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a Stochastic process X = {X(t), te T} is a

collection of random variables (rvs); one
rv for each X(t) for each te T

o Index set T --- set of possible values of t
o t only means time
o T: countable - discrete-time process
a T: real number - continuous-time process

o State space --- set of possible values of X(t)
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a A stochastic process that represents no. of
events that occurred by time t; a continuous-
time, discrete-state process {N(t), t>0} if

N(0)=0

N(t)> 0

N(t) increasing (non-decreasing) in t

N(t)-N(s) is the Number of events happen in time

interval [s, {]

a
Q
a
a

N(t)

t
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o Counting process has independent increments if

no. events in disjoint intervals are independent
disjoint intervals

o counting process has stationary increments if
no. of events in [t,+s; t,+s] has the same
distribution as no. of events in [t;; t,]; s > 0
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a N;: no. of successes by time t=0,1,...is a
counting process with independent and

stationary increments
o p: prob. of success
o Note: tis discrete

o Whenn<t, p(N;, =n) = (t

n

) p"(1—p)t—"

a N, ~ B(t, p)
o E[N{]=tp, Var[N]=tp(1-p)
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a X: time between success

o Geometric distribution
a P(X=n) = (1-p)~'p

SR R
\ J

Y
X
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Little o notation
a Definition: f(h) is o(h) if
lim %h) =0
2 f(h)=h2is o(h)* "
o f(h)=h is not
a f(h)=h", r>1 is o(h)

a sin(h) is not
a If f(h) and g(h) are o(h), then f(h)+g(h)=0(h)

a Note: h is continuous
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a Exponential r.v. X with parameter A has
PDF P(X<h) = 1-e ", h>0

P X <t+hX >t = PIX<h Why?
1 — E‘L_)\h

= 1—|1—

Why?

= M+ o(h)
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o Counting process {N(t), t>0} with rate A

o tis continuous

a N(0)=0

a Independent and stationary increments
a P(N(h)=1) = Ah +o(h)

a P(N(h)>2) =o(h)

a Thus, P(N(h)=0) = ?
o P(N(h)=0) = 1 -Ah +o(h)

o Notation: P (t) = P(N(t)=n)

UCF
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0 t t+At
P (t+At) = P, 1(t)AAt+ P,(t)(1 — AAt) 4 o( At)
Po(t+ At) — Po(t) = P 1(H)AAL — P, (£)AAE + o Ab)
Pt +At)— Po(t) B o( At)
Taking limit At — 0, we get
dP
- = )\Pu—l — )\Pn.
dt
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0 FOI n=0, Py(t+At) = Py(t)(1-A At)+o( At)

UCF

o Thus, Py(t) = e  Why?

a Thus, inter-arrival time is exponential distr.
With the same rate \

o Remember exponential r.v.: Fy(x)= 1-e*

o That means: P(X>t) = e

o {X>t} means at time t, there is still no arrival
a XM: time for n consecutive arrivals

o Erlang r.v. with order n

| }II.":I.":—le—}.r i
flzik,A) = — I for r = 0.
(k —1)!
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APt) _ 3Py 1 (8) = APa(t)

dt
PO(t) = 6_>\t
NG
Solution: Pp(t) = e_)‘t( |)
.

a Similar to Poissonr.v. P(X = k) = e_’\ﬁ

a You can think Poisson r.v. Is the static distr.
of a Poisson process at time t
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a Take i.i.d. sequence of exponential rvs
{X.} with rate \
a Define: N(t) = max{n| Z,_ .. , Xi
a {N(t)} is a Poisson process

<t},

o Meaning: Poisson process is composed of
many independent arrivals with exponential
inter-arrival time.
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o If N(t) is a Poisson process and one event
occurs in [0,t], then the time to the event,

denoted as r.v. X, is uniformly distributed in [0,t],
a fynp=1(X[1)=1/t, 0< x<'t

o Meaning:
a Given an arrival happens, it could happen at any time

o Exponential distr. is memoryless
o One reason why call the arrival with “rate” A
o Arrival with the same prob. at any time
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o if N4(t) and N,(t) are independent Poisson
processes with rates A; and A,, then N(t) = N,(t)
+ N,(t) is a Poisson process with rate A =A,+ A,

a Intuitive explanation:
a A Poisson process is caused by many independent

entities (n) with small chance (p) arrivals
o Arrival rate is proportional to population size A=np

o Still a Poisson proc. if two large groups of entities
arrives in mixed format
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o N(t) is Poisson proc. with rate A ;, M, is
Bernoulli proc. with success prob. p.
Construct a new process L(t) by only
counting the n-th event in N(t) whenever

M, >M_ _, (i.e., success at time n)
0 | /£ I Dnloonn w/ith rata An
I_\L} o1 ViooUll Vvillli IGLU I\|J
o Useful in analysis based on random sampling
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o A web server where failures are described by a
Poisson process with rate A = 2.4/day, i.e., the
time between failures, X, is exponential r.v. with

mean E[X] = 10hrs.

o P(time between failures < 1 day) =

a P(5 failures in 1 day)=

o P(N(5)<10)=

o look in on system at random day, what is prob. of no.
failures during next 24 hours?

o failure is memory failure with prob. 1/9, CPU failure
with prob. 8/9. Failures occur as independent events.
What is process governing memory failures?
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The arrival of claims at an insurance company follows a

Q

Q

UCF

Poisson process. On average the company gets 100
claims per week. Each claim follows an exponential
distribution with mean $700.00. The company offers
two types of policies. The first type has no deductible
and the second has a $250.00 deductible. If the claim
sizes and policy types are independent of each other
and of the number of claims, and twice as many policy
holders have deductibles as not, what is the mean

1N

liability amount of the company in any 13 week period?

