
CDA5530: Performance Models of Computers and Networks

Chapter 3:  Review of Practical 
Stochastic ProcessesStochastic Processes



DefinitionDefinition
St h ti X {X(t) t T} i Stochastic process X = {X(t), t∈ T} is a 
collection of random variables (rvs); one 
rv for each X(t) for each t∈ T
 Index set T --- set of possible values of tp

 t only means time
 T: countable  discrete-time process

T l b  ti ti T: real number  continuous-time process
 State space --- set of possible values of X(t)
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Counting ProcessCounting Process
A t h ti th t t f A stochastic process that represents no. of 
events that occurred by time t; a continuous-
ti di t t t {N(t) t>0} iftime, discrete-state process {N(t), t>0} if
 N(0)=0
 N(t)≥ 0 N(t)≥ 0
 N(t) increasing (non-decreasing) in t
 N(t)-N(s) is the Number of events happen in time ( ) ( ) pp

interval [s, t]
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Counting ProcessCounting Process
C ti h i d d t i t if Counting process has independent increments if 
no. events in disjoint intervals are independent

P(N =n N =n ) = P(N =n )P(N =n ) if N and N are P(N1=n1, N2=n2) = P(N1=n1)P(N2=n2) if N1 and N2 are 
disjoint intervals

 counting process has stationary increments if counting process has stationary increments if 
no. of events in [t1+s; t2+s] has the same 
distribution as no of events in [t1; t2]; s > 0
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Bernoulli ProcessBernoulli Process
N f b i 0 1 i Nt: no. of successes by time t=0,1,…is a 
counting process with independent and 
stationary increments
 p: prob. of success

Note: t is discrete Note:  t is discrete
 When n≤ t, P (Nt = n) =

Ã
t
n

!
pn(1− p)t−n

 Nt ∼ B(t, p)
 E[N ]=tp Var[N ]=tp(1 p)

Ã
n

!

 E[Nt]=tp, Var[Nt]=tp(1-p)
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Bernoulli ProcessBernoulli Process
X ti b t X: time between success
 Geometric distribution
 P(X=n) = (1-p)n-1p P(X=n) = (1-p) p
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Little o notationLittle o notation
Definition: f(h) is o(h) if Definition: f(h) is o(h) if

lim
f(h)

= 0

 f(h)=h2 is o(h)
f(h)=h is not

lim
h→0 h

= 0

 f(h)=h is not
 f(h)=hr, r>1 is o(h)
 sin(h) is not sin(h) is not
 If f(h) and g(h) are o(h), then f(h)+g(h)=o(h)

 Note: h is continuous
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Example: Exponential R VExample: Exponential R.V.

E ti l X ith t λ h Exponential r.v. X with parameter λ has 
PDF P(X<h) = 1-e-λh, h>0

Why?

Why?
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Poisson ProcessPoisson Process
Counting process {N(t) t≥0} with rate λ Counting process {N(t), t≥0} with rate λ
 t is continuous

N(0) 0 N(0)=0
 Independent and stationary increments

P(N(h)=1) = λh +o(h) P(N(h)=1)  = λh +o(h)
 P(N(h)≥ 2)  = o(h)
 Thus, P(N(h)=0) = ? Thus, P(N(h) 0)   ?

 P(N(h)=0)  = 1 -λh +o(h)

N t ti P (t) P(N(t) ) Notation:  Pn(t) = P(N(t)=n)
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Drift EquationsDrift Equations
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F 0 P (t+∆t) P (t)(1 λ∆t)+ (∆t) For n=0, P0(t+∆t) = P0(t)(1-λ∆t)+o(∆t)
 Thus, dP0(t)/dt = -λ P0(t)

Th P (t) λt Wh ? Thus, P0(t) = e-λt

 Thus, inter-arrival time is exponential distr. 
With th t λ

Why?

With the same rate λ
 Remember exponential r.v.:  FX(x)= 1-e-λx

That means: P(X> t) e-λt That means: P(X> t) = e-λt

 {X>t} means at time t, there is still no arrival
 X(n): time for n consecutive arrivals X( ): time for n consecutive arrivals

 Erlang r.v. with order n
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dPn(t)
( ) ( )

dPn(t)

dt
= λPn−1(t)− λPn(t)

P0(t) = e−λtP0(t) e

 Similar to Poisson r.v. P (X = k) = e−λλ
k

k!
 You can think Poisson r.v. is the static distr. 

of a Poisson process at time t

( ) k!

p
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Poisson ProcessPoisson Process

T k i i d f ti l Take i.i.d. sequence of exponential rvs 
{Xi} with rate λ
 Define:  N(t) = max{n| Σ1≤ i≤ n Xi ≤ t},
 {N(t)} is a Poisson process

