
HomeAlone: Co-Residency Detection in
the Cloud via Side-Channel Analysis

2011 IEEE Symposium on Security and Privacy

Authors:
Yinqian Zhang Ari Juels Alina Opera Michael K. Reiter

Presented by:
Michael Christakos

Basics - Cloud Computing

● Computing resources are available as Virtual
Machine (VM) instances
○ These VMs are managed by a hypervisor

■ Analogous to OS managing applications
○ Hypervisor handles I/O, core migration, time slots,

etc.

Basics - Cloud Computing

● Private
○ Intended for only a single tenant (single

organization)
● Public

○ Intended for multiple tenants (provided by Amazon,
IBM, etc.)
■ Vulnerable to side-channel attacks, particularly

using the L2 cache
● L2 cache is a widely known and used vulnerability
● Anything using the same cache can read the cache

Basics
● Cache - Smaller, much faster than main

memory
○ L1 cache - fastest, smallest, most expensive ~ few

ns
○ L2 cache - slower, larger than L1
○ L3 cache - slower, larger than L2 - (not always

available)
○ main memory - significantly largest, slowest ~ 100’s

of ns

Basics - Cloud Computing

● Many organizations have Service Level
Agreements (SLA) that guarantee physical
isolation
○ The entire physical machine is dedicated to a single

organization
○ PROBLEM: How can the organization verify that

they have sole access to the physical device?
○ SOLUTION: The HomeAlone VM

Basics - HomeAlone Approach

● PRIME-PROBE detection
○ PRIME - Read large section of main memory to fill

up a section of the cache
○ IDLE - Wait a period of time to allow other VM’s to

run and potentially use the cache
○ PROBE - Reread the same section and compare

access time to determine if the watched section of
cache was overwritten

● Uses 1/16th of available cache to test

HomeAlone VM Classifications

● Friendly
○ Another VM running by the same organization.
○ It is expected and wanted.

● Foe
○ Another VM not from the same organization.
○ It should not be on the same physical machine

HomeAlone: Foe VMs

● Benign
○ Not actively attacking
○ May or may not be aware of other VMs
○ Result of accidental or purposeful breach of SLA

physical isolation
● Adversarial

○ Actively attempting to exploit co-residency
○ Attempting to disrupt or gather information through

L2 cache side-channel

Default Cache Usage

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

RESERVED

Cache Usage - Prepare to Monitor

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

RESERVED

1. Choose set to monitor (#7) - Tell Friendly VMs

Cache Usage - Prepare to Monitor

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

RESERVED

1. Choose set to monitor (#7) - Tell Friendly VMs
2. Gather activity profiles from Friendly VMs (Total # I/O bytes)

Cache Usage - Prepare to Monitor

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(7)

1. Choose set to monitor (#7) - Tell Friendly VMs
2. Gather activity profiles from Friendly VMs (Total # I/O bytes)
3. Copy data in #7 to Reserved Space

Cache Usage - Prepare to Monitor

1 2 3 4

5 6 7 (TEST AREA) 8

9 10 11 12

13 14 15 16

(7)

1. Choose set to monitor (#7) - Tell Friendly VMs
2. Gather activity profiles from Friendly VMs (Total # I/O bytes)
3. Copy data in #7 to Reserved Space
4. Whenever #7 is needed for normal use, map to reserved

Cache Usage - Monitor

1 2 3 4

5 6 7 (TEST DATA) 8

9 10 11 12

13 14 15 16

(7)

1. Read data from main memory into 7 (completely fill 7) <PRIME>

Cache Usage - Monitor

1 2 3 4

5 6 7 (TEST DATA) 8

9 10 11 12

13 14 15 16

(7)

1. Read data from main memory into 7 (completely fill 7) <PRIME>
2. WAIT long enough to allow other VMs to access cache (~30ms)

Cache Usage - Monitor

1 2 3 4

5 6 7 (TEST DATA) 8

9 10 11 12

13 14 15 16

(7)

1. Read data from main memory into 7 (completely fill 7) <PRIME>
2. WAIT long enough to allow other VMs to access cache (~30ms)
3. Read same data from step 1 and measure access time <PROBE>

Cache Usage - Monitor

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(7)

1. Read data from main memory into 7 (completely fill 7) <PRIME>
2. WAIT long enough to allow other VMs to access cache (~30ms)
3. Read same data from step 1 and measure access time <PROBE>
4. Restore data from reserved space back to 7 (tell Friendly VMs)

Cache Usage - Monitoring Complete

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

RESERVED

1. Cache is back to normal use (RESERVED is off-limits again)

Interpret Access Time

1. Use activity profiles to determine expected
level of cache usage by hypervisor
a. The hypervisor handles all I/O operations and may

use area of cache (if the VM is on the same cache)
b. If access time is above thresholds, mark as foe

present
2. Repeat test n times
3. Determine probability of foe being present

Training

● Run on same architecture many times to
determine normal thresholds
○ Run in absence (or assumed absence) of Foe VM
○ Threshold values dependent on activity profiles

Tc Td

● Tc - Threshold when hypervisor is on a
different cache

● Td - Threshold when hypervisor is on
same cache

Training

Training
● Run on same architecture many times to determine

normal thresholds
○ Run in absence (or assumed absence) of Foe VM
○ Threshold values dependent on activity profiles

● Determine Tc and Td such that they are at (100 - α)
percentile
○ α = desired level of false positives
○ Tc is for distribution with hypervisor on separate cache, in CPU cycles
○ Td is for distribution with hypervisor on this cache, in CPU cycles

Implementation - No Foe

● Cache test size ALWAYS 256 sets (1/16)

● 4 Friendly VMs
○ 1 running apache2 server
○ 3 running one of PARSEC benchmark applications

Implementation - Benign Foe

● 4 Friendly VMs
○ 1 running apache2 server
○ 3 running one of PARSEC benchmark applications

● 1 Foe VM
○ 1 running one of PARSEC benchmark applications

Implementation - Adversarial

● 4 Friendly VMs
○ 1 running apache2 server
○ 3 running one of PARSEC benchmark applications

● 1 Foe VM
○ Toy program allocates buffer much larger than size

of cache
○ Randomly reads from locations in buffer
○ Access frequency can be changed to test different

range of foe actions

PARSEC Benchmark Applications

● Blackscholes - financial analysis
● Bodytrack - video/animation applications
● Canneal - engineering applications
● Dedup - next gen. backup storage
● Facesim - computer games
● Streamcluster - data mining
● x264 - next gen. video systems

Detection Rates for Benign Foe

Detection Rates for Adversarial Foe

Detection Against Adversarial Foe

● Detection related to number of overlapping
sets of cache

● Detection related to rate of false positives
○ False positive rate determines thresholds Tc and Td

● Detection related to frequency of Foe VM
probing
○ Higher probing rate generates more cache

corruption and easier to detect

Computational Cost

Limitations
● Only measures a section of the cache at a

time
○ If this section is not used by the Foe VM during this

period, it will not be detected
○ Measuring this section requires Friendly VMs to not

use this section during this period
○ Multi-core/multi-cache - can only detect Foe if on the

same cache
■ Only vulnerable if on same cache

Conclusions

● HomeAlone uses vulnerability for defence
○ Can determine SLA violations (benign or

adversarial)
● Modest computational cost (<5%)
● No change to hypervisor required
● Foe VM can avoid detection by not using the

L2 cache
○ This robs Foe of a major attack avenue

