
Page 1 of 6

CAP6135: Programming Project 2: Fuzzing
 (Spring 2014)

Assigned Feb. 12th, due on WebCourse by Mar. 2nd midnight
Have 15 points if you finish and submit it by Mar. 10th midnight

This project is modified from the programming project 2 in Dr. Dawn Song’s course “CS161:
computer security” in Fall 2008:
http://inst.eecs.berkeley.edu/~cs161/fa08/

I have put a .zip file on WebCourse in this project submission page. You will need to download
it, extract its included three files for completing this project. Once you put those three files in
your Eustis account and if the ‘jpegconv’ is not executable, you can use command:

$chmod u+x jpegconv
To change it to become executable.

You can work this project on your own Linux machines as long as the ‘jpegconv’ can run on
your machine.

Delivery:
Submit a .zip file through UCF WebCourse. The zip file should contain:

1. Source code file of your fuzzers. Your programs must be programmed using a language
that can be run on Eustis, such as C/C++, Java, Perl, or Python (explain clearly how I can
compile and run your code on Eustis machine in your report!) You can include multiple
fuzzer codes where each of them is used to discover one or several specific bugs.

2. The input files (modified jpg images based on the sample.jpg) that could trigger each of
the bugs you can find. For each bug, just provide one input image file. Name the input
file as “test-x.jpg” for Bug # x. In this way, I can easily check whether you really found
Bug #x by running jpegconv on it by myself!

3. A 3-5 page project report (in PDF). The detailed requirements of this report are discussed
at the end of this project description.

Fuzzing:
The goal of this project is to implement a “fuzzer”, or fuzz tester. Fuzz testing is one way of
discovering security vulnerabilities in any code that processes potentially malicious input.

A mutation-based fuzzer takes a valid input for the target program, and works by creating
random mutations/changes to generate new test cases. Mutation-based fuzzers are application
independent, and so they do not have any knowledge about input format (protocol format)
accepted by the target program. In contrast, a protocol-aware fuzzer is a fuzzer that is directed
towards particular applications, and possesses knowledge about the input format of the target
applications. The goal of this project is to design a protocol-aware fuzzer, and a mutation-based
fuzzer, and empirically compare their performance.

Implementation:
You will implement a mutation-based fuzzer and a protocol-aware fuzzer, capable of
finding bugs in a provided real-world program ‘jpegconv’. Each student may implement his/her

http://inst.eecs.berkeley.edu/~cs161/fa08/

Page 2 of 6

fuzzer in the programming language(s) of their choice (such as C, C++, Perl, Java, Python), as
long as the fuzzer can be executed on the Eustis machine (eustis.eecs.ucf.edu).

As explained in the fuzz Test example in Lecture 10 and 11 (02/10/2014 and 02/12/14 class),
Prof. Dawn Song has deliberately introduced a number of vulnerabilities into the JPEG to PPM
image converter program (called jpegconv) which we will provide to you as a binary
executable. You can use your fuzzer to uncover some of these bugs. At the end of the project,
each student will submit a list of the bugs they found, and the number of distinct bugs found in
the test program will form part of each student’s grade. Not all of the bugs will be equally easy to
discover, however. Whether or not you discover some of the more subtle bugs may depend on
the sophistication of your fuzzer design (what knowledge of the jpeg file format you have used).

The fuzzer will repeatedly invoke the program being tested (jpegconv) with a series of inputs
(modified image files based on sample.jpg), each time checking to see if the jpegconv crashes. If
the target application being tested prints an error message or immediately exits, it is not
considered as having a bug. We are only concerned with discovering inputs which cause the
program to crash, which should not happen under any circumstances. For our purposes, we will
consider a program to have crashed if it exited due to signal 11 (SEGV). Before the
“jpegconv” program crashes due to a triggered bug, it will outputs "BUG X
TRIGGERED" to the screen using stderr. From this message you can know which bug in the
program has been triggered.