First, claims be split into two Poisson arrival processes
o X:no deductible claims Y: deductible claims

Second, the formula for liability?
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a Continuous-time, discrete-space stochastic
process {N(t), t >0}, N(t) €{0, 1,...}

o N(t): population at time t
o P(N(t+h) =n+1 | N(t) =n) =X h + o(h)
o P(N(t+h) = n-1 | N(t) =n) = p, h + o(h)
a P(N(t+h) = n | N(t) = n) = 1-(A, + p,) h + o(h)
a A, - birth rates
o u, - death rates, u, =0

a Q:whatis P,(t) = P(N(t) = n)? n=0,1,...

UCF Stands For Opportunity 19



Rirth_Naath Drnraoacc
DIiILiI=/Cadillil riucvcoo

o Similar to Poisson process drift equation

dP (t)/dt =P, () 4,4 + P .4(f) it,41
- (4, + 1) P(1), n=1,...

dP(O/dt = Py(t) i, - Ay P(1)

Initial condition: P_(0)

o If 4,=0, A\,=A, then B-D process is a
Poisson process
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a Most real systems reach equilibrium as

t=2>00

o No change in P,(t) as t changes
a No dependence on initial condition

o P, =1lims_ P(t)
a Drift equation becomes:
(;tn + ﬂn ) Pn= ;Ln-1 Pn-1 + xun+1 Pn+1
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a Balance Equations:

o Rate of trans. into n = rate of trans. out of n
Ana Ppa * Upeq Powq = (4 + 14,) P, n>1

My Py = 4o Py,
o Rate of trans. to left = rate of trans. to right
An—1Pn—1 = pnbn
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o Probabillity requirement:

S =1

n=0
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a Prob. of future state depends only on
present state

a {X(t), t>0} is a MP if for any set of time
t,<-.-<t ,, and any set of states

XqSe o X1
a P(X(t_ . .,)=Xx IY(’r \= o X(t )=x 1
- 0 \I \\ n+1 n+1| \ / 1\1, l\\l.n/ I\nJ

= I:)(X(tn+‘l) n+1| ( ) }
a B-D process, Poisson process are MP

UCF Stands For Opportunity 24




NMarl-nvr C.hain
ivial AUV uiliailll

a Discrete-state MP is called Markov Chain (MC)

o Discrete-time MC
a Continuous-time MC

a First, consider discrete-time MC

P =PXpy1=J3|Xn=1),i5,7=0,1,...;m >0

a Define transition prob. matrix:

P = [F;;]
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o What is the state after n transitions?
Q A deflne P;; — P(Xn+?11 — j | X-m — ?,), n 2 0: %aj 2 0

Pi'n:—I—m — P(Xn—}—m. :.? | XD — ?’)7‘

P(Xn—}—?n - ja T k‘ ‘ XU _ ?’] Why‘7

NE

o
I

0

PXnim=7|Xn=kXo=1)P(X, =k | Xg=1),

I
aMS

2
I
=

P(Xpym =7 | Xo =k)P(X, = k| Xo=1), Why?
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o If MC has n state

Pi= Y PPy = [P%] =P-P
k=1

o Define n-step transition prob. matrix:
P = [P
a C-K equation means:
p(ntm) — p(n)  p(m)
P(n) —P. P(n—l) — pn
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a Irreducible MC:

a If every state can be reached from any other
states

a Periodic MC:

o A state | has period k if any returns to state i
occurs in multiple of k steps

a k=1, then the state is called aperiodic

a MC is aperiodic if all states are aperiodic

UCF Stands For Opportunity 28




a An irreducible, aperiodic finite-state MC is
ergodic, which has a stationary (steady-
state) prob. distr.

T = (T‘-Oaﬂ-l)'” 77Tn)

m = 7k,

™1 = 1

where 1 = (1 ...)%
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o Markov on-off model (or 0-1 model)
o Q: the steady-state prob.?

l—a o
P=15 1—6]
m0 = (1 - a)mo+ Bm ™o N
™™ = amg+ (1 —08)m — aaﬁ
o+ 71 =1 el :m
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o Use balance equation:
1l — o 18 1—0

o Rate of trans. to left = rate of trans. to right

amg = [
o+ 71 =1
f g
s = L=
= {70 _O‘;B
™ T aiB
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o Xi: the number of time steps a MC stays in

the same state |
a P(X; = k) = Pyt (1-Py)
o X, follows geometric distribution
o Average time: 1/(1-P;)

a In continuous-time MC, the staying time

IS7?
o Exponential distribution time
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a P(X(t+h)=j[X(t)=1) = A\, ;h +o(h)
a We have the properties:
P(X(t4+h)=4X(@)=1i)=1- > Xjh+o(h)
J7=u
P(X(t+h) #i|X () =) = 3 Ajh+ o(h)
J7=u
a The state holding time is exponential distr.
with rate A=Y N
o Why? jFi
o Due to the summation of independent exponential
distr. is still exponential distr.
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a Ergodic continuous-time MC

o Define m, = P(X=i)

a Consider the state transition diagram
a Transit out of state | = transit into state |

WZZA’LJ ZW gt

JFi JF1
Z ;= 1
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a Define Q = [q;] where

) 2k#iMNk wheni=j
dij = 9 N : :
| g P 7 ]
o Q is called infinitesimal generator
m=|my mo -]
Q=0
Q Why?
w1l =1
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o X(t): discrete state, continuous time
o State jump: follow Markov Chain Z,
o State i holding time: follow a distr. YO

o If YO follows exponential distr. A
a X(t) is a continuous-time Markov Chain
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a Let ' =lim, 5 . P(Z,=))
a Let ; = lim , P(X(t)=))

m; E[Y )] o
Zzes JrE[Y ] / Why‘?

?Tj:
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