 Meaning: Poisson process is composed of 
many independent arrivals with exponential 
inter-arrival time.
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Poisson ProcessPoisson Process

if N(t) i P i d t if N(t) is a Poisson process and one event 
occurs in [0,t], then the time to the event, 
d t d X i if l di t ib t d i [0 t]denoted as r.v. X, is uniformly distributed in [0,t],
 fX|N(t)=1(x|1)=1/t,   0≤ x≤ t

 Meaning:
 Given an arrival happens, it could happen at any time Given an arrival happens, it could happen at any time
 Exponential distr. is memoryless
 One reason why call the arrival with “rate” λ

 Arrival with the same prob. at any time
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Poisson ProcessPoisson Process

if N (t) d N (t) i d d t P i if N1(t) and N2(t) are independent Poisson 
processes with rates λ1 and λ2, then N(t) = N1(t) 
+ N (t) i P i ith t λ λ + λ+ N2(t) is a Poisson process with rate λ =λ1+ λ2

I t iti l ti Intuitive explanation:
 A Poisson process is caused by many independent 

entities (n) with small chance (p) arrivalsentities (n) with small chance (p) arrivals
 Arrival rate is proportional to population size λ=np

 Still a Poisson proc. if two large groups of entities 
arrives in mixed format
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Poisson ProcessPoisson Process

N(t) i P i ith t λ M i N(t) is Poisson proc. with rate λ , Mi is 
Bernoulli proc. with success prob. p. 
Construct a new process L(t) by only 
counting the n-th event in N(t) whenever cou t g t e t e e t (t) e e e
Mn >Mn -1 (i.e., success at time n)

 L(t) is Poisson with rate λp L(t) is Poisson with rate λp
 Useful in analysis based on random sampling
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Example 1Example 1

A b h f il d ib d b A web server where failures are described by a 
Poisson process with rate λ = 2.4/day, i.e., the 
ti b t f il X i ti l ithtime between failures, X, is exponential r.v. with 
mean E[X] = 10hrs.

P(time between failures < 1 day) = P(time between failures < 1 day) =
 P(5 failures in 1 day)=
 P(N(5)<10)= P(N(5) 10)
 look in on system at random day, what is prob. of no. 

failures during next 24 hours?
 failure is memory failure with prob. 1/9, CPU failure 

with prob. 8/9. Failures occur as independent events. 
What is process governing memory failures?
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Example 2Example 2
The arrival of claims at an insurance company follows aThe arrival of claims at an insurance company follows a 

Poisson process. On average the company gets 100 
claims per week. Each claim follows an exponential 
distribution with mean $700 00 The company offersdistribution with mean $700.00. The company offers 
two types of policies. The first type has no deductible 
and the second has a $250.00 deductible. If the claim 
sizes and policy types are independent of each othersizes and policy types are independent of each other 
and of the number of claims, and twice as many policy 
holders have deductibles as not, what is the mean 
liability amount of the company in any 13 week period?liability amount of the company in any 13 week period?

 First, claims be split into two Poisson arrival processes
X: no deductible claims Y: deductible claims X: no deductible claims    Y:  deductible claims

 Second, the formula for liability?
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Birth-Death ProcessBirth-Death Process
Continuous time discrete space stochastic Continuous-time, discrete-space stochastic 
process {N(t), t >0}, N(t) {0, 1,...}

 N(t): population at time t N(t): population at time t
 P(N(t+h) = n+1 | N(t) = n) = λn h + o(h)
 P(N(t+h) = n-1 | N(t) = n) = μn h + o(h)( ( ) | ( ) ) μn ( )
 P(N(t+h) = n | N(t) = n) = 1-(λn + μn) h + o(h)
 λn - birth rates
 μn - death rates, μ0 = 0

Q h t i P (t) P(N(t) )? 0 1 Q: what is Pn(t) = P(N(t) = n)? n = 0,1,...
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Birth-Death ProcessBirth-Death Process

Similar to Poisson process drift equation Similar to Poisson process drift equation

If 0 λ λ th B D i
Initial condition:  Pn(0)

 If μi=0, λi=λ, then B-D process is a 
Poisson process 
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Stationary Behavior of B-D ProcessStationary Behavior of B-D Process

M t l t h ilib i Most real systems reach equilibrium as 
t∞
 No change in Pn(t) as t changes
 No dependence on initial condition

 Pn = limt∞ Pn(t)
 Drift equation becomes:equa o beco es
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Transition State DiagramTransition State Diagram

 Balance Equations:
 Rate of trans. into n = rate of trans. out of n

 Rate of trans. to left = rate of trans. to right

λ 1P 1 = μnPn
22

λn−1Pn−1 = μnPn



P b bilit i t Probability requirement:
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Markov ProcessMarkov Process

P b f f t t t d d l Prob. of future state depends only on 
present state

 {X(t), t>0} is a MP if for any set of time 
t1<<tn+1 and any set of states  1 n+1 y
x1<<xn+1
 P(X(t 1)=x 1|X(t1)=x1  X(t )=x } P(X(tn+1) xn+1|X(t1) x1, X(tn) xn}

= P(X(tn+1)=xn+1| X(tn)=xn}
 B-D process Poisson process are MP B-D process, Poisson process are MP
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Markov ChainMarkov Chain

Di t t t MP i ll d M k Ch i (MC) Discrete-state MP is called Markov Chain (MC)
 Discrete-time MC
 Continuous-time MC Continuous-time MC

 First, consider discrete-time MC

 Define transition prob. matrix: p

P = [Pij]
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Chapman-Kolmogorov EquationChapman-Kolmogorov Equation

Wh t i th t t ft t iti ? What is the state after n transitions?
 A: define 

Why?