Mutation-based Fuzzing
You should first write a simple mutation-based fuzzer, taking the valid input file sample.jpg via
the --fuzz-file argument, and use it as a base case for generating new test image files. To
generate a new test file, you may randomly modify one or more bytes in the input file, or
generate completely new random data and add it anywhere to the file.

Protocol-aware Fuzzing
Use the protocol knowledge about file format for JPEG (JFIF) image file format (JPEG File
Interchange Format) to some extent. For your convenience, we have printed the format structure
for the sample.jpg file as "sample.format". You need not understand the complete specification
for JPEG file format. The header formats appearing in sample.format should be sufficient to
uncover enough bugs to receive full credit.

There are numerous resources on JPEG specifications online, so look for them if you are
interested. Such as

1. http://en.wikipedia.org/wiki/JPEG
2. http://www.obrador.com/essentialjpeg/headerinfo.htm

When you uncompress the zip file on webcourse, besides the bugged jpegconv executable
code, you will also find a normal example picture sample.JPG, its format file
sample.format.

How to save generated image files that trigger some bugs?
In most cases, your generated image file (based on the sample.jpg) cannot trigger any bug. Since
you need to generate tens of thousands mutated image file as input to the jpegconv for fuzzing,

http://en.wikipedia.org/wiki/JPEG
http://www.obrador.com/essentialjpeg/headerinfo.htm

Page 3 of 6

there is no disk space for you to save all those test input images in Eustis machine. So in your
fuzzer, only when you determine that the jpegconv generates signal 11 (segmentation fault) then
you save the generated image file.

In addition, you need to match the jpegconv stderr output message “BUG X TRIGGERED” to
the corresponding saved image file in order to know which bug is triggered by which image file.
One simple way is when executing ‘jpegconv’ command, you can use redirect (introduced in
Lecture 11) to save the “BUG X TRIGGERED” messages to a text file. There are other more
intelligent ways to do it, and more intelligent way to name those saved image files.

Project Report Requirement
Please submit a project report on 3-5 pages. Consider this to be also a software engineering
project and include sections such as Analysis, Design and Implementation.

Design
Briefly explain your strategy used to implement the fuzzing test. Specifically, you should point
out how you mutate the sample.jpg, including which byte or bytes you modify, what values you
use, and which bug is triggered by modifying which format field (if you use jpeg format), etc.

Empirical results
Show several graphs or tables describing the results from running the fuzzer. Show how many
inputs you have tried in fuzzing, the number of bugs you have found (which bugs you have
found). For each bug you found, how many different image input files have triggered the bug.

When you find an input modified image file ‘test.jpg’ that, for example, could trigger Bug #1,
name the file as ‘test-1.jpg’, save it (for each bug, you only need to save one image input for
final submission; of course, during fuzzing test, you may have temporarily saved many image
files that generate the same bug). Then when you run:
$./jpegconv -ppm -outfile foo.ppm test-1.jpg
The jpegconv should crash and print out:
BUG 1 TRIGGERED

Show the screenshot image(s) of each bug you have triggered using the above command, just
like this:

Page 4 of 6

Grading

(70 points)
There are at least 10 bugs in the sample program. You need to find any 8 of the 10 to receive full
credit. A bug x is confirmed to be found only if you have the corresponding test-x.jpg file that
triggers this bug in your submission.

(10 points)
Empirical results presented in the project report. Report contains clear description, including
some graphs or tables showing the results.

(10 points)
Submitted compressed file contains image files that could trigger each of found bugs (e.g., if you
found 6 bugs, you should have 6 test-x.jpg files in your submission).

(10 points)
Project report contains the screenshot images showing the “BUG X TRIGGERED” for each
found bug.

HELP ON PROGRAMMING

1. You should first check that ./jpegconv works on your testing
environment.

 $./jpegconv -ppm -outfile foo.ppm sample.jpg
 $ ls foo.ppm
 foo.ppm
 $
2. Your fuzzer should generate a mutated/modified image file such as
‘YOUR_TEST_CASE.jpg’. Then your fuzzer executes the command-line of
 jpegconv, like this:
 "./jpegconv -ppm -outfile foo.ppm YOUR_TEST_CASE.jpg".

