? (case statement to decide based on state definition)

End

17

 State(i) = ? (case statement to decide based on
state definition)

 E.g.:
 [C,C,I]  state 3
 [I,C,C]  state 3
 [P,C,I]  state 4
 …

18

Simulation Compared with Analysis

19

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Theoretical
Simulation

N=1000

Conclusion
 The realistic simulation uses minimal amount of

knowledge of statistical analysis
 Realistic simulation directly simulate real world

entities actions and behaviors
 The model-based simulation is still useful

 Better than no simulation
 Applicable for all systems described by one model
 Can study system’s performance when there is no

analytical results
 Sometime realistic simulation is too complicated or

take too long to do
 We need to decide which simulation to conduct

20