Why?
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If MC h t t If MC has n state
P2ij =

nX
PikPkj ⇒ [P2ij] = P ·P

 Define n-step transition prob. matrix:

ij

X
k=1

ik kj ⇒ [Pij] = P ·P
e e step t a s t o p ob at

P(n) = [Pnij]

 C-K equation means: 
( + ) ( ) ( )P(n+m) = P(n) ·P(m)

P(n) = P P(n−1) = Pn
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Markov ChainMarkov Chain
I d ibl MC Irreducible MC: 
 If every state can be reached from any other 

states
 Periodic MC: 

 A state i has period k if any returns to state i 
occurs in multiple of k steps

 k=1, then the state is called aperiodic
 MC is aperiodic if all states are aperiodic
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A i d ibl i di fi it t t MC i An irreducible, aperiodic finite-state MC is 
ergodic, which has a stationary (steady-
state) prob. distr.

π = (π0 π1 · · · πn)π (π0,π1, ,πn)
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ExampleExample
α1− α 1− β

0 1

1 α

β

1 β

 Markov on-off model (or 0-1 model)
Q: the steady state prob ?

β

 Q: the steady-state prob.?

P =

"
1− α α
β 1 β

#"
β 1− β

#
⎧⎨π0 = (1− α)π0 + βπ1

+ (1 β)

⎧⎨π0 = β
α+β

⎨⎩π1 = απ0 + (1− β)π1

π0 + π1 = 1

⇒
⎨⎩ 0 α+β

π1 = α
α+β
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An Alternative CalculationAn Alternative Calculation
 Use balance equation: Use balance equation:

α1− α 1− β

0 1β

 Rate of trans. to left = rate of trans. to right
απ0 = βπ1απ0 βπ1
π0 + π1 = 1

⇒
⎧⎨⎩π0 = β

α+β

π1 = α
β
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Discrete-Time MC State Staying TimeDiscrete-Time MC State Staying Time

X th b f ti t MC t i Xi: the number of time steps a MC stays in 
the same state i

 P(Xi = k) = Piik-1 (1-Pii)
 Xi follows geometric distributioni g
 Average time:  1/(1-Pii)

 In continuous-time MC, the staying time 
is?is?
 Exponential distribution time
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Homogeneous Continuous-Time Markov ChainHomogeneous Continuous-Time Markov Chain

P(X(t+h) j|X(t) i) λ h + (h) P(X(t+h)=j|X(t)=i) = λijh +o(h)
 We have the properties:

P (X(t+ h) = i|X(t) = i) = 1−
X
j 6=i

λijh+ o(h)

P (X(t+ h) 6= i|X(t) = i) =
X

λijh+ o(h)

 The state holding time is exponential distr. 

P (X(t+ h) 6= i|X(t) = i) =
X
j 6=i

λijh+ o(h)

with rate 
 Why?

D t th ti f i d d t ti l

λ =
X
j 6=i

λij

 Due to the summation of independent exponential 
distr. is still exponential distr.
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Steady-StateSteady-State 

E di ti ti MC Ergodic continuous-time MC
 Define πi = P(X=i)
 Consider the state transition diagram

 Transit out of state i = transit into state i

πi
X

λij =
X

πjλjii

X
j 6=i

ij

X
j 6=i

j ji

X
πi = 1

X
i

πi = 1
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Infinitesimal GeneratorInfinitesimal Generator

D fi Q [ ] h Define Q = [qij] where⎧⎨ P
λ when i = j

qij =

⎧⎨⎩−
P
k 6=i λik when i = j

λij i 6= j

 Q is called infinitesimal generator
π = [π π ]

πQ = 0

π = [π1 π2 · · · ]
Q

π1 = 1
Why?
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Semi-Markov ProcessSemi-Markov Process

X(t) di t t t ti ti X(t):  discrete state, continuous time
 State jump: follow Markov Chain  Zn

S f (i) State i holding time: follow a distr. Y(i)

 If Y(i) follows exponential distr. λ
 X(t) is a continuous-time Markov Chain
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Steady StateSteady State

L t ’ li P(Z j) Let π’j=limn∞ P(Zn=j)
 Let πj = limt∞ P(X(t)=j)j

Why?
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