3. You can inspect the sample.jpg file to see the format
 structure. For your convinience, we have printed the format
 structure for that file as "sample.format".

 Each line in the sample.format file signifies a field in the
 JPEG file. For instance, consider the line 2-4 of
 sample.format shown here.

 - 0) start_image: Start of image (SOI) (2 bytes)
 0) header= 0xff: Header (1 byte)
 1) type= 0xd8: Type (1 byte)

 It shows the input format for the first 2 bytes as a tree.
 It states that at offset "0" in the file sample.jpg, an SOI
 field was found. It has two single-byte subfields "header"
 and "type". The values of these are 0xff and 0xd8
 respectively, and so on.

4. You can use any hex editor to check the sample.jpg file. Under Eustis

Page 5 of 6

(Linux) machine, you can use
“$hexdump sample.jpg > hex.txt”

To generate ASCII readable text file ‘hex.txt’ to show the hexadecimal value
of each byte. The first value in each line is the starting address/position
of the first byte in that line (in hexadecimal value).

5. Information :: You may restrict the scope of your tool to only be
concerned with the headers used in sample.jpg. Specifically, the bugs
introduced in jpegconv, require only code paths resulting from parsing the
image data and following header types:

 * Start of Image (SOI) marker -- two bytes (FFD8)
 * JFIF marker (FFE0)
 * Define Quantization table marker (FFDB)
 * Define Huffman table marker (FFC4)
 * Start of frame marker (FFC0)
 * Start of Scan marker (FFDA)
 * End of Image (EOI) marker (FFD9)

6. HINTS AND POSSIBLE DIRECTIONS :
 One strategy is to incrementally add file format knowledge to your fuzzer.
For instance, here is one step-by-step way:

 - Level 0 : Purely mutation based fuzzer, no information about the JPEG
format. You can pick random number of bytes in the jpeg file to change their
values to random values.

 - Level 1 : Fuzzing image format structure of SOI, EOI header/marker
types

 - Level 2 : Fuzzing the generic format for most headers/markers. Note
that all headers have very similar structure --(0xff , Type Byte (1 byte),
Length/size (2bytes), Data of the chunk ...)

 - Level 3 : Fuzzing the semantics of internal fields of
 APP0 header/markers (header type 0xff E0).

 - Level 4 : Fuzzing the semantics of DQT (type 0xff db)
 headers/markers, DHT (type 0xff C4) headers/markers,
 and SOF (header type 0xff C0) headers/markers, and
 SOS (header type 0xff da) headers/markers.

 You can then increase the sophistication of your fuzzer to be able to
operate at higher levels incrementally.

7. How to call jpegconv repeatedly in your fuzzer without causing the fuzzer
to stop execution?

Answer: the fuzzer should not stop if jpegconv crashes, so we can create a
child process and the child process run jpegconv. One example is in your
fuzzer code:

 //Create child process
 pid = fork();
 if(pid == 0){ //this is child process, call execve
 execve(TARGET, args, env);

Page 6 of 6

 }else{
 //this is parent process, wait for child, print seed
 while(waitpid(-1, &status, WNOHANG) > 0){
 if(WTERMSIG(status) == 11){
 printf("BUG TRIGGERED\n");
 }
 }

Another way that does not use multi-process is the following code (used in
fuzzTest.c in Lecture 11):

 sprintf(buffer, "./jpegconv -ppm -outfile foo.ppm %s",
modified_sample_jpeg_file);
 ret = system(buffer);
 wait(&status);
 WEXITSTATUS(ret));
 if (WEXITSTATUS(ret) == 139)
 {
 printf("a bug is triggered!\n");
 fflush(stdout);
 }

The WEXITSTATUS() returns a value that is the signal number that caused the
termination plus 128. That's where exit status "139" comes from.

